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Chapter

Sinusoidal Trajectory Generation
Methods for Spacecraft
Feedforward Control

Kyle A. Baker

Abstract

The following is a brief walkthrough of material related to the modeling of
spacecraft dynamics with feedforward control as the self-awareness declaration for
deterministic artificial intelligence. Specifically, the focus will be on the analysis
of various sinusoidal trajectory methods. The methods utilized are the basic
MATLAB sine generation function, a Taylor series implementation, and two alter-
nate algorithms for higher speed, lower precision and lower speed, higher precision
implementations. The chapter features a brief summary of previous work investi-
gating the impact of step size on Euler and Body angles. This is followed by a high
level overview of Euler angle theory, quaternions, direction cosine matrices, kine-
matics, and dynamics to form a mathematical basis for the core material. With the
numerical basis for the modeling efforts outlined, the results of running a
SIMULINK model of spacecraft dynamics with feedforward control will be briefly
analyzed and explored. The analysis will cover the impacts of varying step size with
various sinusoidal trajectory generation methodologies.

Keywords: sine wave approximation, sinusoidal trajectory generation,
teedforward control, Taylor Series approximation, spacecraft torque generation,
space vehicle rotational mechanics, SIMULINK

1. Introduction

The study of spacecraft rotational mechanics includes three core functional
areas: kinematics, dynamics, and disturbances. This chapter will be primarily
focused on the trajectory generation methodology used to drive the space vehicle
dynamics. In the model shown in Figure 1, a commanded spacecraft body move-
ment is taken in and translated into both an input torque (7)) and an angular
velocity (w) for the spacecraft body. A quaternion and direction cosine matrix are
then calculated and employed to find Euler Angles for the spacecraft’s attitude with
respect to an inertial frame.

Previously unpublished academic work, based on the topology found in
Figure 1, delved into the effects of varying time steps and maneuver time in
feedforward control (everything to the left of dynamics) but considered only a
single method of sinusoid generation. Eq. (1) is the idealized feedforward control
for the simulation and it can additionally function as the self-awareness declaration
for deterministic artificial intelligence [1-9]. In this chapter, the Torque generator
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Figure 1.
Simulink model topology.

driven by Eq. (1) will remain unchanged but we will investigate the impact of four
different sinusoid generation methods in the Trajectory generator, namely:

MATLAB’s sine function

4th order Taylor series approximation

* Low precision approximation algorithm

High precision approximation algorithm

These methodologies require examination due to the inherent errors in an actual
spacecraft’s measurement apparatus. No onboard system can ever measure a space-
craft’s angular position, velocity, or acceleration at infinite precision. Additionally,
any disturbances accounted for in the coarse control from feedforward design
implementations will still require additional feedback control for robust, fine
tuning. As such, it may be more prudent to embrace a small amount of course
control error in order to speed up overall computation time. In order to assess these
methodologies, a SIMULINK model for each Trajectory generator method was
created and their outputs were compared for error and computation time.

Tx ]xxa)x +]xya)y +]xza)2 _]xya)xwz _]yya)ywz _]yza)g +]xza)xwy +]zzw2a)y +]yzw)2;
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2. Sinusoidal trajectory generation

In the previous work referred to in Section 1 of this chapter it was found that a
sufficiently small time step size must be utilized in order to adequately model the
commanded input as a sinusoid. This can be seen with a snapshot of the experi-
mental results as shown in Figure 2.

These graphs were generated when the model shown in Figure 1 was tested with
a commanded input of [0, O, 30]" which corresponds to zero roll, zero pitch, and a
30° yaw. This allowed analysis to focus on time step impacts to one axis of rotation
of MATLAB sinusoidal generation methodology. The quiescent and post-maneuver
timeframes were both set to 5 s and the maneuver was conducted over a 10 s
interval. Figure 2 shows the results of a time step of 1 s and a time step of 0.01 s,
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Position vs. time graphs as a function of time step.
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Error vs. step size.

both using the Runge-Kutta solver. With the larger step size of 1 s, the Euler angles
lost tracking and went slightly above the commanded angle while the smaller step
size of 0.01 s afforded better tracking between Euler angle and Body angle. The
main takeaway was that with finer step size resolution one could essentially equate
the Euler and Body angles on a given model even though the former is in the inertial
reference frame and the latter is in the spacecraft body reference frame.

