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Chapter

Spectral Observations of PM10
Fluctuations in the Hilbert Space
Thomas Plocoste and Rudy Calif

Abstract

During the last 20 years, many megacities have experienced air pollution leading
to negative impacts on human health. In the Caribbean region, air quality is widely
affected by African dust which causes several diseases, particularly, respiratory
diseases. This is why it is crucial to improve the understanding of PM10 fluctuations
in order to elaborate strategies and construct tools to predict dust events. A first
step consists to characterize the dynamical properties of PM10 fluctuations, for
instance, to highlight possible scaling in PM10 density power spectrum. For that,
the scale-invariant properties of PM10 daily time series during 6 years are investi-
gated through the theoretical Hilbert frame. Thereafter, the Hilbert spectrum in
time-frequency domain is considered. The choice of theoretical frame must be
relevant. A comparative analysis is also provided between the results achieved in
the Hilbert and Fourier spaces.

Keywords: PM10 data, empirical mode decomposition, Hilbert spectral analysis,
time-frequency representation, Fourier space

1. Introduction

Generally, the concentration of air pollutants varies and is impacted by the local
pollutant emission levels and meteorological and topographical conditions [1, 2].
Particulate matter (PM) is a complex mixture of elemental and organic carbon,
ammonium, nitrates, sulfates, mineral dust, trace elements, and water [3]. PM with
an aerodynamic diameter of <10 μm, i.e., PM10, are well known for their impact
on human health [4]. Many studies have highlighted that exposure to PM increases
the number of hospital admissions for cardiovascular disease, acute bronchitis,
asthma attacks, respiratory disease, and congestive heart failure [5–8]. In the
Caribbean area, one of the main emitters of PM10 is from large-scale sources, i.e.,
African dust [9]. Knowledge of the dynamics of PM10 process is crucial to elaborate
strategies and construct tools to predict dust events. The time-frequency distribu-
tion of a signal provides information about how the spectral content of a signal
evolves with time, thus providing an ideal tool to dissect, analyze, and interpret
nonstationary signals [10]. Contrary to classical methods, the need of a time-
frequency representation (TFR) is stemmed from the inadequacy of either time
domain or frequency domain analysis to fully describe the nature of nonstationary
signals [10]. In literature, there are numerous methods to obtain energy density as a
function of time and frequency simultaneously as the short-time Fourier transform
(STFT), Hilbert-Huang transform (HHT), and wavelet transform (WT) [10–12].
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In this study, the scaling properties of PM10 data are firstly analyzed, and then
the TFR is investigated. In order to highlight the performance of the Hilbert space,
an analysis of PM10 data was also performed in the Fourier space.

This chapter is organized as follows. Section 2 presents PM10 data analyzed in
this study. Section 3 describes the methods applied in order to investigate PM10
dynamics. Section 4 comments on the results obtained and then discusses them.

2. Experimental data

Guadeloupe archipelago is a French West Indies island located in the middle of
the Caribbean basin, i.e., 16.25°N latitude and 61.58°W longitude, which experi-
ences a tropical and humid climate [13, 14]. The time series analyzed here belong to
Guadeloupe air quality network which is managed by the Gwad’Air agency (http://
www.gwadair.fr/). PM10 concentrations are measured at Pointe-à-Pitre (16.2422°N
61.5414°W) using the Thermo Scientific tapered element oscillating microbalance
(TEOM) models 1400ab and 1400-FDMS. Hourly PM10 concentrations were sam-
pled during the period from 1 January 2005 to 31 December 2010. We processed
these data into daily average concentrations. In total, there are 2150 daily averaged
data points available continuously for 6 years. Figure 1 displays PM10 daily signal
illustrating huge fluctuations and thus indicating a strong variability. These strong
oscillations observed in the middle of each year are attributed to PM10 related to
dust outbreaks coming from the African coast from May to September [9]. For the
rest of the year, PM10 is mainly generated by anthropogenic pollution [15].

3. Methods

3.1 Scaling analysis (1D representation)

The description of natural phenomena by the study of statistical scale laws is not
recent [16]. Self-similarity of complex systems has been widely observed in nature
and is the simplest form of scale invariance. A scale invariance can be detected by
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Figure 1.
Illustration of PM10 daily average concentrations between 2005 and 2010, highlighting intermittent burst
events with huge fluctuations.
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computing of power spectral density (PSD). The PSD separates and measures the
amount of variability occurring in different frequency bands. In this study, PSD are
estimated through the Fourier and Hilbert spaces.

