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Chapter

Alpha-Synuclein Aggregation, 
Cholesterol Transport, and the 
18-kDa Translocator Protein
Jasmina Dimitrova-Shumkovska and Ljupcho Krstanoski

Abstract

The molecular responses to counteract diseases, including insulting conditions 
such as injury and pathogen infection, involve coordinated modulation of gene 
expression programs. The association of alpha synuclein (α-Syn) with several pro-
gressive disorders has focused the research on its induced conformational behavior 
as critical for uncovering the “secrets” for progression of α-synucleinopathies. 
Cholesterol is one of the lipid components crucial for regular proliferation of the 
nervous tissue. Its interaction with α-Syn may offer other insights to α-Syn normal 
expression. Discovering that the molecular regulatory mechanisms responsible for 
prevention of α-Syn aggregation may be manifested through microRNA (miRNA) 
regulated gene expression is also crucial for widening the perception of neuropa-
thology. The 18-kDa translocator protein (TSPO) localized on the outer mitochon-
drial membrane is able to regulate various cellular and tissue functions, with key 
role as cholesterol transporter for neurosteroid synthesis. TSPO up-regulation, has 
been connected to several diseases, including cancer, neuronal damage, and inflam-
mation. Connection may also be established between TSPO expression and fatty 
acid oxidation, thus unveiling new possibilities in the research of α-Syn overex-
pression. However, expression of TSPO in the neuroinflammatory environment is 
probably the best starting point for targeting TSPO as a suitable therapeutic target.

Keywords: alpha synuclein, lipid interaction, inflammation, oxidative stress,  
TSPO ligands

1. Synucleins family—new insights and prospects

Synucleins are a family of small and soluble proteins expressed mostly in neural 
tissue and cancer cells. Existing findings have identified three members of this 
 family: α, β, and γ—synucleins (α-Syn, β-Syn, and γ-Syn, respectively). Rather 
than unveiling their physiological properties and functions in normal brain tissue, 
the synucleins are mostly exploited as biomarkers for neurodegenerative diseases 
since the discovery of their involvement in proteinaceous aggregation in patients 
with Alzheimer’s disease (AD) [1]. In the following years, synucleins have been 
linked with other neuronal disorders increasing the interest of elucidating their 
connection with these diseases.

α-Synucleinopathies are severe neurodegenerative disorders caused by abnor-
mal accumulation and subsequent aggregation of insoluble α-Syn, a small and 
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intrinsically unfolded cytosolic protein localized at synaptic terminals, in structures 
called Lewy bodies (LBs) in neuronal or glial cells [2, 3]. Establishing its involve-
ment in synaptic maintenance, mitochondrial homeostasis, and neurotransmitter 
release regulation, α-Syn impaired function is considered as a direct cause for 
several progressive disorders such as Parkinson’s disease (PD), dementia with Lewy 
bodies (DLB), and multiple system atrophy (MSA). Other rare diseases, mainly 
associated with neuroaxonal dystrophy have also shown α-Syn pathologies [4].

Despite early discovery of α-Syn as a product of SNCA gene whose dysfunction 
was considered as the primary cause for PD development [5], excessive research 
has been carried out in order to fully disclose the reasons for α-Syn aggregation. In 
the following years, nine other genes such as PARK, PINK, and LRRK involved in 
PD pathology were discovered [6–8], but so far missense mutations and multiplica-
tion of α-Syn-encoding gene are considered as the most often causation of familial 
form of PD [9]. Intensive research is mainly focused on discovering the effects of 
fibrillization, oligomerization, and misfolding of this protein as well as developing 
a suitable methods for its quantification in biological fluid enabling early diagnosis 
of PD [10–12]. Efforts are also being made to elucidate the participation of other 
molecules in the α-Syn altered dynamics. Namely, Abeyawardhane et al. reported 
the contribution of oxygen and redox active iron in conformational change and 
oligomerization of α-Syn, which can be useful in understanding the mechanisms 
of its physiological and/or pathological role [13]. The strong ability of α-Syn to 
form complexes with other biomolecules such as lipid moieties and cholesterol has 
also been reported. This capability is due to the presence of the repeats of lipo-
protein-like hexamer sequence (KTKEGV) in synucleins, which may reveal other 
approaches for the diagnosis and therapy of neurodegenerative diseases [14, 15].

