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Chapter

Quantitative Mapping of Strains
and Young Modulus Based on
Phase-Sensitive OCT

Viadimir Y. Zaitsev, Lev A. Matveev,
Alexander A. Sovetsky and Alexander L. Matveyev

Abstract

In this chapter we consider mapping of local strains and tissue elasticity in optical
coherence tomography (OCT) based on analysis of phase-sensitive OCT scans. Con-
ventional structural OCT scans correspond to spatially resolved mapping of the
backscattering intensity of the probing optical beam. Deeper analysis of such sequen-
tially acquired multiple OCT scans can be used to extract additional information
about motion of scatterers in the examined region. Such detailed analysis of OCT
scans has already resulted in creation of OCT-based visualization of blood microcir-
culation, which has been implemented in several commercially available devices,
especially for ophthalmic applications. Another functional extension of OCT emerg-
ing in recent years is the OCT-based elastography, i.e., mapping of local strains and
elastic properties in the imaged region. Here, we describe the main principles of local
strain mapping in phase-sensitive OCT with a special focus on the recently proposed
efficient vector method of estimation of interframe phase-variation gradients. The
initially performed mapping of local strains is then used for realization of quantitative
compressional elastography, i.e., mapping of the Young modulus and obtaining
stress-strain dependences for the studied samples. The discussed principles are illus-
trated by simulated and experimental examples of elastographic OCT-based visuali-
zation. The presented elastographic principles are rather general and can be used in a
wide area of biomedical and technical applications.

Keywords: optical coherence elastography, phase-sensitive OCT, strain mapping,
deformation imaging, stiffness mapping, Young modulus mapping

1. Introduction

Scans in optical coherence tomography (OCT) strongly resemble those obtained
by ultrasound scanners. Conventional OCT images correspond to spatially resolved
visualization of the backscattering intensity for optical waves similarly to visualiza-
tion of backscattering intensity of ultrasonic waves. Deeper analysis of such images,
especially applied to sequentially acquired multiple scans, opens possibilities to
extract a rich additional information about motion of scatterers in the examined
region. The development of such functional extensions in OCT imaging was in
many aspects stimulated by the analogous trends in ultrasound.
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In this context, probably the most well-known extension of ultrasound-based
imaging is visualization of flows (first of all, imaging of blood flows in medical
ultrasound angiography [1]). In OCT, generically similar principles in the 2000s
were also used to realize OCT-based visualization of blood microcirculation. Since
the typical imaging depth in OCT is ~1-2 mm and lateral field of view ~several
millimeters, OCT-based angiography visualizes the microcirculation on a smaller
scale in comparison with ultrasound but correspondingly with a higher resolution
typical of OCT, where the typical resolution is 5-15 pm. Now the angiographic
modality in OCT is implemented in several commercially available devices,
especially for ophthalmology [2] but also for other medical applications, e.g., in
oncology [3-5].

Another functional extension of OCT, the development of which was also
inspired by analogous trends in ultrasonic imaging, is the optical coherence
elastography (OCE), i.e., mapping of deformations (including local strains) and
elastic properties (first of all, the Young modulus) in the imaged region. This
direction in OCT development was triggered in 1998 by the seminal publication by
Schmitt [6]. In that paper, Schmitt considered the possibility of transferring to OCT
the ideas proposed in medical ultrasound in the very beginning of 1990s [7]. This
approach was rather successfully developed in subsequent years [8] and since
~2000 was realized in several commercially available ultrasound platforms.

In OCT, however, the development of elastographic mode passed with
10-15 years delay. Despite the evident similarity between ultrasound and OCT
scans, the transferring to OCT, the elastographic principles successfully realized in
ultrasound appeared to be rather challenging. Sufficiently successful realizations of
OCT-based elastography were demonstrated only during the last ~5 years. Similarly
to OCT-based microangiography, elastography in OCT is mostly focused on bio-
medical applications (e.g., [9-12]), but certainly similar principles attract interest
for engineering applications, e.g., for testing polymers [13].