3.1.1 Fourier analysis

In order to investigate the scaling properties of PM10 data, classically the dis-
crete Fourier transform of the times series considered is computed. The expression
of Fourier transform X(f) for a process x(t) is recalled here. An N point-long
interval is used to construct the value at frequency domain point f, Xf [17]:

X fð Þ ¼

ðþT

�T
x tð Þe�2πiftdt (1)

Thus, the analytical expression of X(f) is [18]

∣X fð Þ∣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Re2 X fð Þð Þ þ Im2 X fð Þð Þ
q

(2)

Consequently the power spectral density E(f) is estimated by computing the
following expression:

E fð Þ ¼ X fð Þj j2 (3)

3.1.2 Hilbert analysis

To determine the scale invariance of a given time series in a joint amplitude-
frequency space, the Hilbert-Huang transform [19, 20] is performed. HHT can be
summarized in two steps: (i) empirical mode decomposition (EMD) and (ii) Hilbert
spectral analysis (HSA). Empirical mode decomposition is a powerful tool to sepa-
rate a nonlinear and nonstationary time series into a sum of intrinsic mode func-
tions (IMF) without a priori basis as required by traditional Fourier-based method
[19–21]. An IMF must satisfy the following two conditions: (i) the difference
between the number of local extrema and the number of zero-crossings must be
zero or one, and (ii) the local maxima and the envelope defined by the local minima
are close to zero. Therefore, the original signal x(t) is decomposed into a sum of n1
IMF modes with the residual rn(t):

x tð Þ ¼
X

n�1

m¼1

Cm tð Þ þ rn tð Þ (4)

To obtain a physically significant IMF, this selection process must be stopped by
a certain criterion. For more details, EMD decomposition is widely described in the
literature [19–23].

To characterize the time-frequency energy distribution from the original signal x
(t), HSA is applied on each obtained IMF component Cm(t) to extract the instanta-
neous amplitude and frequency [19, 24]. The Hilbert transform is defined by:

~Cm tð Þ ¼
1

π
P

ðþ∞

�∞

Cm t0ð Þ

t� t0
dt0 (5)

with P the Cauchy principal value [24, 25]. We can specify an analytical signal z
for each IMF mode Cm(t) with
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Zm tð Þ ¼ Cm tð Þ þ j~Cm tð Þ ¼ Am tð Þejφm tð Þ (6)

where Am tð Þ ¼ ∣Zm tð Þ∣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cm tð Þ2 þ ~Cm tð Þ2
q

describes an amplitude and

φm tð Þ ¼ arg zð Þ ¼ arctan
~Cm tð Þ
Cm tð Þ�
h

represents the phase function of IMF modes. Conse-

quently, the instantaneous frequency ωm tð Þ is defined from the phase φm tð Þ by

ωm tð Þ ¼
1

2π

dφm tð Þ

dt
(7)

Thus, the original signal x(t) can be expressed as

x tð Þ ¼ Re
X

N

m¼1

Am tð Þejφm tð Þ ¼ Re
X

N

m¼1

Am tð Þej
Ð t

�∞
ωm tð Þdt (8)

where Re is a part real [19, 20, 26].
Due to the simultaneous representation of frequency modulation and amplitude

modulation, the HHT can be considered as a generalization of the Fourier transform
[19, 20]. The energy in a time-frequency space is designated as the Hilbert spectrum

with H ω; tð Þ ¼ A
2
ω; tð Þ. The Hilbert marginal spectrum h(ω) is defined by

h ωð Þ ¼
1

T

ðT

0
H ω; tð Þdt (9)

where T is the total data length. The Hilbert spectrum H(ω,t) gives a measure of
amplitude from each frequency and time, while the marginal spectrum h(ω) gives a
measure of the total amplitude from each frequency [27]. As a result, the marginal
spectrum can be compared to the Fourier spectrum [19, 20].

In conclusion, for a scale-invariant process, the Fourier E(f) and the Hilbert h(ω)
spectral densities obtained follow a power law over a range of frequencies:

E fð Þ � f�βf (10)

h ωð Þ � ω�βh (11)

where f and ω are the frequencies and βf and βh are the spectral exponents,
respectively, in the Fourier and Hilbert spaces. It reveals the scale-free memory
effect as a power law dependence of the frequency distribution. Consequently, βf
and βh contain information about the degree of stationarity of the studied parameter
[16, 28, 29]:

• If βf or βh <1, the process is stationary.

• If βf or βh >1, the process is nonstationary.

• If 1< βf or βh <3, the process is nonstationary with increments stationary.

• Spectral analysis has been widely applied in various research fields [30–34].