Furthermore, it has been shown that this protein was also expressed in erythroid 
precursors, megakaryocytes, and platelets [16, 17]. α-Syn is assumed to participate 
in negative regulation of calcium dependent α-granule release, thus implying that 
its presence is crucial for normal development and functioning of platelets [18, 19]. 
Relevant to this context, platelets have immense diagnostic value for neurocognitive 
diseases since several studies reported the significantly decreased levels of amyloid 
β protein precursor (AβPP) and mean platelet volume (MPV) in AD patients  
[20, 21]. Further supporting the concept, the presence of α-Syn in platelets impacts 
MPV level through the SCNA gene expression, whereas its concentration remains 
unaltered in patients with cognitive impairment [19]. However, α-Syn concentra-
tion in plasma supernatant is considered as a significant marker for the quality of 
single donor platelet samples during storage time [22].

β-synuclein (β-Syn) although somewhat smaller protein than α-Syn is also 
localized in presynaptic terminals, secreted and expressed in similar levels [23]. 
Early research concerning β-Syn properties and function suggests that this protein, 
even though 78% identical to α-Syn, is not present in LBs, and therefore, it is not 
directly involved in neurodegenerative and neurocognitive pathology. The main 
 “advantage” of β-Syn against the induced changing of its conformation is the 
absence of nonamyloid β component (NAC) domain in its structure. Hence, β-Syn 
can significantly reduce the initiation of self-assembly and aggregation of α-Syn 
since it lacks this highly hydrophobic domain, which may prove beneficial against 
abnormal accumulation of α-Syn, thus preventing neurodegeneration [24, 25].

Several studies have shown the natural antagonism between the two molecules 
providing the mechanisms for inhibition of α-Syn aggregation both in vivo and  
in vitro [26, 27]. Janowska et al. reported that β-Syn-mediated inhibition of α-Syn 
aggregation occurs by direct interaction between the molecules at specific sites. 
This ultimately results in the formation of heterodimers further implying that 
balance between the specificity and affinity of α-Syn/β-Syn interactions is crucial 
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for maintaining favorable reduction rates of α-Syn aggregation [28]. A study by 
Brown et al. also suggested that β-Syn molecules can only inhibit the nucleation 
of lipid bound and fibril forms of α-Syn aggregates by competitive binding to the 
surface of vesicles prepared from the phospholipid 1,2-dimyristoyl-sn-glycero-
3-phospho-L-serine (DMPS), and this inhibition is pH dependent. In addition, 
they confirmed that β-Syn has no effect on elongation of α-Syn aggregates [29]. It 
seems that further research is needed in order to highlight the exact mechanism and 
conditions in which β-Syn prevents the aggregation of α-Syn, therefore enabling its 
use as antiparkinsonian agent.

γ-Synuclein (γ-Syn) has been identified in various human tissues, and its 
expression is significantly upregulated in ovary, liver, and cervical cancer, with 
specific overexpression in breast cancer linked with tumor development and 
promoting of cancer metastasis through demethylation of CpG islands and activa-
tion of insulin-like growth factor pathway [30–32]. Similar to β-Syn, γ-Syn is also 
naturally found in peripheral neurons, and it has not been directly correlated with 
pathology of neurocognitive diseases, although differences have been reported in 
its expression [33]. Beside the existence of γ-Syn in nervous and malignant tissue, 
studies also reported its presence in the skin particularly in stratum granulosum 
where it could be included in modulation of keratin [34]. This synuclein member 
is also found in retinal ganglion cells (RGCs) where its decreased expression was 
first correlated with the development of glaucoma [35]. Later, research indicates 
that γ-Syn downregulates kinases involved in activation of pro-apoptotic signaling 
pathways in RGCs, therefore playing a key regulatory role in progression of this 
disease [36]. The protective mechanism of γ-Syn antibodies in neuroretinal cells 
against oxidative stress by increasing the viability and altering their apoptosis rate 
has also been reported [37].