In what follows, we briefly overview the main trends in the development of
OCE, including measurement of strains and quantitative OCT-based mapping of
the Young modulus with focus of the so-called compressional phase-sensitive OCE
that became one of the most active directions in the development of OCE.

2. Basic principles used in OCE

The basic principles used for realization of OCE generically are rather similar to
those used in ultrasound imaging for elastographic purposes. The primary goal of
elastography is to estimate the shear modulus of the studied material (at least in the
relative sense without absolute quantification). In biomedical applications this
interest is explained by the fact that all soft biological tissues have very similar value
of the bulk modulus that varies very insignificantly in various states of the tissue. In
contrast, the shear modulus for the same state of the tissue may exhibit much
stronger variability, up to several times and even orders of magnitude. Therefore, it
is the observation of shear modulus variability which is especially interesting for
studying structural changes in soft materials. The materials that are called “soft” at
the intuitive level formally belong to the class of “nearly incompressible” or “water-
like” materials, for which their Poisson’s ratio v is very close to the upper physically
allowable limit v — 0.5, i.e., to the value typical of liquids. The condition v — 0.5
also means that the shear modulus G of such a material is much smaller than its bulk
modulus K: G/K < 1. When a rod, made of such a material with free boundaries in
lateral direction, is subjected to axial loading that causes its axial strain &, the soft
material experiences lateral strains &, = &,,~ — 0.5¢;;. Consequently, the expansion
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in one direction is compensated by contraction in the orthogonal directions, such
that the volume of the so-loaded sample remains almost invariable. This explains
why materials with v — 0.5 are called “nearly incompressible.”

Another remarkable feature of such materials with v — 0.5 is a rather specific
relationship between their Young modulus G and shear modulus E = 2(1 + v)G~3G.
Therefore, instead of direct measurements of modulus G (via observation of prop-
agation of shear or surface waves, which is used in wave variants of both ultrasonic
elastography [14] and OCE [15]), it is possible to use reaction of the tissue under
longitudinal uniaxial stress to evaluate the Young modulus E = 3G.

The idea to use quasistatic uniaxial stress for estimation of the Young modulus
was proposed for ultrasound [7] and was transferred to OCT in paper [6]. In
practice, the strain, which can be characterized as fairly close to uniform and
uniaxial, is created in the vicinity of a piston pressed onto a tissue that is not stuck at
the piston-tissue interface and can fairly freely slide laterally. This strain is created
by compressional loading, so that the idea of measuring the Young modulus in such
a configuration is called compressional (or compression) elastography.

The key point in realization of compressional OCE is, therefore, estimation of
axial strains in the so-compressed material by analyzing a series of OCT scans
acquired during the material compression. Comparison of such scans can be used to
reconstruct axial displacements U(z) of scatterers, and the local axial strains can be
estimated by evaluating spatial gradients of the displacement field:

ou
£x = o (1)

For tracking the displacements of scatterers, conventionally correlation princi-
ples have been discussed and fairly successfully realized in various applications,
including medical ultrasound elastography [8] and engineering problems, where
this processing is applied to sequences of photographic images of a deformed sur-
face [16]. In paper [6] similar principles were supposed to be transferred to the
analysis of OCT images. However, the attempts to directly transfer the correlational
principles of estimating strains by tracking displacements using consequently
acquired OCT scans were not very successful [17] in the sense that the
correlationally reconstructed displacement fields were rather noisy. In view of this,
their numerical differentiation required for reconstructing local strains did not give
satisfactory results.