Additionally, 100 iterations were run over a range of step sizes between 1 and
0.01 s to see what impact a chosen step size would have on error between Body and
Euler Angles at the end of the maneuver phase. The results of this study can be seen
below in Figure 3.

From this graph you can clearly see the benefit of reducing step size. It should be
noted, however, that once step size was reduced to 0.01119 s the model reached a
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point where CPU and MATLAB precision comes into play and shrinking step size
did not necessarily result in reducing error. This is noticeable with the erratic
nature of the curve on the left side of the graph when approaching a much

small step size.

Since it was found that we could adequately model our system with a small
enough step size this allowed further investigation into other areas within the model
which could be changed and optimized. This line of thought led us to create a new
model which could be utilized to compare and contrast various sinusoidal genera-
tion methodologies. This new model’s numerical basis and simulation results will be
shown in the following two subsections.

2.1 Model creation

Before adding changes for various sinusoidal generation methodologies the
mathematical basis and assumptions used in the previous model were re-verified.
The first step used in model creation (and re-verification) was the implementation
of a direction cosine matrix to numerically represent rotations about a set of axes to
project a starting frame onto a desired reference frame in order to outline the
system kinematics [10-14]. Figures 4 and 5 provide visual depictions of the process
driven by Eq. (2) through Eq. (4). Each direction cosine matrix equation takes an
axial rotation as depicted by the series of rotations in Figure 4 and represents it as
an orthonormal matrix consisting of sines, cosines, zeroes, and ones per the trigo-
nometry rules shown in Figure 5.

1 0 0
1 RotationDCM = |0 cos® sin® (2)
0 —sin® cos®
cosO O —sin®
2 RotationDCM = 0 1 0 (3)

sin@ O cos0

cos sin¥ O
3 RotationDCM = | —sin¥ cos¥W O (4)
0 0 1

For more complicated movements, direction cosine matrices are multiplied
together resulting in a more intricate matrix. Eq. (5) is an example of this for a 3-2-1
Rotation. This direction cosine matrix sequence and others are provided a more in
depth treatment in Refs. [14-16] and as well as other chapters in this book. Note that
in Eq. (5), the “C” and “S” characters are utilized as shorthand for the sine and
cosine trigonometric functions.

cocy CoSY —S60
321 DCM Rotation = | SO®SOCY — COSY SPSOSY + COCY  SPCo (5)
CPSOCY + SoSY CPSOSY — SPCO  CpCh

The other major workhorse of the model’s kinematics is the orthonormal qua-
ternion matrix [17-19], which accomplishes the same feat as the direction cosine
matrix but with intrinsic divide by zero protection. The particular quaternion
calculation format implemented in the model can be seen in Eq. (6).
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To find the quaternion from Eq. (6), it is a simple matter of initializing the
quaternion vectors with an orthonormal set (i.e., [0,0,0,1]T) and integrating the
output.

The final matrix utilized, shown in Eq. (7), is an equation equivalent to the

previously shown 3-2-1 rotational matrix Eq. (5) but written in terms of quaternion
elements. This quaternion based 3-2-1 rotation is depicted below in Eq. (7).

1-2(3+q3) 2(q9 +939s)  2(9,95 — %94)
321 DCMRotation = | 2(q;q, — q39,) 1-2(qf +q3) 2(995+99) | @

2%+ %) 2(ds% —Dd)) 1-2(q1 + )
In actual implementation, the SIMULINK model uses Eq. (7) but for calculation

purposes takes advantage of Eq. (5). Combining terms leaves us with Eq. (8)
through Eq. (10) for Euler Angles:

0= sin"'(1-2(q; +q3)) (8)
® = atan2(2(q,9; + 9;9,4) /1 — 2(qF + ¢3)) 9)
¥ = atan2(2(q,q, + 9394) /1 — 2(q3 + 43)) (10)

Referring back to Figure 1, the Dynamics block is driven by Eq. (11) (the Euler
moment equation) when a torque is provided by the Feedforward Control section’s
Torque generator.

ST=H=Jo+wox]o (11)

7

Figure 4.
Simple 3-2-1 rotation.
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To derive the angular velocity of the body (wgopy) fed from dynamics to kine-
matics, we multiply moment of inertia (J) by the time derivative of angular veloc-
ity, i.e., angular acceleration (®). This Jo) term is multiplied by the inverse of J and
then integrated as per Eq. (12).

