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Chapter

Fast Indicators for Orbital
Stability: A Survey on Lyapunov
and Reversibility Errors
Giorgio Turchetti and Federico Panichi

Abstract

We present a survey on the recently introduced fast indicators for Hamiltonian
systems, which measure the sensitivity of orbits to small initial displacements,
Lyapunov error (LE), and to a small additive noise, reversibility error (RE). The LE
and RE are based on variational methods and require the computation of the tan-
gent flow or map. The modified reversibility error method (REM) measures the
effect of roundoff and is computed by iterating a symplectic map forward and
backward the same number of times. The smoothest indicator is RE since it damps
the oscillations of LE. It can be proven that LE and RE grow following a power law
for regular orbits and an exponential law for chaotic orbits. There is a numerical
evidence that the growth of RE and REM follows the same law. The application to
models of celestial and beam dynamics has shown the reliability of these indicators.

Keywords: variational principles, reversibility error, additive noise, roundoff

1. Introduction

The global stability properties of Hamiltonian systems and symplectic maps
have a solid theoretical foundation [1, 2]. Nevertheless, the determination of the
orbital stability by computing the maximum Lyapunov exponent is a procedure
difficult to implement numerically, because of the t ! ∞ limit. For this reason a
variety of fast indicators has been developed during the last two decades [3–7]. The
variational methods mentioned above measure the sensitivity to initial conditions of
the orbit computed for finite times. The spectral methods [8, 9] relate the stability
to the behavior of the Fourier spectrum of the orbit computed for finite times.

In the framework of the variational methods, we have proposed two indicators
[10–12] the Lyapunov error (LE) and the reversibility error (RE) introducing also
the modified reversibility error method (REM). The LE is due to a small displace-
ment of the initial condition, the RE is due to an additive noise, and REM is due to
roundoff. The reversibility error due to the roundoff or noise is more convenient
with respect to the error occurring in the forward evolution of the map.1

1 The forward error (FE) due to additive noise in the forward evolution of a map can be defined and

written in terms of the tangent map. However, RE is very simply related to LE, whereas FE is not. In

addition the error due to roundoff in the forward evolution requires in principle the evaluation of the

exact orbit or, in practice, its evaluation with a much higher accuracy.
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In the limit of a vanishing amplitude of the initial displacement or of the random
displacement, the LE and RE are defined by using the tangent map along the orbit.
Furthermore, RE is related to LE by a very simple formula. A reversibility error is
always present in numerical computations due to roundoff even when no additive
noise is introduced. We compute REM by iterating n times the map M, then its
inverse n times, and dividing the norm of the displacement from the initial point, by
the roundoff amplitude. The procedure is extremely simple and does not require the
knowledge of the tangent map. Though the effect of roundoff on a single iteration is
not equivalent to a random displacement, after many iterations the cumulative
result is comparable if the computational complexity of the map is sufficiently high.
The main difference is that for an additive noise, the error is defined as the root
mean square deviation of the noisy orbit with respect to the exact one, obtained by
averaging over all possible realizations of the noise, whereas for the roundoff a
unique realization is available. As a consequence REM fluctuates with the iteration
number n, whereas RE does not. A statistical analysis of roundoff compared to a
random noise was previously performed using the fidelity method [13, 14], and a
comparison of REM with other fast indicators was initially carried out for the
standard map [15]. The growth of errors, for REM-, RE-, and Lyapunov-based
indicators, is governed by the tangent map. For LE a small initial displacement is
propagated and amplified along the orbit. For RE or REM, a random or pseudoran-
dom displacement is introduced at any (forward or backward) iteration of the map
and is propagated and amplified along the orbit. The final random displacement is
the sum of the global displacements triggered by the local displacements (due to
noise or roundoff) occurring at any iteration. Therefore, it is not surprising that the
square of RE is twice the sum of the squares of LE computed along the orbit and that
all the numerical experiments suggest that REM exhibits a similar behavior even
though with larger fluctuations.

For an integrable map, the growth of LE and RE follows asymptotically a power
law nα, and the exact analytical result is known. This result can be extended to quasi
integrable maps by using the normal forms theory. For uniformly chaotic maps
(hyperbolic automorphisms of the torus), the LE and RE have an exponential
growth eλn. For generic maps, the asymptotic growth of LE and RE follows a power
law in the regions of regular motion and an exponential law in the regions of chaotic
motion, and the same behavior is observed for REM. For an integrable or quasi
integrable map, LE has an asymptotic linear growth α ¼ 1 with oscillations, whereas
RE has an asymptotic power law growth with α ¼ 3=2 without oscillations, since
they are rapidly damped. The oscillations of LE disappear when the map is written
in normal coordinates. For a linear map conjugated to a rotation, the power law
exponents are α ¼ 0 for LE and α ¼ 1=2 for RE. For REM the power law exponent α
varies between 0 and 1, its value depending on the computational complexity of the
map and therefore on the choice of coordinates.

The definition of LE we propose differs from fast Lyapunov indicator (FLI) [3]
or orthogonal fast Lyapunov indicator (OFLI) [4], which are based on the growth
along the orbit of the norm of a given initial displacement vector. Indeed, we
compute the growth of the vectors of an orthogonal basis, which amounts to defin-

ing LE, which we denote as eLn , as the square root of Tr DMn x0ð Þð ÞTDMn x0ð Þ
� �

where M xð Þ is the map, DM xð Þ denotes the tangent map, and x0 is the initial
condition. This definition has the obvious advantage of insuring the correct asymp-
totic growth.