2. Regulation of α-synuclein expression

Because of the genetic background of α-synucleinopathies, research must also be 
focused toward discovering the exact molecules and mechanisms for posttranscrip-
tional and epigenetic regulation of SNCA gene. Up to this point, it is established 
that not only changes in the gene sequence (multiplications, missense mutations, 
and single nucleotide polymorphisms) but also activation of certain transcriptional 
factors and RNAs may affect α-Syn regular expression [38]. MicroRNAs (MiRNAs) 
are small non-coding RNA molecules encoded as independent genomic transcrip-
tion units predominantly engaged as regulators of protein expression mostly 
through inhibition of mRNA translation or cleavage [39, 40]. Ever since their 
discovery, miRNA dysregulation is correlated with the pathogenesis of numerous 
diseases and disorders such as cancer, diabetes, nonalcoholic fatty liver disease 
(NAFLD), neurological and cardiovascular diseases (CVD) [41, 42]. As mentioned 
earlier, the main causes for PD development are mutations in genes resulting in a 
α-Syn overexpression and modification, so it is highly possible that PD progres-
sion and/or inhibition can be managed by alteration of certain miRNAs. So far, it 
has been confirmed that they can affect several signaling pathways involved in PD 
development, therefore enabling their use as biomarkers or alternative therapy for 
PD, as well as other types of dementia.

Because the oligomerization and fibrillation of α-Syn is primarily associated 
with increased production of reactive oxygen species (ROS) and subsequent 
mitochondrial dysfunction in neuronal cells, research has been conducted in 
order to identify the key miRNAs involved in regulation of brain mitochondrial 
function [43]. Namely, several studies have reported the down regulatory effects 
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of miR-34b and miR-34c on the expression of protein deglycase DJ-1, involved in 
α-Syn degradation via chaperone-mediated autophagy (CMA), thus preventing 
the ROS outburst from complex I or other constituents from the electron transport 
chain (ETC) [44–46]. Recent publication by De Miranda et al. also marked the 
DJ-1 as an essential for maintaining the integrity of dopaminergic neurons which 
is accomplished by reduction of nitrosative stress and suppression of rotenone-
induced inflammatory response, thus highlighting its value as potential therapeutic 
target [47]. Furthermore, it was also elucidated that decrease of miR-34 b/c levels 
in neuronal cells leads to the loss of mitochondrial potential and reduction of ATP 
production. Accordingly, the depletion of these miRNAs directly contributes for 
decreased levels of DJ-1 in brains from PD, with a direct binding to the 3′-untrans-
lated region (3′-UTR) of their mRNAs which proves their neuroprotective role [46]. 
Additionally, miR-4639 and miR-494 were identified in the list of potential inhibi-
tors of DJ-1 expression, suggesting the measurement of their levels in human 
plasma as prognostic biomarkers of PD [48, 49] (Figure 1).