J (J '« Ja)dt = wpopy (12)

Afterwards, the wpopy is used to obtain the spacecraft attitude’s Euler angles.

The feedforward control blocks in Figure 1 contain the Trajectory generator and
the Torque generator. The Trajectory generator takes in a commanded body angle
and then uses a sine wave in order to approximate the commanded maneuver. To
help elaborate on this point, Figure 6 shows a square wave and a sine wave, both
shifted up in amplitude such that they operate from zero to two instead of between
negative and positive one.

We can see that if a square wave was used to approximate the commanded
maneuver, the spacecraft would essentially be expected to transition from the zero
position up to its max amplitude at the two positions instantaneously. This is a
physical impossibility. With the sine wave in the same figure we can see that the
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Visual depiction of square and sine waves.
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spacecraft machinery is afforded a ramp up and slow down period along with
a relatively linearly slope in the middle. Basically, the half period of sinusoid within
the square pulse of Figure 6 is used to provide a smooth, achievable input to the
system.

Our original model’s Trajectory generator follows Eq. (13) through Eq. (15) to
approximate the commanded maneuver for angular position, angular velocity (w),
and angular acceleration (®) via the MATLAB sine wave function.

AngularPosition = % <A + A % sin ( (i) (t — tuwair) — g) (13)
AngularVelocity = %A * (%) cos ((i) (t — twair) — %) (14)
AngularAcceleration = — %A * <A£t> ’ sin <(A£t) (t — twair) — 7—2[) (15)

Eq. (13) models the input command, where “A” is the maneuver’s commanded
angle. The base frequency of the sinusoid (@) is (Alt) where (At) is the desired
maneuver time. The t,,,;; term allows for a quiescent period and — J term allows for
a proper phase shift to implement the sinusoidal half period of Figure 4. The effect
of this can be seen later on in Figure 7. Egs. (14) and (15) are just successive
derivatives of Eq. (13) used to generate angular velocity and acceleration which are
fed into Eq. (1) in the Torque generator from Figure 1. This produces an output
torque which drives the dynamics.

From Eq. (13) through Eq. (15) it can be clearly seen that the argument of the
sine and cosine terms always follows the form of Eq. (16). We can use this to
implement our Taylor series and the other two other algorithms on equal footing.

Arg = (%) (t — tomit) — g (16)

The Taylor series, as detailed in Ref. [20], is a numerical method that can be
used to approximate other functions. In our model we substitute the sine and cosine
in Eq. (13) through Eq. (15) with Egs. (17) and (18).

Arg®  Arg®  Arg’
31 51 7
Arg®  Arg*  Arg®
20 4 el

Taylor Sin = Arg — (17)

Taylor Cos =1 — (18)

The Taylor series is a power series and additional terms could be included ad
infinitum for greater precision; however, initial testing found that four series terms
provided a reasonable approximation while maintaining a viable runtime.
Additionally, it was found that pre-calculating the factorial terms sped up
computation time.

The last set of sinusoidal generation methodologies tested was the low precision
(LP) and high precision (HP) algorithms. These were found to be used in many
applications, especially ones which limited by lower processing power such as
mobile gaming. Refs. [21, 22] provided the baseline for adaptation of the baseline
Egs. (19) and (20). Note that the same equation is used for sine and cosine except
that the argument term is given a positive  phase shift when applied to the cosine in
Eq. (14). In Eq. (19), (4+/—) indicates that a plus is used if Arg is less than zero and
a minus is used otherwise.
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LP = 1.27323954 % Arg (+/—) 0.405284735 + Arg” (19)
HP = .225% [LP % abs(LP) — LP] + LP (20)

Eq. (20) provides additional smoothing to Eq. (16) at the cost of computation
time to implement a high precision mode. This equation could be implemented such
that “LP * abs(LP)” essentially become the magnitude of LP?. While this analysis
used “if then” statements, there may be more efficient ways to implement Egs. (19)
and (20) depending on the software package being utilized.

2.2 Model simulation and analysis

For the purpose of model verification, commands are initially held constant at
zero resulting in zero torque to allow us to evaluate model operation during a
quiescent period. With zero input torque, Eq. (11) shows us that the change in
angular momentum should be zero as well; therefore the model should not change.
After a 5 s quiescent period, a 30° yaw maneuver was input into each model and the
maneuver was conducted over a 10 s period at which point the commanded body
angle went to zero (indicating no more change required). Afterwards the output
Euler angles should remain constant with the spacecraft’s new attitude. The results
of this test were plotted in Figure 7. Additionally, note that the model was setup
with an arbitrary diagonalized inertia matrix (/) per Eq. (21). The roll and pitch
Euler angles remained at zero, as they should have, and as such are not shown.