Indeed the anomalies in the behavior of FLI [16], due to the choice of the initial
vector, are not met. The use of exponential growth factor of nearby orbits
(MEGNO) [17] allows to filter the oscillations which are still present in LE. The RE
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is obtained from the covariance matrix which is computed from the tangent map.
We denote this error by eRn , which has a very simple relation with LE given by the

square root of eL0
� �2 þ 2 eL1

� �2 þ…þ 2 eLn�1

� �2 þ eLn
� �2

. We first analyze the case of
linear maps to explore the behavior of REM. A systematic comparison of LE, RE,
and REM is presented for two basic models: the standard map and the Hénon map.
The asymptotic power law exponents are computed by using the MEGNO filter. For
nonlinear two-dimensional maps, the behavior of the errors has been compared
moving along a one-dimensional grid in the phase plane: crossing of islands has a
clear signature, the chaotic regions are very neatly distinguished, and good agree-
ment with the theoretical predictions is found.

A rectangular region of phase plane has been examined by choosing a grid and
using a color, logarithmic scale for the errors at each point. Also in this case, a good
correspondence with the phase space portrait is found. On the basis of the analysis
presented here and the experience gained in investigating more complex models
from celestial mechanics [18] and beam dynamics [19], we suggest to compare RE
and REM with LE, possibly, filtered with MEGNO, to damp the oscillations2. For
maps of dimension 4 or higher, a direct geometric inspection of the orbits is not
possible since the Poincaré section requires an interpolation Hamiltonian. As a
consequence the use of fast indicators is the only practical approach to analyze the
orbital stability. Hamiltonian systems have a continuous time flow, and the errors
LE and RE denoted by eL tð Þ and eR tð Þ, respectively, are computed by using the

fundamental matrix L tð Þ of the tangent flow. In this case eL tð Þ ¼ Tr LT tð ÞL tð Þ
� �� �1=2

and eR tð Þ are given by the square root of 2
Ð t
0 ds eL sð Þ

� �2
, whose trapezoidal rule

approximation gives the relation found for the maps [12]. Standard procedures
allow to approximate the orbit x tð Þ by the iteratesMn x0ð Þ of a symplectic integrator
map M (see [20]) and the fundamental matrix L tð Þ by DMn x0ð Þ (see [21]). The
paper has the following structure. In Section 2, we recall the definitions for LE and
RE and obtain their mutual relation. In Section 3, we present the analytical results
on LE and RE together with the numerical results on REM for integrable maps. In
Section 4, the key features of two prototype models, the standard map and the
Hénon map, are summarized. In Section 5, we present a detailed numerical analysis
of LE, RE, and REM for the standard map. In Section 6, the same analysis is
presented for the Hénon map. In Section 7, the summary and conclusions are
presented.

2. Definition of errors

Given a symplectic map M xð Þ where x∈R
2d, we consider the orbits

xn ¼ Mn x0ð Þ and yn ¼ Mn y0

� �

for two initial points x0 and y0 ¼ x0 þ ϵη0, respec-

tively, where η is a unit vector. We consider the normalized displacement ηn at
iteration n defined by

ηn ¼ lim
ϵ!0

yn � xn

ϵ
¼ lim

ϵ!0

M yn�1

� �

�M xn�1ð Þ
ϵ

(1)

2 The application of MEGNO to RE is not necessary due to the absence of oscillations, whereas its

application to REM is not recommended because the fluctuations are not filtered and the computational

cost is quadratic rather than linear in the iteration order.
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which satisfies the linear recurrence

ηn ¼ DM xn�1ð Þηn�1 DMð Þij ¼
∂Mi

∂xj
(2)

where DM is the tangent map. For any finite ϵ, we have yn ¼ xn þ ϵηn þ O ϵ
2ð Þ.

We might define the error as the norm of ηn which is closely related to the fast
Lyapunov indicator FLI (see [3]) as

en η0ð Þ ¼ ∥ηn∥ ¼ ∥DMn x0ð Þη0∥ FLIð Þn ¼ max
1≤ k≤ n

log ek η0ð Þ (3)

and to its variants such as OFLI [4]. The mean exponential growth factor of
nearby orbits, MEGNO [17], denoted by Yn ¼ Y enð Þ is the double average of the
slope, and we denote it as Δe2n. When n is a continuous variable, then

Δe2n ¼ d log e2n=d log n. When n is an integer, the standard definition is

Δe2n ¼ n log e2n � log e2n�1

� �

Yn ¼ Δe2n
� �� �

: (4)

2.1 Lyapunov error

We propose a definition of the Lyapunov error which is independent from the
choice of the initial vector:

eLn ¼ Tr AT
n An

� �� �1=2

An ¼ DMn x0ð Þ ¼ DM xn�1ð ÞAn�1 A0 ¼ I
(5)

It is immediate to verify that given an orthonormal basis η0k, we have

eLn ¼
X

2d

k¼1

e2n η0kð Þ
 !1=2

(6)

and obviously the result does not depend on the choice of the basis. The com-
putational cost of en η0ð Þ is 2d times higher with respect to eLn, but this difference is
negligible with respect to the computational cost of the matrix DM xn�1ð Þ, which
recursively gives ηn and An. A similar definition is proposed in the case of Hamilto-
nian flows (see the last Subsection 2.6 and [12] for more details). An advantage of
the proposed definition is that it takes into account the error growth on all possible
directions of the initial displacement vector. As a consequence, no spurious effects
due to the choice of the initial vector have to be faced (see [16]).

2.2 Forward error

When an additive noise of amplitude ϵ is introduced, the reference orbit xn is
replaced by the noisy one (yn) having the same initial condition:

yn ¼ M yn�1

� �

þ ϵξn y0 ¼ x0 (7)

where ξn are independent random vectors satisfying

ξnh i ¼ 0 ξn ξ
T
m

� �

¼ I δnm (8)

4
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The global stochastic displacement satisfies a linear nonhomogeneous equation
and is defined by

Ξn ¼ lim
ϵ!0

yn � xn

ϵ
Ξn ¼ DM xn�1ð ÞΞn�1 þ ξn (9)

with initial condition Ξ0 ¼ 0. Letting Σ
2F
n ¼ ΞnΞ

T
n

� �

be the covariance matrix
the forward error is defined by

eFn ¼ Ξn � Ξnh i1=2 ¼ Tr Σ
2F
n

� �� �1=2
(10)

The explicit solution for Ξn is given by

Ξn ¼
X

n

k¼1

DMn�k xkð Þξk ¼
X

n�1

k¼0

Bk ξn�k Bk ¼ DMk xn�kð Þ (11)

where Bk can be evaluated recursively as

Bk ¼ Bk�1DM xn�kð Þ B0 ¼ I: (12)

The expression for the forward error finally reads

eFn ¼
X

n�1

k¼0

Tr BT
k Bk

� �

 !1=2

: (13)

The computation cost of Bn is negligible, once we have evaluated the tangent
map, but the storage of the tangent map along the orbit up to n is required.

