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Chapter

Serum Metabolomics as a 
Powerful Tool in Distinguishing 
Trauma from Other Critical Illness 
Conditions
Elizabeth R. Lusczek

Abstract

Critical illness is highly variable, complicating patient care and recovery. We 
have previously used metabolomics to investigate several causes of intensive care 
unit admission, seeking to assess changes in metabolism occurring with each 
condition. We present a meta-analysis of these serum metabolomes, exploring 
how the metabolomes differ with each condition. We also present how mass 
spectrometry-based metabolomics could be used for predictive monitoring. 
Serum metabolites were previously quantified using nuclear magnetic resonance 
spectroscopy in patients with traumatic injury, respiratory failure, pancreati-
tis, and combat trauma. Healthy controls are also included. Spectral features 
were analyzed with principal component analysis (PCA) to explore patterns in 
patients’ underlying conditions. PCA suggests trauma metabolic profiles, particu-
larly combat casualties, differ from other conditions. Principal components 2 and 
3, accounting for 16% of the variation in the model, distinguish samples obtained 
from trauma patients. Metabolomics is a powerful tool for quantifying variability 
in critical illness, highlighting trauma as separate from other conditions. This 
observation is in line with the -omics literature, which has described a massive 
global “genomic storm” in response to severe injury. Mass spectrometry highlights 
this extreme variability, which occurs in ICU patients but not healthy controls. 
With new technology, metabolomics could be used to bring faster, individualized 
patient care to the ICU.

Keywords: metabolomics, NMR, ICU, critical illness, biomarker, traumatic injury, 
combat casualty, mass spectrometry

1. Introduction

Critical illness encompasses a wide variety of life-threatening conditions, often 
requiring intensive monitoring and sophisticated life support, such as dialysis, 
mechanical ventilation, and nutritional support. Patients are cared for in intensive 
care units (ICUs), staffed by specialists. Because patients’ conditions can change 
quickly over time, ICU staff are highly trained and nurses regularly care for only 
one or two patients at a time. Because of these factors, critical illness carries a high 
cost burden. It has been estimated that anywhere from 17 to 39% of hospital costs in 
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the United States are due to critical illness. Total costs, including 1 year of care after 
discharge are estimated at $121–263 billion, or 5–11% of United States health care 
expenditures [1]. The cost burden is difficult to estimate, due in part to the compli-
cated recovery process.

Recently, post-intensive care syndrome (PICS) has been identified as a constel-
lation of cognitive, psychological, and physical impairments that result from critical 
illness [2], occurring with increased prevalence due to the increased survivability 
of critical illness [3]. ICU-acquired delirium and mechanical ventilation are among 
the risk factors for PICS, and the effects can be long-lasting. An estimated 90% of 
patients report ICU-acquired weakness lasting 2–5 years from ICU discharge, and 
74% of patients with acute respiratory distress syndrome report cognitive impair-
ments at discharge. Approximately a quarter of these patients report effects lasting 
as long as 6 years [4].

While survivability from critical illness has increased, it has been difficult 
to make further advances in patient care and outcomes due to the heterogeneity 
of the patient population. Respiratory disorders requiring mechanical ventila-
tion, acute myocardial infarction, intracranial hemorrhage, percutaneous 
cardiovascular procedure with drug-eluting stent, and septicemia are the lead-
ing causes of ICU admission, but gastrointestinal disorders, renal disorders, 
and trauma are also frequent causes of ICU admission [5]. To further com-
plicate matters, as many as 1/3 of ICU patients have multiple co-morbidities. 
Homogenous patient populations can be difficult to identify, let alone study, 
in the ICU. As such, a “one-size-fits-all” approach to patient care can lead to 
unpredictable results. To cope with these hallmarks of critical illness, modern 
ICU clinicians argue for precision medicine approaches to critical care as a way 
to improve patient care [6–8].

Metabolomics, which reflects the phenome more closely than other -omics 
disciplines, may be a key to this endeavor. This terrain has been largely unexplored, 
save for a few studies. Targeted metabolomics has been used to discriminate non-
infectious systemic inflammatory response syndrome (SIRS) from infections SIRS 
[9]. Untargeted approaches have identified significant, severe metabolic derange-
ments that are associated with mortality [10, 11].