150 0 O
J=]0 9 0 (21)
0 0 35
- Position Vs. Time (Matlab) 5 Position Vs. Time (Taylor Series)
= Body Angle = Body Angle
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= 20
®
>_
10|
1 O 1
0 5 10 15 20 0 5 10 15 20
40 Position Vs. Time (LP) 40 Position Vs. Time (HP)
0F g = oF gm————
= >
3 207 = 20
© ®
> >
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Figure 7.

Feedforward control for 30° yaw maneuver.
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From a qualitative standpoint you can see that each sine generation algorithm
created the intended Euler angle movement shown earlier in Figure 4. Upon closer
examination the only algorithm that appeared to lose tracking on the body angle
was the low precision algorithm. Since we achieved the basic shape from each
method, we now turn our attention to analyzing the error and computation time
associated with each for a given time step interval.

In the previous work addressed in the beginning of Section 2 of this we found
that for a Runge-Kutta solver with step size of 0.01119, the MATLAB sine function
reached a point where CPU and MATLAB precision started to affect the gains
offered by shrinking step size. With this in mind, step sizes of 0.1, 0.05, and 0.1 s
were chosen for analysis, results of which can be seen in Figure 8 and Table 1.

One major inference to be drawn from Table 1 is that the normalized error
columns show Taylor, LP, and HP algorithms are roughly step-size invariant within
our test range; only the MATLAB function’s error reduces with step size in our
model. Interestingly, the LP and HP functions can be more accurate than Taylor but
we are more concerned with the final angle in coarse control (corresponding to the
peak of sine curve) rather than the intermediate steps—so in this case, the Taylor
series is considered more accurate.

The other major item of note is the difference in average computation time.
While the MATLAB command is ultimately the most accurate at all step sizes, we
can see that the LP and HP algorithms generally run faster. It should be noted that
results were relatively inconsistent when run below 200 iterations but at 500

Average Computation Time
T

......

0.27 |30

0.265

0.26 - .

Time (s)

0.255
0.25/

0.245 | I

X: 1-Matlab Trig
¥:0.2423

1-Matlab Trig 2-Taylor Series 3-Low Precision 4-High Precision

Figure 8.
Computation time results.

Method Step size Step size Step size
0.01s 05s 0.1s
Time(s) Error Time(s) Error Time(s) Error
1-MATLAB 0.2423 1.02E-9 0.2459 6.36E-11 0.2685 1.02E-13
2-Taylor 0.2434 3.53E-5 0.2471 3.53E-5 0.2720 3.53E-5
3-LP 0.2416 2.81E-2 0.2459 2.81E-2 0.2682 2.81E-2
4-HP 0.2417 3.25E-4 0.2456 3.25E-4 0.2666 3.25E-4

Time and error results averaged over 500 iterations per model.

Table 1.
Timing and ervor vesults.
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iterations they stabilized with HP and LP usually running faster during a given test.
Since HP would run faster than LP sometimes and vice versa, even at greater
iterations; it is believed that this may come down to specific CPU architecture used
and how a dual core processor handles calculations.

3. Conclusions

When it comes to sinusoidal trajectory generation, if your spacecraft design has
accurate fine control (e.g., robust feedback mechanisms) and can handle coarse
control error on the order of 10~ %, then it may be more prudent to utilize the HP
algorithm. This would allow you to reduce processing power and time resulting in
lower power requirements and faster onboard calculations. A fourth order Taylor
series would not be beneficial due to longer computation times and less accuracy
than the MATLAB function; extending the order of the series would increase accu-
racy but also extend its runtime, thereby, losing viability. Additionally, simulation
results reveal that the fastest methodology may vary with CPU architecture indi-
cating that there may not be a definitive answer for “best” trajectory generation
method. This should be evaluated within the specific spacecraft design trade space.
Very little information is available on the proprietary MATLAB sine calculations but
future testing will investigate the LP and HP algorithms against MATLAB on a
variety of CPU architectures and organic sinusoidal generation on other platforms
such as PYTHON.
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