2.3 Reversibility error

We have just defined the forward error, but it will not be used, because it is only
an intermediate step toward the definition of the reversibility error. Consider the

backward evolution yn,�k, given by the inverse map M�1, with initial point

yn,0 ¼ yn. The point yn is reached by iterating n times the map M with a random

displacement of amplitude ϵ at each step, starting from y0 ¼ x0 (see the previous

subsection). The orbit yn,�k is obtained by iterating k times the map M�1 with a

random displacement of the same amplitude at each step:

yn,�k ¼ M�1 yn,�kþ1

� �

þ ϵξ�k k ¼ 1,…, n (14)

The random backward displacements ξ�k are independent from the forward
displacements ξk0 , namely, ξ�k ξk0h i ¼ 0 and ξ�k ξ�k0h i ¼ I δkk0 , for any k, k0>0. We
consider then the stochastic process Ξn,�k defined by

Ξn,�k ¼ lim
ϵ!0

yn,�k � xn�k

ϵ
Ξn,�k ¼ DM�1 xn�kþ1ð ÞΞn,�kþ1 þ ξ�k (15)

with initial condition Ξn, 0 ¼ Ξn. The solution of the recurrence reads

Ξn, �k ¼ DM�k xnð ÞΞn þ
X

k

j¼1

DM� k�jð Þ xn�j

� �

ξ�j (16)
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For k ¼ n, we obtain the global normalized displacement ΞR
n ¼ Ξn,�n after n

forward and n backward iterations with noise of vanishing amplitude:

ΞR
n ¼ DM�n xnð ÞΞn þ

X

n

j¼1

DM� n�jð Þ xn�j

� �

ξ�j (17)

Letting Σ
2R
n ¼ ΞR

n ΞR
n

� �T
D E

be the covariance matrix, the reversibility error (RE)

is defined by

eRn ¼ ΞR
n � ΞR

n

� �1=2 ¼ TrΣ2R
n

� �2
(18)

and using Eqs. (17) and (8), an explicit expression involving only the tangent
maps is obtained. Indeed the global stochastic displacement reads

ΞR
n ¼

X

n

k¼1

DM�n xnð ÞDMn�k xkð Þξk þ
X

n

k¼1

DM� n�kð Þ xn�kð Þξ�k: (19)

Taking into account the independence of ξk and ξ�k0 , the expression for the

reversibility error eRn ¼ ΞR
n � ΞR

n

� �1=2
is immediately obtained.

2.4 Analytical relation between RE and LE indicators

The RE can be obtained from LE in a very simple way. We first notice that

DM�n xnð ÞDMn�k xkð Þ ¼ DM�k xkð Þ (20)

We prove this relation by writing M�n Mn�k xð Þ
� �

¼ M�k xð Þ, computing the

tangent map DM�n Mn�k xð Þ
� �

DMn�k xð Þ ¼ DM�k xð Þ, and evaluating it for x ¼ xk.
As a consequence the expression for the reversibility error becomes

eRn
� �2 ¼ Tr ΞR

n ΞR
n

� �T
D E

¼
X

n

k¼1

Tr DM�k xkð Þ
� �T

DM�k xkð Þ
� �

h i

þ
�

þ Tr DM� n�kð Þ xn�kð Þ
� �T

DM� n�kð Þ xn�kð Þ
� 	


¼

¼ 2
X

n�1

k¼1

Tr DM�k xkð Þ
� �T

DM�k xkð Þ
� �

h i

þ

þ Tr DM�n xnð Þð ÞTDM�n xnð Þ
h i

þ Tr Ið Þ

(21)

Starting fromM�k Mk xð Þ
� �

¼ x, computing the tangent map, and evaluating it at
x ¼ x0, it follows that

DM�k xkð Þ ¼ DMk x0ð Þ
� ��1

(22)

Given any symplectic matrix L3, we can prove that

3 A symplectic matrix L is defined by LJLT ¼ J where J is antisymmetric and J2 ¼ �I. As a consequence

L�1 ¼ �JLTJ, and L�1
� �T ¼ �JLJ so that Tr L�1T L�1

� �

¼ Tr JLJ2LTJ
� �

¼ Tr LLT
� �

.

6
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Tr L�1
� �T

L�1
� �

¼ Tr LTL
� �

: (23)

As a consequence in Eq. (21), we can use the following relation:

Tr DM�k xkð Þ
� �T

DM�k xkð Þ
� �

h i

¼ Tr DMk x0ð Þ
� �T

DMk x0ð Þ
� �

h i

¼ eLk
� �2

: (24)

Finally, the relation between LE and RE is given by

eRn
� �2 ¼

X

n

k¼1

eLk
� �2 þ eLn�k

� �2
� �

¼ 2
X

n�1

k¼1

eLk
� �2 þ 1

2
eL0
� �2 þ 1

2
eLn
� �2

 !

: (25)

This relation clearly shows how the error due to random kicks along the orbit is
related to the error due to initial orthogonal kicks.