Figure 1. 
Summary of signaling pathways involved in α-Syn aggregation and potential connection of 18-kDa translocator 
protein (TSPO) with neurodegeneration and neuroinflammatory response. Abbreviations: alpha synuclein 
(α-Syn), low density lipoprotein receptor (LDL-R), esterified cholesterol (EC), free cholesterol (FC), 
polyunsaturated fatty acids (PUFAs), heat shock cognate 71-kDa protein (hsc70), interleukin 6 (IL-6), tumor 
necrosis factor alpha (TNFα), neutral cholesterol ester hydrolase (NCEH-1), 18-kDa translocator protein 
(TSPO), major histocompatibility complex class II protein (MHC II), and ATP-binding cassette subfamily A 
(ABCA).
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Similarly to the effects of miR-34 b/c, it was confirmed that miR-7 also plays a 
key role in α-Syn repression by directly binding to the 3′-UTR sequence of its mRNA 
in different experimental models such as SH-SY5Y cells, HEK293T cells, primary 
neurons, and pancreatic islets [50–52]. Moreover, Junn et al. discovered the protec-
tive role of miR-7 against hydrogen peroxide-mediated cell injury in cells expressing 
mutant A53T form of α-Syn [51]. The effects of MiR-7 on cell death reduction in 
experimentally induced PD symptomatology by various neurotoxins such as MPTP 
(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and its active metabolite MPP+ 
(1-methyl-4-phenylpyridinium) was reported as well [53]. A recent study indicated 
that miR-7 can also achieve its protective role by regulating the expression of the 
voltage dependent anionic channel (VDAC) in the outer mitochondrial membrane 
(OMM), thereby preventing MPP+-induced cellular damage [54]. Since VDAC is 
crucial part of mitochondrial permeability transition pore, its function is primarily 
associated with maintaining the polarization of OMM and balancing ROS produc-
tion. Research has confirmed that VDAC overexpression can increase free radical 
generation and cause the release of pro-apoptotic proteins ultimately promoting 
mitochondrial swelling which inevitably triggers α-Syn aggregation [55]. The dis-
covery that cells producing A53T had swollen mitochondria puts VDAC in the list of 
key molecules involved in progression of α-synucleinopathies [56]. Overall, it can be 
concluded that miR-7 optimal expression is directly “responsible” for regular neural 
development, and future research should be focused on finding suitable vectors in 
order to include this molecule in gene therapy for neurodegenerative diseases.

As indicated earlier, cellular mechanisms for α-Syn degradation such as CMA 
can also be affected by miRNAs. Studies revealed that the increase of miR-21, miR-
224, and miR-373 levels leads to suppression of heat shock cognate 71-kDa protein 
(hsc70) which impairs α-Syn degradation via CMA [57]. Moreover, Shamsuzzama 
et al. reported that Let-7 miRNA knockdown might influence CMA by modulating 
gene expression and enhancing ROS production in C. elegans [58].

MiRNAs have also been connected with pathways related to synthesis and 
expression of enzymatic and nonenzymatic radical scavengers within brain cells 
effectively “delaying” any genetic aberrations and expression α-Syn mutant forms. 
These are included in regulation of nuclear factor erythroid 2-related factor 2-anti-
oxidant response element (Nrf2-ARE), which is also one of the reasons for PD 
progression [59]. Narasimhan et al. observed that the overexpression of miR-153, 
miR-27a, miR-142-5p, and miR-144 weakened the antioxidant response in SH-SY5Y 
cells throw decreasing the activity glutathione reductase (GSR) with impact on 
GSH/GSSG homeostasis [60].