3.2 Time-frequency representation (2D representation)

3.2.1 Spectrogram

The spectrogram (SPEC) of a signal x(t) is defined as the squared magnitudes of
the STFT as shown in Eq. (12) [12]:
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SPECx t; fð Þ ¼ Sx t; fð Þj j2 (12)

where Sx t; fð Þ ¼
Ðþ∞

�∞
x τð Þw τ � tð Þe�jf τdτ is the STFT of x(t), w(τ) is a window

(e.g., Hanning, rectangular, Hamming), t is time, and f is frequency.
As depicted in Eq. (13), SPEC roughly describes the energy density of the signal

at point (t,f) [12]:

ðþ∞

�∞

ðþ∞

�∞

SPECx t; fð Þdtdf ¼

ðþ∞

�∞

x tð Þj j2dt (13)

The SPEC has been applied successfully in various research fields [12, 35–37].
The main advantages of SPEC are an easily understanding interpretation, and it
allows a fast computation. However, the main drawback of SPEC is the same as
that of the STFT [12]. Indeed, there is a trade-off between time and frequency
resolution.

3.2.2 Hilbert spectrum

The Hilbert spectrum (HS) is a joint time-frequency representation introduced
by [19]. It is important to notice that the two important tools (i.e., EMD and HS) for
exploratory analysis of the data are provided by HSA method. This approach was
applied successfully in various research fields as fault diagnosis for rolling bearing
[11], turbulence [38], environment [34, 39], and geophysics [40], to cite a few.

4. Results

4.1 Scaling properties

In order to identify the presence of scaling in PM10 time series, the PSD is
estimated in the Hilbert and Fourier spaces. Figure 2 depicts the power spectral
density provided by the Hilbert transform and the Fourier transform. On this
figure, we try to detect a power law behavior of the form h ωð Þ � ω�βh and

E fð Þ � f�βf where βh and βf are, respectively, the spectral exponents in the Hilbert

and Fourier spaces. On the frequency range 2:09� 10�7
⩽f⩽4:57 � 10�5 Hz which

corresponds to time scales 6:1 hours⩽T⩽55:4 days, a power law behavior is clearly
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Figure 2.
The spectrum of PM10 time series in the Hilbert space and the Fourier space. A power law behavior is
significant only in the Hilbert space.
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noticed in the Hilbert space with an estimated spectral exponent βh = 1.02� 0.10. βh
is equal to 1 power law scaling observed in the mesoscale range [41]. In the Fourier
space, this power law is not significant. This is due to the existence of intermittent
dust events with huge fluctuations in PM10 data (see Figure 1). Indeed, the Fourier
transform is a linear asymptotic approach which requires high-order harmonic
components to mimic nonlinear and nonstationary process [42]. Thus, the high-
order harmonics may lead an artificial energy transfer flux from a large scale (low
frequency) to a small scale (high frequency) in the Fourier space. Consequently, the
Fourier-based spectrum may be contaminated by this artificial energy flux [42].
The artificial energy transfer may give a less steep power spectrum as we observed
in Figure 2. By contrast, combined with the EMD method, HSA has very local
abilities both in physical and spectral domains and does not require any higher-
order harmonic components to simulate the nonlinear and nonstationary events. As
a consequence, HSA method may provide a more accurate scaling exponent and
singularity spectrum [42].

According to [43], wind speed dominates the amount of pollutant dispersion in
the atmospheric boundary layer. In addition, this meteorological parameter could
also transport PM10 from large-scale sources, i.e., African dust [9]. To complete our
results, we used hourly wind speed measurements provided by the French weather
office (Météo France Guadeloupe) located at Abymes (16.2630°N 61.5147°W).
PM10 and wind speed measurements are very close, i.e., ≈8.1 km of distance, and
performed at the center of the island under the same atmospheric conditions [2].
Figure 3 illustrates the PSD provided by the Hilbert transform and the Fourier
transform for wind speed data. This time, a power law behavior is observed in both

spaces on the same frequency range 3:54� 10�7
⩽f⩽1:36� 10�4 Hz which corre-

sponds to time scales 2:1 hours⩽T⩽32:7 days. Contrary to PM10 which is a passive
scalar, wind speed is a vector quantity. The estimated spectral exponents are iden-
tical with, respectively, 0.89 � 0.06 and 0.90 � 0.12 in the Hilbert and Fourier
spaces. As PM10, spectral exponent values are also close to �1. For wind speed, at
low frequencies, a spectrum close to the 1 power law is likely occurs close to a rough
surface, due to a strong interaction between the mean flow vorticity and the
fluctuating vorticity [44, 45].