2.5 Roundoff-induced reversibility error

The reversibility error method (REM) is a very simple procedure based on n
iterations of the map M followed by n iterations of the inverse map. The distance
from the initial point normalized by the roundoff amplitude ϵ defines the REM
error. Denoting with Mϵ the map with roundoff, we have

eREMn ¼ ∥M�n
ϵ

∘ Mn
ϵ
x0ð Þ � x0∥

ϵ

� 


(26)

where ϵ is the roundoff amplitude. For the eight-byte representation of reals, we

choose ϵ ¼ 10�17. If the map has a sufficiently high computational complexity, the
displacement ξ defined by Mϵ xð Þ �M xð Þ ¼ ϵξ is almost random, but a unique
realization is available. (For a discussion on the roundoff error, see [22]). As a
consequence, the eREMn has large fluctuations, whereas eRn has a smooth dependence
on n since it is defined by an average overall possible realizations of the stochastic
displacements occurring at each iteration.

2.6 Errors for Hamiltonian flows

For Hamiltonian flows, we define the Lyapunov error eL tð Þ according to

eL tð Þ ¼ Tr LT tð ÞL tð Þ
� �� �1=2

(27)

where L tð Þ is the fundamental matrix for the tangent flow, which satisfies the
linear equation dL=dt ¼ JHL, H denotes the Hessian of the Hamiltonian computed

along the orbit Hij ¼ ∂
2H=∂xi∂xj, and the initial condition for the matrix L tð Þ is

L 0ð Þ ¼ I. The relation with the standard fast indicators is the same as for the
symplectic maps. Let ΞR tð Þ be the stochastic displacement from x0 after a noisy
evolution up to time t and backward to t ¼ 0, divided by the noise amplitude ε in
the limit ε ! 0. It has been proven [12] that ΞR tð Þ satisfies a linear Langevin
equation whose solution reads

ΞR tð Þ ¼
ðt

0
L�1 sð Þ ξ sð Þ � ξ s� tð Þð Þds: (28)
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The reversibility error in this case is defined by the mean square deviation of the

random displacement eR tð Þ ¼ ΞR tð Þ � ΞR tð Þ
� �1=2

. As shown in [12] and from
Eq. (28), we immediately obtain

eR tð Þ ¼ 2

ðt

0
eL sð Þ
� �2

ds

� 
1=2

: (29)

If the continuous time t is replaced by an integer n and we approximate the
integral with the trapezoidal rule, we recover the relation in Eq. (25) obtained for a
symplectic map.

3. Integrable maps

We evaluate the errors for integrable maps with an elliptic fixed point at the
origin, whose normal form is a rotation R Ωð Þ with a frequency Ω depending on the
distance from the origin. The LE asymptotic growth is linear, and oscillations are
present unless the coordinates are normal. The RE asymptotic growth follows a
power law nα with exponent α ¼ 3=2. If the map is linear, its asymptotic growth
follows a power law with α ¼ 0 for LE and α ¼ 1=2 for RE. The oscillations reflect
the loss of rotational symmetry when generic coordinates are used. The roundoff
induced reversibility error REM is also sensitive to the choice of coordinates, and a
comparison between RE and REM is presented in the next sections.

3.1 Change of coordinate system

In generic coordinates an integrable map M xð Þ is conjugated to its normal form
N Xð Þ by a symplectic coordinate transformation x ¼ Φ Xð Þ; as a consequence the
conjugation equation and its iterates read

M xð Þ ¼ Φ ∘ N ∘ Φ�1 xð Þ Mn xð Þ ¼ Φ ∘ Nn ∘ Φ�1 xð Þ (30)

which imply that the orbits xn ¼ Mn x0ð Þ and Xn ¼ Nn X0ð Þ are related by
xn ¼ Φ Xnð Þ. The tangent maps are given by

DMn x0ð Þ ¼ DΦ Xnð ÞDNn X0ð ÞDΦ
�1 x0ð Þ ¼ DΦ Xnð ÞDNn X0ð Þ DΦ X0ð Þð Þ�1 (31)

where we used DΦ Xð ÞDΦ
�1 xð Þ ¼ I, a relation which is proved to hold by com-

puting the Jacobian of Φ ∘ Φ�1 xð Þ ¼ x. As a consequence, the expression for the
Lyapunov error in both coordinate systems is

eLn X0ð Þ
� �2 ¼ Tr DNn X0ð Þð ÞT ðDNn X0ð Þ

h i

eLn x0ð Þ
� �2 ¼ Tr DMn x0ð Þð ÞT ðDMn x0ð Þ

h i

(32)

Taking Eq. (31) into account, the last equation can be written as

eLn x0ð Þ
� �2 ¼ Tr V�1 X0ð Þ DNn X0ð Þð ÞTV Xnð ÞDNn X0ð Þ

h i

V Xð Þ ¼ DΦ Xð Þð ÞTDΦ Xð Þ
(33)

8
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Notice that V is a positive-defined matrix and that its determinant is equal to 1 if
Φ is symplectic. For a two-dimensional map, we can write

V �
a b

b c

� 


V�1 ¼
c �b

�b a

� 


(34)

where ac� b2 ¼ 1.

3.2 Isochronous rotations: oscillations in LE and RE

If the given map is linear and two-dimensional and M xð Þ ¼ Lx with ∣Tr L∣ < 2,
then the map is conjugated to a rotation R ωð Þ:

L ¼ TR ωð ÞT�1 R ωð Þ ¼
cos ωð Þ sinω

� sin ωð Þ cos ωð Þ

� 


(35)

Letting xn ¼ Lnx0 and Xn ¼ RnX0, the orbits in the coordinate x and the normal

coordinate X ¼ T�1x and the Lyapunov errors are given by

eLn X0ð Þ
� �2 ¼ Tr R �nωð ÞR nωð Þ½ � ¼ 2

eLn x0ð Þ
� �2 ¼ Tr V�1R �nωð ÞVR nωð Þ

� 

¼ 2 cos 2 nωð Þ þ a2 þ c2 þ 2b2
� �

sin 2 nωð Þ ¼

¼ aþ cð Þ2
2

þ 2� aþ cð Þ2
2

 !