The reason of this was that unlike photographic images, OCT scans are charac-
terized by a peculiar speckle structure originated in OCT scans from the interfer-
ence of optical waves scattered from sub-resolution scatterers. This speckle pattern
is rather sensitive to deformation of the imaged material, because straining pro-
duces relative displacements of the sub-resolution scatterers (for which a quarter-
wavelength mutual displacement in the axial direction changes the character of
interference of the scattered waves from constructive to destructive and vice
versa). In view of this, for fairly moderate strains ~ a few percent and even less,
speckles in OCT images may demonstrate pronounced “boiling” and “blinking”
resulting in strong decorrelation of the compared OCT scans. The intuitively
attractive idea to use the correlational speckle tracking for “sufficiently small
strains,” for which the abovementioned decorrelation could be avoided, did not
help too much. The reason is that in fact both masking distortions producing the
decorrelation and the variations in the speckle structure that are used for the
tracking purposes do appear simultaneously and are proportional to the same order
of strain [18]. Thus, even for small strains, the decorrelation of OCT images usually
does not allow for sufficiently precise correlational speckle tracking allowing for
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performing subsequent differentiation and finding strains via Eq. (1). The possibil-
ities of correlational speckle tracking in OCT imaging of deformed tissues were
analyzed in detail [19]. The conclusion was that by the abovementioned reasons, the
correlational approach to strain reconstruction in OCT can be practically feasible
for super-broadband spectrum of the illuminating source (like used in [20]), for
which the deformation-induced speckle blinking/boiling is strongly suppressed.
Otherwise the correlation approach is operable for only approximate strain estima-
tions, i.e., with averaging over large portions of the entire OCT scan. By this reason
in what follows, we will focus on another realization of compressional OCE,

based on phase-resolved measurement. This approach has proven to be rather
promising and is especially actively developed in recent years.

In OCT the phase of the backscattered signal is naturally available and can be
readily used to track the displacements of scatterers using the well-known relation-
ship between the variation ® in the backscattered-wave phase and the axial scat-
terer displacement U:

v=22, @

4rn

where /g is the optical wavelength in vacuum and # is refractive index of the

material. It can be shown that the phase of the OCT signal can be more tolerant to
strain-induced decorrelation [21]. Consequently, even for “typical” OCT systems
(i.e., without the need to ensure a super-broadband spectrum for reduction of
deformation-induced decorrelation), phase measurements related to the
displacements of scatterers can be made much more reliably than the correlational
speckle tracking. This is an important advantage of phase-sensitive approaches to
estimation of strains.

Thus, estimation of the axial gradient of phase variations ®(z) makes it possible
to estimate local strains via Eq. (1). It is important to point out that for pixelated
OCT images, both the displacements and distances are naturally measured in pixels
(the physical values of both quantities being dependent on the refractive index).
Therefore, the gradients of the phase variations, also calculated in pixels, give
correct values of strain without the necessity to know the refractive index, which is
a positive feature of phase-sensitive OCT-based strain measurements.

Another important point is that, for unambiguous relation between the observed
interframe phase variation ®(z) and displacements U(z) of scatterers in the obser-
vation point, the condition U(z) <1/4 should be fulfilled. For larger displacements
the phase wrapping occurs because of periodicity of the dependence of parameters
of a wave on its phase. In view of this, the interframe displacement can be directly
extracted from the interframe phase variation only with an uncertainty to the
unknown integer number of wave periods. To exclude this ambiguity in estimations
of the displacements, the conventional approach to realization of unambiguous
estimation is to ensure sufficiently small interframe displacements that do not
exceed £1/4 [22].

Alternatively, in the cases when the displacement of scatterers is caused by the
material straining, the displacements may gradually increase over the OCT scanin a
wide range from essentially sub-wavelength (without phase wrapping) to super-
wavelength values (with phase wrapping). Although multiple phase wrappings may
occur over the entire imaged depth, in order to reconstruct a continuous function
U(z) even for super-wavelength displacements, the gradual increase in the phase
variation makes it possible to apply conventional phase unwrapping procedures by
adding 27 rad. at every depth where the phase variation exhibits a 27 jump. How-
ever, the unwrapping procedure is error-prone, so that because of measurement
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noises always present in real measurements (especially in areas with weaker scat-
tering and reduced signal-to-noise ratio (SNR)), the unwrapped phase may be
rather noisy. Consequently, numerical differentiation of such a noisy function ®(z)
(or equivalently U(z)) can be made with a reasonable accuracy only with averaging
over large portions of the entire imaged depth.