4.2 Time-frequency domain

The TFR in the Fourier and Hilbert spaces are, respectively, illustrated in
Figures 4 and 5. Both figures show a color gradient from strong energy (in red) to
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weak energy (in blue). This highlights the energy activity related to PM10 concen-
trations during the study period. Such an approach gives the possibility of tracking
the evolution of PM10 data spectral content in time, which is typically represented
by variations of the amplitudes and frequencies of the components from which the
signal is composed [46].

On Figure 4, strong energies are observed throughout the years with slight fluc-

tuations on the frequency range 0⩽f⩽1� 10�6 Hz. For f>4� 10�6 Hz, strong ener-
gies are also noticed in the middle of each year and at the beginning of 2010 with more
fluctuations. In Figure 5, energy distributions are more localized. On the frequency

range 0⩽f⩽1� 10�6 Hz, we can observe the influence of small-scale event on energy
behavior. As noticed, this energy may be weak or null. As an example, the impact of a
general strike in early 2009 that paralyzed Guadeloupean archipelago at least 2 months
is highlighted by zero energy due to the lack of PM10 sources, i.e., industrial activity

and road traffic. For f>1� 10�6 Hz, one can see more precisely energy variation
related to dust events from mesoscale to large scale. Contrary to SPEC, HS clearly
illustrates localized energy fluctuations due to small-scale event. In fact, the STFT
makes an assumption that any signal as piecewise stationary and uses suitable window
function to produce the short-time spectral characteristics of the signal. However, in
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Spectrogram of PM10 time series with a color gradient from strong energy (in red) to weak energy (in blue).
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reality, most of air pollution signals are usually nonstationary [9, 14, 47]. The Fourier
transform-based technique treats the signal as a sum of predefined basis functions. If
the analyzing signal is well matched with the bases, it performs better; otherwise the
performance is degraded [10]. Here, the SPEC highlight energy fluctuations linked to
PM10 coming from African dust between May and September (large-scale sources)
[9] and from the eruption of Soufrière on Montserrat in February 2010 (mesoscale
sources) [48]. However, the SPEC does not detect energy fluctuation related to
anthropogenic pollution, i.e., local sources. This shows HS is a robust method in time-
frequency domain. Indeed, based on the EMDmethod, this TFR is fully data adaptive,
and the signal decomposition is performed without any predefined basis functions.
These results confirm the superiority of HS over STFT in TFR.

5. Conclusion

In this paper, we investigated scaling and time-frequency properties of PM10 data
in Hilbert frame. The performances obtained in the Hilbert space are compared with
those achieved in the Fourier space. Firstly, with the Hilbert spectral analysis (HSA), a

power law behavior is clearly observed on the frequency range 2:09� 10�7
⩽f⩽4:57

�10�5 Hz which corresponds to time scales 6:1 hours⩽T⩽55:4 days with an estimated
spectral exponent βh = 1.02 � 0.10. As HSA methodology has a very local ability in
both physical and spectral spaces, the influence of intermittent dust events with huge
fluctuations is included in the amplitude-frequency space which is not the case in
Fourier spectrum. Thereafter, PM10 data are illustrated in time-frequency representa-
tions with the Hilbert spectrum and spectrogram. The results provide the evidence that
HS-based TFR performs better than SPEC. The higher resolution in TFR offers better
fluctuations of PM10 energy for f < 1μHz. This is due to the fact that it is impossible to
increase the TF resolution at the desired level in SPEC. The major asset of HS is that the
time resolution can be as precise as the sampling period and the frequency resolution
depends on the choice up to the Nyquist limit. In addition, contrary to SPEC which
introduces a noticeable amount of cross-spectral energy terms during the use of win-
dow function with overlapping, HS is fully adaptive to datasets due to the decomposi-
tion of the signals. These first results suggest a substantial possibility to perform a
profound dynamical analysis of PM10 concentrations for the Caribbean area in order
to quantify the origin and the threshold pollution.
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EMD empirical mode decomposition
IMF intrinsic mode function
HSA Hilbert spectral analysis
HHT Hilbert-Huang transform
TFR time-frequency representation
HS Hilbert spectrum
STFT short-time Fourier transform
WT wavelet transform

Nomenclature

E(f) Fourier spectral density
f frequency (Hz)
β spectral exponent
A instantaneous amplitude
C(t) intrinsic mode function component
h(ω) Hilbert spectrum
ω instantaneous frequency (Hz)
j scale index
N total length of a sequence
x(t) particulate matter signal (μg/m3)
r(t) residual of the intrinsic mode function
φ phase function of the intrinsic mode function
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