cos 2nωð Þ

(36)

where V ¼ TTT, and we have used the representation given by Eq. (34) where
DΦ ¼ T. The error is constant in normal coordinate X and oscillates between 2 and

aþ cð Þ2 � 2 ¼ a2 þ c2 þ 2b2 in the coordinate x. The geometric interpretation is
obvious since the orbits of the map belong to an ellipse rather than a circle. The
result for the reversibility error is given by

eRn X0ð Þ
� �2 ¼ 4n

eRn x0ð Þ
� �2 ¼ 2n

aþ cð Þ2
2

þ 2� aþ cð Þ2
2

 !

f nð Þ

f nð Þ ¼
X

n

k¼1

cos 2kωð Þ þ cos 2 n� kð Þωð Þð Þ ¼ cos 2nωð Þ þ cos 2 n� 1ð Þωð Þ � cos 2nωð Þ
1� cos 2ωð Þ

(37)

We shall first consider the dependence of the errors on the iteration order n from
n ¼ 1 up to a maximum value N. Then, we shall consider the dependence on the
initial condition x0 when it is varied on a one-dimensional grid crossing the origin
for the value N of the iteration number. We choose the linear map L which depends
on a single parameter λ, and its relation with the rotation frequency is

L ¼
1� λ 1

�λ 1

� 


sin
ω

2
¼

ffiffiffi

λ
p

2
0≤ λ≤4 (38)

The rotation R ωð Þx is the linear part for the Hénon map, whereas Lx is the linear
part of the standard map that will be discussed in the next sections. The behavior of
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LE and RE for these maps is provided by Eqs. (36) and (37). The error growth
follows a power law with exponent α ¼ 0 for LE and α ¼ 1=2 for RE. Oscillations are
present when the coordinates are not normal.

For a generic map such as L defined by Eq. (38), the growth of REM follows a
power law exponent α ¼ 1=2 as RE, for almost any value of λ, as shown by Figure 1,
right panel, where the plot of MEGNO corresponding to 2α is shown. The result for
the map R ωð Þ in normal coordinates is shown in the left panel of the same figure,
and the exponent is α ¼ 1 for almost all the values of ω.

Letting X ¼ X;Pð ÞT and ϕ; Jð Þ be the action angle coordinates defined by

X ¼ 2Jð Þ1=2 cosϕ and P ¼ � 2Jð Þ1=2 sinϕ, the rotation in the X plane becomes a
translation on the cylinder:

ϕn ¼ ϕn�1 þ ω mod 2π Jn ¼ Jn�1 (39)

and in this case REM vanishes. These results show that REM strongly depends on
the computational complexity of the map. The error growth always follows a power
law, but, depending on the choice of the coordinates, the exponent α varies in the
range 0; 1½ �. Unlike RE, we observe that REM depends linearly on the distance of the
initial condition x0 from the origin. In Figure 2, we plot eREMN as a function of the
initial condition when it varies on a one-dimensional grid issued from the origin for

Figure 1.
Left frame: twice the asymptotic power law exponent provided by the MEGNO filter YN with N ¼ 1000
applied to REM for a rotation R ωð Þ where ω=2π varies in the interval 0; 1=2½ �. The initial condition is
x0 ¼ 0:1, p0 ¼ 0. Right frame: twice the asymptotic power law exponent provided by the MEGNO filter YN

with N ¼ 1000 applied to REM for a linear map L given by Eq. (38) whose parameter λ varies in 0; 1½ �. Initial
condition x0 ¼ 0:1, p0 ¼ 0.

Figure 2.

Left frame: reversibility error due to roundoff eREMN for a rotation R ωð Þ with ω ¼ 2π
ffiffiffi

2
p

� 1
� �

and N ¼ 1000
when the initial condition is varied. We choose x0 ∈ 0;0:5½ �, p0 ¼ 0. The dependence on x0 is evident and a
linear fit f x0ð Þ ¼ 5000x0 is shown, purple line. Right frame: computation of the error for the linear map with
λ ¼ 4 sin 2 ω=2ð Þ where ω has the same value. The linear fit is the same.
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the rotation R ωð Þ and the linear map L. The linear dependence is evident in both
cases, even though the fluctuations are large for the linear map.

3.3 Anisochronous rotations

An integrable map M in normal coordinates and the tangent map DMn read

M xð Þ ¼ R Ω Jð Þð Þx DMn xð Þ ¼ R nΩð Þ þ nΩ0R0 nΩð ÞxxT (40)

where J ¼ ∥x∥2=2 is the action. The square of the Lyapunov error4 reads

eLn
� �2 ¼ Tr DMnð ÞTDMn

� �

¼ 2þ n2 2JΩ0ð Þ2 (41)

and the square of the reversibility error is given by

eRn
� �2 ¼

X

n

k¼1

eLk
� �2 þ eLn�k

� �2
� �

¼ 4nþ 2JΩ0ð Þ2
X

n

k¼1

n� kð Þ2 þ
X

n

k¼1

k2
 !

¼ 4nþ 2JΩ0ð Þ2 2 n3

3
þ n

6

� 


(42)

For a fixed value of the invariant J, the slope of eRn
� �2

, whose asymptotic value is

2α, is defined as d log eRn
� �2

=d log n, and its double average is given by MEGNO
Yn � Y enð Þ. The range of variation is [1, 3]. One can prove that for a given initial
condition, the intermediate value Yn ¼ 2 is reached for

n ¼ 14:5

2J ∣Ω0∣
¼ 14:5

x20 þ p20
� �

∣Ω0∣
(43)

In Figure 3, we show the variation with n∈ 1; 1000½ � of Yn computed for RE
given by Eq. (42), corresponding to the map presented in Eq. (40), where Ω Jð Þ is a
linear function of J, and find a perfect agreement with the analytical estimate of the
value of n for which the value Yn ¼ 2 is reached. In Figure 4, we show the variation
of eRN and the corresponding MEGNO filter YN with the initial condition chosen on a
one-dimensional grid crossing the origin for N ¼ 1000. The integrable map is given
by Eq. (40), where Ω0 is constant. The error reaches a minimum value at the origin,
and a similar behavior for YN is observed. Also eREMN decreases by approaching the
origin so that the behavior is similar even though in this case the fluctuations are
large. We notice that MEGNO does not eliminate the fluctuations of REM. In order
to compute Yn, one needs the sequence eREMm for m ¼ 1,…, n whose computational

cost is of the order of n2. This can be avoided by storing the sequence xε,m and

computing êm
REM ¼ ∥M�m

ε xε,nð Þ � xn�m∥ which turns out to be comparable with

eREMm .