This chapter presents efforts to use metabolomics to explore this difficult-to-study 
space. Namely, critical illness is highly variable and affects diffuse organ systems in 
a heterogeneous patient population that may have multiple co-morbidities. Since 
the metabolome is closest to the phenome, it is more likely to reflect the individual 
patient’s state at any given time than other -omes. As others have pointed out, issues 
of heterogeneity and variability make biomarker studies problematic [6, 10]. A first 
step is to examine how metabolic profiles differ with different underlying diseases 
and with illness severity to get a better sense of this variability. This chapter touches 
on current efforts in this direction.

2. Metabolomics methodology and previous work

The NMR-based metabolomics studies we performed were pilot studies seeking 
to characterize metabolic profiles in combat injury [12], civilian traumatic injury 
[13], acute pancreatitis [14], and respiratory failure [15]. Healthy controls were also 
profiled [12, 13].

The use of the same protocol to process serum samples, collect NMR spectra, 
and quantify metabolites allows for a meta-analysis comparing the metabolic 
profiles from each study.
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Briefly, samples were filtered using a 3 kDa ultracentrifuge filter to remove 
large molecules such as proteins that bind to the internal standard. Filtrate 
is mixed in equal parts with 200 mM sodium phosphate buffer and with 50 
microliters of the internal standard 3-(trimethylsilyl)propionic acid. A 1D 
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence was used to collect spec-
tra, and metabolites were identified and quantified using Chenomx software 
[16]. Full experimental details can be found in the original research articles 
[12–15].

Metabolic profiles were limited to the 41 metabolites identified and quantified 
in all four studies. Metabolite concentrations (millimoles per liter or mM) were 
log-transformed and auto-scaled before principal component analysis (PCA) was 
performed with R software [17]. PCA scores were colored by underlying diagnosis/
patient group (combat trauma, civilian trauma age 21–40, civilian trauma age 65 
and older, acute pancreatitis, respiratory failure, healthy controls age 21–40, and 
healthy controls age 65 and older).

For the purposes of visualizing the diagnosis groups in this meta-analysis, some 
simplifications were made based on the previously published results. Because 
no clear difference was seen between patients in respiratory failure regardless of 
underlying cause, patients with chronic obstructive pulmonary disease (COPD) 
exacerbation, heart failure, and pneumonia were combined into the “respiratory 
failure” group [15]. Non-hospitalized patients who did not develop pancreatitis 
[14] and non-hospitalized patients with stable COPD [15] were excluded from this 
analysis to facilitate visualization.

3. Meta-analysis results

In total, 291 serum samples were analyzed with principal component analysis. 
Most of these were from trauma patients. The number of samples studied in each 
diagnosis group is presented in Table 1.

Principal component analysis scores (Figures 1 and 2) and loadings 
(Figures 3 and 4) are shown for the first three components. Each dot in the 
scores plot represents a serum sample, which is colored according to the diagno-
sis or condition. The loadings plots show how the metabolites profiled contribute 
to the model. The first three components account for 51% of the variability in 
the data. Component 1 accounts for 35% of the variation; components 2 and 
3 account for 9.8 and 6.6% of the variation, respectively. A three-dimensional 
biplot (Figure 5) helps visualize all the information.

Interestingly, the most meaningful pattern in the PCA scores is observed in 
Figure 2, the plot of component 2 vs. component 3. A clear line can be drawn 
along PC2 and PC3, demarcating the samples from trauma patients (red, 

Table 1. 
Number of samples profiled with NMR-based metabolomics per condition studied.
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Figure 1. 
Scores plot of PC1 vs. PC2 for serum samples described in Table 1. Samples are colored by diagnosis.

Figure 2. 
Scores plot of PC2 vs. PC3 for serum samples described in Table 1. Samples are colored by diagnosis. These two 
principal components most clearly distinguish trauma samples from non-trauma samples.
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Figure 3. 
Loadings plot of PC1 vs. PC2 for serum samples described in Table 1. Loadings values are shown in Table 2.