In what follows we consider an efficient recently developed approach to strain-
reconstruction phase-sensitive OCE based on local estimation of the gradient
dU (z) /dz without preliminary reconstruction of the displacement function in the
depth ranges where the estimates of the total displacement U(z) may be ambiguous
because of phase wrapping. Then some examples of the application of the phase-
sensitive strain visualization for mapping both fairly rapidly varying strains and
very slow varying ones (with special optimizations of the measurement procedures)
will be considered. Finally, we will discuss a realization of quasistatic compressional
OCE with application of reference translucent layers with pre-calibrated stiffness
for obtaining quantitative estimates of the Young modulus.

3. Local estimates of strains in phase-sensitive OCE using
the “vector method”

Significant progress in strain mapping has been achieved in OCE in recent years
due to transition to the use of phase-resolved OCT data. Quite a detailed discussion
of axial strain estimation based on phase-resolved data for compared deformed and
reference OCT scans was presented in [23]. In that paper, the least-square method
(including the improved version with amplitude weighting) was considered to
estimate local gradients of function ®(z) using averaging over a window with a size
significantly smaller than the entire image size. In [24, 25] another procedure for
finding phase gradients was proposed. That approach was called “vector method,”
because it operates with complex-valued OCT signals (i.e., with signals character-
ized by amplitude and phase). Such signals can be considered as vectors in the
complex plane, which explains why the method is called “vector.” The estimated
phase gradient is singled out at the very last stage of the signal processing.

Comparison with the least-square fitting of the ®(z) slope (even with amplitude
weighting to suppress noisy small-amplitude pixels) for the same processing win-
dow size demonstrated superior robustness of the vector method with respect to
strain-induced speckle-decorrelation noise and other measurement noises [24]. One
of the advantages of the vector method is due to the fact that the amplitude
weighting is also intrinsically made in the vector method (since the signal amplitude
determines the absolute value of the corresponding vector) and, furthermore,
especially strong phase errors exceeding z/2 rad. are naturally suppressed in this
method even for strong signals. The increased tolerance of the method to
decorrelation noises makes this method operable under elevated interframe strains
(up to ~1072). Consequently, for comparing other noises, the possibility to operate
with elevated strains with larger phase gradients corresponds to effectively higher
signal-to-noise ratio (SNR). This makes the vector method especially suitable for
visualization of aperiodic strains (with magnitudes in the range 10> — 102), for
which enhancement of SNR via conventional periodic averaging is not possible.

Consider the main steps of signal processing in the vector method. Let the
complex-valued signal in each pixel (,j) in the reference scan be written as
“1(m7j) = A1<m’j) exp [i ) ¢1(m7]>] and 012<1’}’l,j) = A2(m7j) exp [i ) ¢2(m7]>] corre-
spond to the deformed scan. In each scan the signal amplitudes A; ; and phases ¢,
are random because of random positions and scattering strength of scatterers.
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However, the strain-induced variations in the phase are caused by fairly regular
displacements of scatterers and can be found by singling out the phase in the
product:

aZ(m7j>a1* (Wl,]) = b(mvj) = B(Wl,j) exp [i ) CD("”J)] (3)

Here, the asterisk denotes complex conjugation, B(m,j) = A;(m,j)A1(m,j) and
D(m,j) = py(m,j) — ¢1(m,j). Phase variation ®(m,j) for pixel (m,j) is related to the
axial displacements U(m,j) of the scatterers with coordinates close to pixel ( j,m)
via Eq. (2).

Usually the axial strain 0U/0g is evaluated by finding axial gradient of the
discreet phase variation ®(m,j) with averaging within a processing window
N, x N, pixels in size (e.g., using the least-square method [23]). Alternatively, the
averaging procedures can be performed with complex-valued quantities (3) con-
sidered as vectors in the complex plane. Then the phase gradients can be singled out
only at the very final stage.