4 The standard definition for an initial displacement along the unit vector η0 is eLn η0ð Þ ¼ ∥DMnη0∥where

∥DMnη0∥
2 ¼ 1þ nΩ0ð Þ2∥x∥2 η0 � xð Þ2 þ 2nΩ0 η0 � xð Þ η0 � Jxð Þ and J ¼

0 1

�1 0

� 


. The sum

�

�

�

�

DMn 1

0

� 
�

�

�

�

2

þ
�

�

�

�

DMn 0

1

� 
�

�

�

�

2

gives the Lyapunov error eLn
� �2

.
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If the coordinates are not normal, which is usually the case for a quasi integrable
map, the correspondence between RE and REM is better, and it is confirmed by
comparing the results for MEGNO. Just a shift of 1=2 in the exponent of the power
law nα occurs close to the origin, if the linear part is a rotation R, as for the Hénon
map. If the linear part is L as for the standard map, there is no shift. The better
correspondence is not surprising since the computational complexity of the map is
higher when the coordinates are not normal.

4. Non-integrable maps

We examine here the behavior of the proposed dynamical indicators for two
basic models, the standard map and the Hénon map.

The standard map is defined as a map on the torus T2 and reads

pnþ1 ¼ pn �
λ

2π
sin 2πxnð Þ mod 1 xnþ1 ¼ xn þ pnþ1 mod 1 (44)

where x, p belong to the interval �1=2; 1=2½ � whose ends are identified. For λ≪ 1

and ∣p∣≫
ffiffiffi

λ
p

, it is just a weakly perturbed rotator, and x, p are action angle coordi-
nates. The origin is an elliptic fixed and very close to it; the map is approximated by
a linear map

Figure 4.
Left frame: plot or the error eRN with N ¼ 1000 for the integrable map as a function of the initial condition
x0, p0 ¼ 0 with Ω

0 Jð Þ ¼ 0:1 (red line) and Ω
0 Jð Þ ¼ 1 (blue line). Center frame: same plot with eREMN for

ω ¼ 2π
ffiffiffi

2
p

� 1
� �

and Ω
0 Jð Þ ¼ 0:1, gray line, compared with eRn , red line. Right frame: plot of YN for the

integrable map with Ω
0 ¼ 0:1 (red line) and Ω

0 Jð Þ ¼ 1(blue line).

Figure 3.
Left frame: plot of MEGNO Yn on the error eRN for 1≤ n≤N with N ¼ 1000 for the integrable map with
Ω0 ¼ 0:1 and initial condition x0 ¼ 0:5, p0 ¼ 0 (blue line). The green line refers to a modified definition YMn,

where n loge2n � loge2n�1

� �

is replaced with loge2n � loge2n�1

� �

= logn� log n� 1ð Þð Þ, which, applied to the sequence
en ¼ nα, gives 2α for any n. The vertical line gives the theoretical estimate of the value of n for which Yn ¼ 2 (see
Eq. (43)) Right frame: the same for x0 ¼ 1, p0 ¼ 0.
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xnþ1 ¼ 1� λð Þxn þ pn pnþ1 ¼ �λxn þ pn (45)

This map is conjugated to a rotation R ωð Þ for 0 < λ < 2 where sin ω=2ð Þ ¼
ffiffiffi

λ
p

=2.
The point x ¼ �1=2, p ¼ 0 is hyperbolic, and for λ≪ 1 the corresponding orbit is
approximated by the separatrix of the Hamiltonian:

H ¼ p2

2
� λ

2πð Þ2
cos 2πxð Þ (46)

which is the interpolating Hamiltonian of the map when λ ! 0. We observe that

the frequency for small oscillations is ω ¼
ffiffiffi

λ
p

(see Eq. (38)) when λ ! 0. Since the

time scale of the Hamiltonian H is T ¼ 2π=
ffiffiffi

λ
p

≫ 1, the symplectic integrator in
Eq. (44), obtained for a time step Δt ¼ 1, provides a good approximation to the
orbit. Conversely, the Hamiltonian provides a good interpolation to the orbit of the
map. The equation for the separatrix of H is given by

p ¼ �
ffiffiffi

λ
p

π
cos πxð Þ: (47)

As a consequence, for λ small the width of the separatrix is 2
ffiffiffi

λ
p

=π. When λ

increases, non-integrable features appear, such as chains of islands corresponding to
resonances and a chaotic region near the separatrix due to homoclinic intersections.

The Hénon map is defined by

xnþ1

pnþ1

 !

¼ R ωð Þ
xn

pn þ x2n

� 


R ωð Þ ¼
cosω sinω

� sinω cosω

� 


(48)

Close to the origin, this is just a rotation with frequency ω. For ω ! 0 this is a
good symplectic integrator of the Hamiltonian:

H ¼ ω
p2 þ x2

2
� x3

3
(49)

with time step Δt ¼ 1. The approximation is good since the characteristic
time is the period of the linear rotation T ¼ 2π=ω. The motion is bounded
by the orbit issued from the hyperbolic fixed point of the map
x ¼ 2 tan ðω=2Þ; p ¼ �2 tan 2 ω=2ð Þð Þ which corresponds to the critical point
x ¼ ω; p ¼ 0ð Þ of the Hamiltonian. The stability boundary is approximated by

H x; pð Þ ¼ ω3=6 whose orbit explicitly reads p ¼ � ω� xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωþ 2xð Þ=3
p

. The
Birkhoff normal forms provide an integrable approximation to the map and the
corresponding interpolating Hamiltonian, from which the errors may be analyti-
cally computed.