Figure 4. 
Loadings plot of PC2 vs. PC3 for serum samples described in Table 1. Loadings values are shown in Table 2, 
and the magnitude of the loadings vector spanned by PC2 and PC3 is calculated. Metabolites most associated 
with trauma occupy the lower right quadrant.
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purple, or magenta) from the healthy controls (gray or black) and the patients 
with other conditions (blue or light blue).

The loadings vectors for the first three principal components are reported in 
Table 2. Since PC2 and PC3 can be used to discriminate trauma samples from non-
trauma samples, we used the loadings of these components to identify the metabo-
lites most associated with trauma. To do this, we calculated the magnitude of the 
vector spanned by PC2 and PC3, shown in column 4 of Table 2. The 10 metabolites 
with the largest magnitude in the PC loadings are acetoacetate, 3-hydroxybutyrate, 
trimethylamine N-oxide, 2-hydroxybutyrate, isobutyrate, adipate, lactate, hypo-
xanthine, glutamate, and alanine. These metabolites reflect disruptions to energy 
metabolism and oxidative stress.

4. Meta-analysis discussion

Our metabolomics studies can be united under a common theme: all were done 
in conditions that are common causes for admission to the ICU. Because sample 
preparation protocol is the same for all our serum-based NMR metabolomics 

Figure 5. 
Biplot of the first three principal components for serum samples described in Table 1. Samples are colored by 
diagnosis.
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studies, we performed a meta-analysis of the metabolic profiles obtained from these 
previously published studies [12–15]. Our results suggest that samples from trauma 
patients are distinguishable from healthy controls and patients with respiratory 
failure or acute pancreatitis. Principal components 2 and 3 can be used to separate 
trauma patients’ samples from other samples, and highlight oxidative stress and 
disruptions to energy metabolism.

Traumatic injury is known to have a profound effect on molecular processes, 
impacting more than 80% of cellular functions and pathways, earning the moniker 
“genomic storm” [18]. In light of this, it is unsurprising that our unsupervised 

PC2 and PC3 show a clear separation between samples from trauma patients and samples from other research 
participants. The table is sorted according to the magnitude of the loadings vectors in PC2 and PC3 (column 4). 
Magnitude of PC2 and PC3 was calculated as follows: [(PC2 Loading)2 + (PC3 Loading)2](1/2)

PC2, principal component 2; PC3, principal component 3; TMAO, trimethylamine N-oxide.

Table 2. 
Principal component loadings for the first three components for all profiled metabolites.
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analysis would separate trauma samples from non-trauma samples. In our own 
work evaluating metabolomes of trauma patients age 21–40 years and trauma 
patients older than 65 years, we found a clear difference between metabolic profiles 
of younger healthy controls and older healthy controls. However, the data forced 
us to reject our hypothesis that metabolomes of older trauma patients would be 
distinguishable from younger trauma patients [13]. One interpretation of these data 
is that trauma deals a massive insult to metabolism that completely overtakes any 
baseline differences in metabolism caused by age.

Trauma from unintentional injury is the most common cause of death for 
persons age 44 and under [19]. Treatment of traumatic injury remains limited 
to supportive care such as stopping any bleeding and giving fluids to resuscitate. 
Lacking specific therapies for traumatic injury, early treatment is a key to improv-
ing survival. Metabolomics has already been successfully used to identify succinate, 
an objective biomarker of mortality, to improve triage [20–22]. However, new 
technology needs to be developed to bring succinate detection and quantification to 
the clinic.

5. Improving patient monitoring with metabolomics

It may be surprising that NMR, with its relatively low resolution, can discrimi-
nate metabolic profiles of trauma patients from others. However, this technique 
does not reflect the extremely variable, highly individualized nature of critical 
illness. Improving the sensitivity of metabolite detection with mass spectrometry is 
required to highlight these features of critical illness.

In a preliminary study (manuscript in preparation), we used mass spectrom-
etry to generate metabolic profiles of five ICU patients and five healthy controls. 
Samples were collected every 4 h for a period of 24 h. A standard methanol/acetone 
protocol was used to extract metabolites. A Q Exactive™ Quadrupole-Orbitrap 
mass spectrometer (Thermo Fisher Scientific, Waltham, MA) was employed 
for mass analysis. Analysis was performed in positive mode over a mass range of 
70–1050 m/z. Spectra were aligned and processed with Progenesis QI software 
(Nonlinear Dynamics, Durham, NC).