In [24] the vector approach was considered for laterally weakly inhomogeneous
phase variations (i.e., for nearly uniaxial straining of the material along z axis). In
such a case, the complex-valued quantities b(m,j) (which may exhibit phase fluc-
tuations due to various measurement noises and strain-induced decorrelation) can
be laterally averaged within a chosen processing window to obtain an array

b(j) = B(j)exp [i - ®(j)] with more regular phase ®( j):

b(j) = Xoib(m,j) = Yo 1 As(m,j)Ar(m.j) exp {i - [p,(m.f) — py(m.j)]}  (4)

Here m = 1..N, is the horizontal index of the vertical columns in the processing
window, and j = 1..N, is the index of the horizontal rows (see schematic Figure 1).

For the averaged vector b(j), contributions of noisy small-amplitude pixels become
significantly suppressed, such that they do not strongly distort the phases ®( j) of

the resultant vectors b(j). Furthermore, Figure 1, where Eq. (4) is represented as
the summation of vectors, illustrates that the strongest phase errors give minimal
distortions of the averaged phase ®( j). (See the second panel in Figure 1, where it is
shown that the individual noisy vectors b(m,j) with almost opposite directions with

respect to the direction of the averaged vector b( j) weakly affect the orientation of

b(j).) For nonzero strain, the so-constructed phase variation ®( j) depends on the
discrete (pixelated) vertical coordinate j. In principle, similarly to [23], the vertical
phase gradient then can be found by conventional least-square fitting of @ ;)
within the vertical size N, of the processing window as was used in [26].

Multiply initial & complex- |} Vector averaging over lateral Creating vectors with || Vector averaging over
conjugated deformed m-index vertical phase-variation vertical j-index
B-scans \Z increments V-1
Fb(j)=) bim,)) i o
1M - (A : ic= ) o))
m b(fnz]) b(l?Lj) /‘: m=1 —_— =7 2 /: Z] I
» L W W or=c) | : P
D) J AD | 1
r : P | Zoo NN A e | (R | ¥ . S s B
b(m j)=a,(mj)a,*(m,;) b(j)= B(j)exp[i®( /)] () =C(j)expl[iAdXj)] Z=C -exp(iAd)
Figure 1.

Schematic of evaluation of the axial phase gradient in the vector approach for laterally nearly homogeneous
strains. In the vector diagrams, the complex-valued summands b(m,j) and c(j) ave shown as vectors in the
complex plane. All intermediate transformations are performed with complex-valued signals, and the sought
phase gradient is singled out at the last stage.
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However, by analogy with the initial vector averaging, the next step of finding
the vertical gradient of function ®( j) can also be done without explicit extraction of
the phases @( j). Namely, one can define complex-valued quantities ¢( j) that con-
tain vertical increments A®( j) = ®(j + 1) — ®( j) of the horizontally averaged
interframe phase variations @( j) (see the third panel in Figure 1):

c(j) =b(j+1)b(j)" =B(j+1)B(j)exp{i-[®(j+1) - (j)]} ©)

The quantity ¢( ) can also be used in the normalized form ¢ ( j) = ¢(7)/]c(j)]".
It was verified that good results can be obtained using normalization with a =1

Cnorm (7) = exp [i - AP()], (6)

which corresponds to retaining information about the phase increment only.

The complex-valued quantities ¢( j) (or cuom( j)) can also be considered as vec-
tors and vertically averaged in the vector sense. If the vertical size of the processing
window is smaller than the characteristic vertical scale of the strain inhomogeneity,
the phase-variation increments A®( j) are nearly identical (but in reality may be
distorted by decorrelation and other noises). Vector averaging over the vertical size
of the processing window then gives a complex quantity with a much more stable
phase A®:

c=Cexp[i-A®] = 3% "e(j)/le(j)I" (7)

Summations in Egs. (4) and (7) actually correspond to obtaining of averaged
real and imaginary parts of the complex-valued signals b(j,7) and ¢( j), with sub-
sequent singling out the resultant phase instead of direct averaging of individual
phases for b(j,m) and ¢( j). As is clear from Figure 1, the vector summation makes
the phases of the averaged vectors especially tolerant to small-amplitude erroneous
vectors and signals with especially strong phase errors ~ z rad which may occur for
individual summands b(j,m) or c(j).