5. The standard map

We have analyzed the errors en for a fixed initial condition by varying n up to a
maximum value N, by varying the initial condition on a one-dimensional grid for
n ¼ N and by choosing a grid in the phase plane for n ¼ N. The LE shows oscilla-
tions with n, RE grows without oscillations, and the behavior of RE is similar to RE
although with large fluctuations. The results obtained by filtering the errors with
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MEGNO confirm this observation. In Figure 5, we plot the errors en for λ ¼ 0:1 and
Y enð Þ by varying n. The fast oscillations of LE and the large fluctuations of REM are
clearly visible.

When the orbit is chaotic, the growth of all errors is exponential. However, LE
and RE can grow until the overflow is reached, whereas REM can grow only up to
1=ϵ where ϵ is the machine accuracy. Typically in double precision, the overflow

corresponds to 10300 where ϵ�1 � 1017. The same limitation is met when the
Lyapunov error is computed using the shadow orbit method without
renormalization rather than with the variational method. In Figure 6, we show the
errors for a chaotic orbit when λ ¼ 0:8. Both LE and RE exhibit an exponential
growth after an initial transitory phase. The behavior of REM is very similar until

n≤ 300. For higher values the saturation to 1017 is evident, and REM ceases to grow
exponentially.

5.1 Initial conditions on a one-dimensional grid

Figure 7 shows the variation of LE, RE, and REM for λ ¼ 0:1, with the initial
condition chosen on a regular grid in the vertical axis p for a fixed order N. The LE
oscillates when the initial condition varies, RE does not oscillate, and REM fluctu-
ates. When the MEGNO filter is applied, LE and RE are equally smooth, whereas
REM still fluctuates.

Figure 5.
Left frame: plot of the errors for the standard map with λ ¼ 0:1 and initial condition x0 ¼ 0, p0 ¼ 0:075.
Lyapunov error eLn (blue line), reversibility errors eRn (red line), and eREMn (gray line), for 1≤ n≤ 2500. Right
frame: plots for the MEGNO filter Yn for the same errors.

Figure 6.
Left frame: plot of the errors for the standard map with λ ¼ 0:8 and initial condition x0 ¼ 0, p0 ¼ 0:26

corresponding to a chaotic orbit. Lyapunov error eLn (blue line), reversibility errors e
R
n (red line), and eREMn (gray

line), for n≤ 500. Right frame: plots for the MEGNO filter Yn for the same errors.
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In Figure 8, the same results are shown for a higher value of the parameter
λ ¼ 0:8 at which the dynamical structure is rich due to the presence of many
resonances and small chaotic regions. The effectiveness in detecting the resonances
is evident.

5.2 Initial conditions on a two-dimensional domain

We compare here LE, RE, and REM when the initial conditions are chosen in a
two-dimensional phase space domain and the iteration number has a fixed value N.
The most effective way of analyzing the results is to plot the errors using a loga-
rithmic, color scale. Following the conclusions of our previous section, we show LE,
RE, and REM, in a logarithmic color scale. We choose a regular two-dimensional
grid in a square (or rectangular) domain of phase space with Ng �Ng points, where
we compute the errors and show the result using a color scale. In order to analyze
the details, smaller squares may be chosen eventually increasing the iteration num-
ber. In Figure 9, we show for N ¼ 500 and Ng ¼ 200 the color plots for the errors
of the standard map with λ ¼ 0:8 and in Figure 10 for λ ¼ 1:5. In the first case, the
measure of chaotic orbits is small with respect to the regular ones. We observe that
LE has some weak structures within the main regular component surrounding the
origin, visible when the figure is sufficiently magnified. Such structures of LE,
related to the oscillating growth with n, disappear when MEGNO is computed and

Figure 7.
Left frame: variation for the standard map with λ ¼ 0:1 of the errors LE (blue line), RE (red line), REM (gray
line) computed at N ¼ 1000 with the initial condition x0 ¼ 0, p0 ∈ �0:15; 1;0:15½ �. Right frame: the same for
MEGNO YN .

Figure 8.
Left frame: variation for the standard map with λ ¼ 0:8 of the errors LE (blue line), RE (red line), and REM
(gray line), computed at N ¼ 1000 with the initial condition x0 ¼ 0, p0 ∈ 0; 0:5½ �. Right frame: magnification
in the interval p0 ∈ 0:25;0:5½ �.
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are not present in the RE and REM plots. The spurious structures observed in FLI,
which depend on the choice of the initial vector, are not present in LE, because in
our definition the error does not depend on the choice of an initial displacement
vector. Notice that the chosen scales have maximum equal to 1010 for LE and 1015

for RE and REM. This choice is suggested by the asymptotic behavior nα of the error
for regular orbits where α ¼ 1 for LE and α ¼ 3=2 for RE.

6. The Hénon map

We briefly report in this section the numerical results on the errors computed on
domains of dimensions 1 and 2 in phase space. Close to the origin, the linear map in
this case is a rotation R ωð Þ. As a consequence the power law exponent of REM varies
from 1 to 2, whereas the exponent for RE varies from 1/2 to 3/2. Within the main
island, the variation range of the exponent for RE and REM is the same 1=2; 3=2½ �.
The behavior of LE and RE close to the origin is analytically obtained by using the
normal forms. The frequency Ω Jð Þ, from normal forms at the lowest order, reads

Ω≃ωþ JΩ2 Ω2 ¼ � 1

8
3 cot

ω

2

� �

þ cot
3ω

2

� 
� 


(50)

a formula valid for frequencies ω=2π not approaching the unstable resonances 0
and 1/3 where Ω2 diverges.

In the normal coordinates X;Pð Þ, the behavior of errors is given by Eqs. (41) and
(42). In the original coordinates x; pð Þ, the error could be evaluated using Eq. (33).