Spectral intensities of 15,000 features identified by Progenesis QI were log-
transformed and principal components analysis was performed using R software. 
The resulting scores are shown in Figure 6. Scores were colored by participant. A 
single, relatively tight cluster of healthy controls is clearly visible in the upper left 
quadrant of Figure 6 (HC01-HC05, colored blue, green, and pink). Strikingly, 
each ICU patient (ICU01-IC05, red, orange, and purple) is clearly visible, and 
each patient forms its own unique cluster. Interestingly, the ICU patient colored 
in red was demonstrably less sick than the other patients, with a lower APACHE II 
(acute physiology and chronic health evaluation) score and a shorter ICU length of 
stay. It is likely that the sampling frequency combined with the sensitivity of mass 
spectrometry allowed us to see such highly individualized patterns in the metabolic 
profiles.

Based on these data, we posit that mass spectrometry-based metabolomics 
offers a unique way to characterize the highly individual, highly variable nature 
of critical illness. The PCA scores in Figure 6 further offer the tantalizing sugges-
tion that metabolic profiles reflect severity of illness, since the scores of patient 
with the lower APACHE II score and shorter ICU stay were closest to the scores 
of the healthy controls. We further hypothesize that, tracked over time, principal 
component analysis of individual patients’ metabolic profiles could offer insight 
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into their clinical courses, moving farther away from a “healthy” profile as condi-
tions worsen and closer to a “healthy” profile as conditions improve. Others have 
used principal component analysis of circulating inflammatory cytokines in a 
similar way, to identify individual patients who go on to develop multiple organ 
 dysfunction syndrome [23].

This line of inquiry is not without challenges. Collecting samples frequently 
around the clock from human study participants is a challenge, and a substantial 
sample bank will have to be obtained to establish a “healthy” metabolic profile. 
Mass spectrometry results in a large, extremely rich data set of features which are 
difficult to map to individual metabolites, so it is difficult to identify the set of 
metabolites that drive the patterns observed here.

Finally, patients will have to be monitored over time and their metabolic profiles 
will have to be mapped to their outcomes in order to link their “trajectories” to 
outcomes or adverse events. This may be a daunting task. However, others have suc-
cessfully established continuous predictive analytics monitoring from physiologic 
data in neonatal ICUs [24]. Continuous predictive analytics monitoring allows ICU 
staff to follow patient trajectories that serve as an early-warning system for sepsis 
[25], allowing for earlier treatment before inflammation and infection worsen. 
Since, as with trauma, early intervention is a key to survival from sepsis, bringing 
predictive monitoring to the ICU is a clear way to improve patient outcomes.

New technology needs to be developed to bring metabolomics to the bedside if it 
is to be used to track patient trajectories in a clinically useful manner. In the mean-
time, much can be learned about critical illness from metabolomics.

Figure 6. 
Scores plot of the first two principal components, constructed from metabolic profiles of five ICU patients 
and five healthy controls. Samples are colored by individual study subject. Subjects HC01 through HC05 
(top left quadrant) are healthy controls. Subjects ICU01-ICU05 are ICU patients. Samples were collected 
in each participant every 4 h for 24 h. PCA clearly illustrates the extreme variability and individuality of 
metabolic profiles in critical illness.
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6. Conclusions

Critical illness encompasses a variety of life-threatening conditions character-
ized by the need for frequent, intensive interventions. Patients are heterogeneous 
and may not respond to treatments in a predictable way; further, their conditions 
can change quickly over time. Metabolomics, reflective of the phenome, has great 
potential to impact patient care. NMR-based metabolomics highlights trauma as 
having a unique impact on the metabolome relative to healthy controls and other 
conditions. Mass spectrometry, with its increased sensitivity over NMR, highlights 
an extremely individualized variation in the metabolomes of ICU patients that does 
not exist in healthy controls. With technological innovations to bring metabolomics 
to the bedside, it may be used in the future to bring predictive analytics to the ICU, 
leading to faster and more appropriately individualized interventions, and improv-
ing patient care and outcomes.
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