For the vertical inter-pixel distance d,, in the imaged tissue, the so-found

vertical phase increment A® is proportional to the sought strain
oU/og = yAD/d, = ﬁ(io / 47zd}9 ) and does not depend on the refractive index.

Indeed, according to Eq. (2), the coefficient y = 1¢/4zn, and the inter-pixel dis-
tance in the material is d, = d;) /n (since for a material with refractive index 7, the

same phase of the probing optical wave is accumulated along # times smaller
distance than in vacuum).

The above-considered averaging procedures are well applicable for fairly hori-
zontal plane-parallel phase-variation isolines. However, in many case of practical
interest, noticeable lateral inhomogeneities of the strain distribution may occur, so
that the interframe isophase lines may be noticeably inclined within the processing
window. Consequently, the directions of vectors b(j,m) in Eq. (4) may strongly
differ as a function of horizontal index. Thus, the straightforward lateral averaging
like in Eq. (4) instead of improvement may significantly distort the visualized strain
distribution.

To suppress this negative effect of averaging and retain advantages of the vector
method, the following improvements can be proposed [25]. At the first stage, the
complex-valued interframe signal b(m,j) is averaged over small regions (having
lateral and horizontal sizes Ny, ,; ~ 2 — 3 pixels only (see Figure 2)). This initial



Optical Coherence Tomography and Its Non-medical Applications

Create the vector
containing vertical
increments of
interframe phase

variations

b(m, j+1)-b(m, j*=
=d(m, j)=

Preliminary averaging over a
small window

Vector averaging over
the entire processing
window

/";Jz \)_wd(m. i)
)

AD | 3

—————— —— =,
d = D-exp(iAD)

Multiply initial & complex-
conjugated deformed
B-scans

b(mj)=a,(mj)a,*(m,j)

ci(n?.j)

= D(m, j)exp[iAD (m, j)]

b(m, j)= B('m._f'lcxp[ilI)(m.j)]

Figure 2.

Schematic of evaluation of the axial phase gradient in the vector approach adapted for laterally inhomogeneous
strains with non-hovigontal phase-variation isolines. All intermediate transformations are performed with
complex-valued signals, and the sought phase gradient is singled out at the last stage.

averaging does not yet noticeably affect the resolution but yields less noisy

interframe matrix b(m,j) — b(m,j) by suppressing distorting contributions of
weakest amplitude and most noisy pixels. At the next step, one creates a matrix
containing vertical increments of interframe phase variations (similarly to Eq. (5)
but without horizontal averaging over the processing window):

d(m.j) =b(m.j+1)b* (m.j) (8)

To avoid confusion in the notations instead of array ¢( j), here we introduced the
matrix of complex-value quantities d(m,j). The so-constructed matrix
d(m,j) = D(m,j) exp [i®(m, )] contains the sought vertical inter-pixel increments
®(m,j) of the interframe phase variations. The vertical increments ®(m,j) of the
interframe phase variations should already be nearly identical even if the isolines of
the interframe phase variations are inclined within the processing window. There-
fore, the quantities d(m,j) can be efficiently averaged in the horizontal direction
even for noticeably inclined interframe phase-variation isolines. Thus, the next
steps are performing the vector averaging of d(m,j) over the processing window
with the size N, x N, pixels. For this procedure, the order of averaging over indices
m and j is not essential, so that we first average over index 7 and then over ;.