Progression of PD due to α-Syn aggregation results in brain inflammatory 
response as primary defensive mechanism against neurodegeneration achieved 
through microglial cells. This process is mainly associated with activation of several 
components in the inflammatory cascade such as interleukins, members of the 
complement system, and receptors or enzymes whose expression is essential for 
proper immune defense [61, 62]. Neuroinflammation can also be aggravated by 
dietary components such as artificial sweeteners who additionally enhance dopa-
mine degeneration and gravity of the immune response [63]. Discovery of miRNAs 
highlighted the possibilities of regulating the intensity and severity of the immune 
response against α-Syn-mediated inflammation. Specifically, Thome et al. reported 
the pro-inflammatory effects of miR-155 in brain microglia against α-Syn fibrils 
manifested through elevation of inducible nitric oxide synthase (iNOS) and major 
histocompatibility complex class II proteins (MHCII) expression, thus keeping 
the integrity of dopamine neurons [64]. A recent study confirmed that miR-124 
could suppress microglial activation by regulating the expression of inflammatory 
cytokines [65] (Figure 1).
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Because of the complexity of brain inflammatory response, it is necessary 
to extend the research for other molecules that might be included in its media-
tion. The number of studies has suggested the 18 kDa mitochondrial translocator 
protein (TSPO) as potential biomarker for neurodegenerative disorders [66, 67]. 
This protein is included in cholesterol transport into the mitochondria where it 
serves as a substrate for neurosteroid biosynthesis [68]. As previously reported 
that brain injury increases TSPO binding affinity for its ligand PK11195 [69, 70], 
the connection between TSPO expression and α-synucleinopathies has not been 
sufficiently explained [71]. Namely, it was reported that TSPO exhibited increased 
striatal PK11195 binding potential in patients with PD and DLB, but its expression 
remained unaltered compared to healthy controls [72, 73]. Regarding neuroin-
flammation, TSPO overexpression is also associated with activation of microglia/
macrophages, revealing yet another unexplored role of this receptor [74]. There is 
also overwhelming evidence that TSPO ligands and agonists possess neuroprotec-
tive properties, but so far little is known about the precise functions of TSPO itself 
in brain cells [75, 76]. Overall, it seems that further research is needed in order to 
elucidate the regulatory mechanism of miRNAs in neuroinflammation and the 
possible correlation with TSPO.

2.1 α-Synuclein, lipid homeostasis, and TSPO

As mentioned earlier, α-Syn possesses intriguing and still not fully character-
ized affinity of interacting with fatty acids, cholesterol and phospholipids, and 
other cell lipid molecules. This implies that high levels of polyunsaturated fatty 
acids (PUFAs) normally present in healthy brain tissue, which not only increase its 
membrane fluidity and permeability but also serve as energy sources and second 
messengers, could be one of the reasons for α-Syn increased expression in the 
nervous system [77]. Further in vivo investigation, revealed that α-Syn overexpres-
sion in patients with α-synucleinopathies caused an increase of PUFA levels without 
alteration on saturated and monounsaturated fatty acid composition [78]. The 
decline in n-6/n-3 ratio during aging, increased lipid peroxidation and decreased 
brain volume, are between main factors promoting neurodegenerative disorder. 
Following this assumption, many studies proved that the enhanced multimeriza-
tion and interaction of this protein with PUFAs, particularly with arachidonic and 
docosahexaenoic acid, result in the formation and aggregation of insoluble high-
molecular complexes in LBs, which might unveil new insights into PD diagnostics 
[79, 80]. Based on the aforementioned findings, research should be focused on 
discovering whether α-Syn/PUFA interactions could be a sufficient proof of the 
alleged scavenging activity of α-Syn in experimental models of PD. So far, results 
based on spectrometric analysis confirm that PUFA interacts solely with α-helical 
secondary structure of α-Syn in optimal protein/PUFA ratio, which strongly 
suggests that α-Syn may prevent the initiation of lipid peroxidation given the high 
autoxidation rates of PUFAs [81]. Researchers have also reported the regulatory 
role of α-Syn of other lipid molecules such as triacylglycerols and cholesteryl esters, 
considering their increased conversion to lipid droplets in α-Syn expressing cells 
due to the modulating activity of lipid metabolizing enzymes, such as acyl-CoA 
synthase [82, 83].

Other important biomarkers for neurodegenerative disorders are the phospholi-
pase D (PLD) isoforms which are crucial enzymes mostly involved in cytoskeleton 
structure and cellular signaling processes in the brain. More recent studies reported 
that inflammation caused by oxidative stress triggers PLD signaling as part of 
the synaptic response in neurodegeneration indirectly insinuating a connection 
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between PLD and α-Syn overexpression [84, 85]. Conde et al. has confirmed this 
connection by proving that this protein acts as an inhibitor of PLD1 in WT α-Syn 
neurons [86].