Figure 9.
Left frame: standard map with λ ¼ 0:8 color plot of LE in a logarithmic scale for N ¼ 500 and a grid with
Ng ¼ 200. Center frame: standard map with λ ¼ 0:8 color plot of RE in a logarithmic scale for N ¼ 500 and a
grid with Ng ¼ 200. Right frame: color plot of REM in a logarithmic scale.

Figure 10.
Left frame: standard map with λ ¼ 0:8 color plot of LE in a logarithmic scale for N ¼ 500 and a grid with
Ng ¼ 200. Center frame: standard map with λ ¼ 1:5 color plot of RE in a logarithmic scale for N ¼ 500 and a
grid with Ng ¼ 200. Right frame: color plot of REM in a logarithmic scale.
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In normal coordinates, the errors grow as 2J ∣Ω2∣n
α where α ¼ 1 for LE and α ¼ 3=2

for RE. When the frequency attains a low resonant value, a chain of islands appears.
Close to the separatrix J ¼ Js, the frequency vanishes as Ω � 1= log Js � Jð Þ and
consequently Ω

0 Jð Þ � Js � Jð Þ�1 as Js is approached, up to a logarithmic correction.
The errors diverge by approaching the separatrix even though the power law
growth does not change except on the separatrix itself. As a consequence, LE and
RE can detect the separatrix. If the remainder in the normal form interpolating
Hamiltonian is taken into account, then the separatrix becomes a thin chaotic region
where the errors have an exponential growth and MEGNO rises linearly with n. The
REM behaves as RE neglecting its fluctuations. The Hénon map, we consider here,
has a linear frequency ω=2π ¼ 0:21 which is close to the resonance 1=5. As a conse-
quence a chain of five islands appears before reaching the dynamic aperture,
namely, the boundary of the stability region, beyond which the orbits escape to
infinity.

In Figure 11, we show the variation of LE, RE, and REM computed at a fixed
order N and after filtering them with MEGNO, when the initial conditions are
chosen on a one-dimensional grid. The resonance 1=5 is met, as shown by the
appearance of a large chain of islands, since Ω Jð Þ is monotonically decreasing. The
chaotic layer at the border of the islands chain is very thin so that LE and RE grow
by approaching it, as for an integrable map with a separatrix.

In Figure 12, we show the color plots of LE, RE, and REM in a square domain of
phase space. The weakly chaotic separatrix is detectable in LE and is more clearly
visible in RE. The REM plot differs from RE for the up-shit 1/2 of the power law
exponent before the thin chaotic separatrix and for the presence of fluctuations.

Figure 11.
Left frame: errors for the Hénon with ω ¼ 0:21� 2πð Þ: LE (blue line), RE (red line), and REM (gray line)
computed at iteration number N ¼ 1000 along the line x ¼ r cos α, p ¼ r sin α with α ¼ 14o joining the origin
with the center of the first of five islands. Center frame: computation of MEGNO with N ¼ 1000 for LE (blue
line), RE (red line), and REM (gray line). Right frame: phase portrait of the Hénon map. The initial conditions
for the errors in the left and right frames are chosen on the red segment.

Figure 12.
Left frame: Hénon map with ω ¼ 0:21� 2πð Þ color plot of LE in a logarithmic scale for N ¼ 500 and a grid
with Ng ¼ 200. The white points belong to the unstable region beyond the dynamic aperture. Center frame:
color plot of RE in a logarithmic scale. Right frame: color plot of REM in a logarithmic scale.
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7. Conclusions

We have presented a detailed analysis of the stability indicators LE, RE, and
REM recently proposed. Defining the square of LE as the trace of the tangent map
times, its transpose renders this indicator independent from the choice of an initial
vector, which can introduce spurious structures. The RE is the reversibility error
due to additive random noise, whereas REM is the reversibility error due to the
roundoff. A very simple relation is found between RE and LE. The oscillations,
which affect the fast Lyapunov indicator, can be filtered with MEGNO. Since RE
has a smooth behavior and does not exhibit oscillations, filtering it by MEGNO is
not necessary. The asymptotic behavior of REM is similar to RE even though it
exhibits large fluctuations. The displacements caused by roundoff are almost ran-
dom vectors, if the map has a high computational complexity, but since just a single
realization of the process is available, the fluctuations cannot be averaged.

We have first examined the behavior of LE and RE for linear maps and for
integrable maps. If the fixed point is elliptic, then the asymptotic growth follows a
power law nα, and the exponent does not depend on the chosen coordinates for LE
and RE. Conversely, the presence of oscillations and their amplitude depends on the
choice of coordinates. The growth of REM also follows a power law, but the choice
of coordinates affects the exponent itself.

For a generic map which has regular and chaotic components, the error growth
follows a power law and an exponential law, respectively. For the standard map and
the Hénon map, the behavior of LE, RE, and REM has been compared first by
varying the iteration order n up to a some value N, for a selected initial condition.
Then the errors for n ¼ N have been compared when the initial point moves on a
line. The theoretical predictions concerning the power law growth in the regular
regions and the exponential growth in the chaotic ones are confirmed. For two-
dimensional maps, the error plots for initial conditions in a rectangular domain of
phase space are very similar, and the correspondence with the phase space portraits
is excellent. Moreover, the different plots allow a quantitative comparison of the
orbital sensitivity to initial displacements, noise, and roundoff. For maps of dimen-
sion 4 or higher, the proposed error plots on selected phase planes allow to inspect
the orbital stability. Hamiltonian flows must be approximated with a high accuracy
by symplectic maps, with algorithms which provide simultaneously the
corresponding tangent maps [20, 21], in order to compute the errors discussed so
far. A special care is required in comparing RE with REM when the chosen phase
plane is invariant. Indeed given an initial point in the invariant plane, the noise
brings the orbit out of it, whereas the roundoff usually does not. In this case a
random kick before reversing the orbit is sufficient to bring the orbit out of the
invariant plane and to restore the correspondence between REM and RE. The
satisfactory results obtained so far, not only in the simple models presented here but
also in high dimensional models of celestial mechanics, prove that the method we
propose has a wide range of applicability.
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