Cholesterol is also one of the lipid components which homeostasis is crucial 
for regular proliferation of the nervous tissue, if properly regulated. It acts as 
an integral membrane component, improving its structure and function. As 
mentioned earlier, studies have already established the interaction between α-Syn 
and cholesterol, indirectly making a correlation between cholesterol levels and 
α-Syn normal expression [15]. In a study by Hsiao et al., α-Syn was described as 
mediator of cholesterol efflux from SK-N-SH neuronal cells enabled by an ATP-
binding cassette subfamily A (ABCA1) [87]. In accordance with these discoveries, 
the possible neuroprotective role of enzymes included in “cellular capturing and 
release” of cholesterol such as neutral cholesterol ester hydrolase (NCEH) or Acyl 
Co-A:cholesterol acyltransferase (ACAT) was also investigated. Namely, Zhang 
et al. discovered that NCEH-1 knockdown increases the aggregation of α-Syn and 
dopamine neural damage in C. elegans, while inhibition of ACAT gave the opposite 
effect. Moreover, they confirmed the previous hypothesis concerning normal 
cholesterol levels and α-Syn expression, further implying that this relation is also a 
highly important factor for triggering the neuroprotective role of NCEH-1. Finally, 
these authors suggested that exogenous cholesterol does not have beneficial effects 
against neural degeneration [88].

Taking into account that TSPO is also involved in alterations of cytosolic cho-
lesterol levels, there is also a possibility for its involvement in modulation of α-Syn 
aggregation rates. Connection has also been established between TSPO binding 
capacity and ROS levels, which are as mentioned earlier one of the reasons for PD 
development [89, 90]. In accordance with these findings, Gatliff et al. reported 
that SH-SY5H cells exhibited enhanced ROS production after TSPO overexpression 
establishing connection between TSPO, VDAC, and Ca2+ homeostasis [91]. On the 
other hand, it is also suggested that TSPO expression is inversely correlated with 
fatty oxidation rates in steroidogenic cells [92], which may be a plausible starting 
point in discovering whether TSPO has the same effect in neurons and if so, could 
altered expression of TSPO prove beneficial against neurodegenerative disorders 
considering the α-Syn interactions with PUFAs and cholesterol (Figure 1).

3. Conclusions

A systematic research in the last two decades highlights the precise mechanisms 
and pathways for regulation of α-Syn expression and aggregation, involved in neu-
ropathologies. Success has also been made in demonstrating the possible therapeutic 
values of miRNAs, receptors, and other bioactive molecules with specific intentions 
for their inclusion in modern therapy for dementias. Future research should be 
focused on discovering the proposed beneficial actions of the interactions between 
lipids and α-Syn with particular interest in the potential involvement of TSPO in 
cholesterol homeostasis of the neural cells (Figure 1).
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Abbreviations and symbols

α-Syn alpha synuclein
β-Syn beta synuclein
γ-Syn gamma synuclein
NAC non-amyloid-β component
SNCA alpha synuclein gene
PINK PTEN-induced kinase
PD Parkinson’s disease
AD Alzheimer’s disease
DLB dementia with Lewy Bodies
LBs Lewy Bodies
AβPP amyloid β protein precursor
MPV mean platelet volume
RGCs retinal ganglion cells
DMPS 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine
NAFLD nonalcoholic fatty liver disease
CVD cardiovascular disease
UTR untranslated region
A53T mutant form of alpha synuclein
VDAC voltage dependent anionic channel
OMM outer mitochondrial membrane
ROS reactive oxygen species
CMA chaperone-mediated autophagy
hsc70 heat shock cognate 71-kDa protein
Nrf2-ARE erythroid 2-related factor 2-antioxidant response element
DJ-1 protein deglycase DJ-1
iNOS inducible nitric oxide synthase
MHCII major histocompatibility complex class II proteins
TSPO 18-kDa translocator protein
PK11195 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-

carboxamide
PUFAs polyunsaturated fatty acids
PLD phospholipase D
NCEH-1 neutral cholesterol ester hydrolase
ACAT acyl Co-A:cholesterol acyltransferase
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MPP+ 1-methyl-4-phenylpyridinium
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