Note that, by analogy with the previously considered normalization of vectors
cnorm ( j) containing vertical phase-variation increments, the utilization of normal-
ized quantity d(m,j) can be useful, so that with normalization the averaging over
index m takes the form

d(j) = X% 'd(m.j)/d(m.j)|" 9)

Here, notation d( j) is introduced to denote averaging over the horizontal
dimension of the processing window. By analogy with Eq. (7), it was verified that
the simplest choice a = 1 yields quite good results.

Similarly, averaging over the vertical index j = 1..(IN, — 1) yields better results
with additional normalization:

d=yNd0) /aG) . (10)

Here, normalization exponent f = 1 can also be recommended. Equation (10)

represents a complex-valued quantity d = D exp [{A®] (averaged over the
processing window), in which A® is the sought vertical inter-pixel phase variation
for the current position of the processing window. Phase increment A® is directly
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analogous to the angle estimated in Eq. (7) and is also similarly linked to the sought
axial strain. Geometric interpretation of Egs. (8)—(10) is illustrated in Figure 2.

To illustrate the applicability of the vector approach in the most clear form, we
first consider a numerically simulated example in which the reference and
deformed OCT scans are simulated using model [27]. The simulation parameters for
Figure 3 correspond to a typical OCT system, for which the central wavelength is
1300 nm, spectral width 90 nm, and A-scan of 256 pixels corresponds to the
imaging depth 2 mm in air. The inhomogeneity of scattering amplitudes in the
simulated structural image (Figure 3a) are chosen similar to typical experimental
scans (compared with Figure 6). In the simulations initially 1024 scatterers were
randomly distributed over each A-scan, and then the initial positions of the scat-
terers were displaced according to the assumed strain distribution shown in
Figure 3b. Figure 3c shows the color map for interframe phase variations
corresponding to the strain distribution in Figure 3b showing pronounced lateral
inhomogeneity and tilting of isophase lines.

The reconstructed strain obtained using the above-described vector approach is
shown in Figure 3c and d. The processing window size is 16 x 16 pixels. The noisy
areas in Figure 3d correspond to the regions of strongly inclined isophase lines, for
which the straightforward lateral averaging Eq. (4) worsens the quality of
elastographic mapping. Figure 3e shows much better strain-reconstruction quality
for the modified vector method corresponding to Egs. (8)-(10). We note that for
Figure 3, only strain-induced decorrelation noise is taken into account. Figure 4
illustrates the vector method tolerance to other measurement noises. The latter
were simulated by adding to each pixel of the image random complex-valued
numbers with Gaussian distribution in order to obtain a preselected ratio between
the average intensity of the OCT image and the added noise. Figure 4 demonstrates

| 3 T e A W SO Y T SN

Figure 3.

Simulation of OCT-based mapping of laterally inhomogeneous strain field based on model [27]. (a) Is the
simulated structural image; (b) shows the strain distribution adopted in the model; (c) color map corresponding
to the interframe phase variations shown in (b); (d) is the veconstructed strain map using the vector method
with straightforward horizontal averaging showing good results in laterally fairly homogeneous areas but prone
to ervors in the regions of inclined isophase lines; (e) is the reconstructed strain map based on the modified vector
method adapted to averaging in regions of inclined isophase lines. The processing window is 16 X 16 pixels in
size and the preliminary averaging avea for panel (e) 2 x 2 pixels. In this example only strain-induced
decorrelation noise is present.
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SNR'=0 dB

Figure 4.
Hlustration of the vector method tolerance to measurement noises (other than strain-induced decorrelation

noises) for the same simulated data as in Figure 3 but with additional noise (in the form of Gaussian random
complex values added to each pixel). Panels (a) and (c) show the interframe phase-variation maps in the
presence of noises for SNR = 6 dB and SNR = o dB, respectively. Panels (b) and (d) show the corresponding
strain maps reconstructed using the vector method adapted for inclined phase-variation isolines.

1 OCT probe

Figure 5.

Schematic of OCT imaging setup: 1 is the OCT scanner (A = 1.3 pm); 2 is the soft silicone layer; 3 is the studied
biopolymer sample (e.g., samples of cartilaginous or corneal tissues); 4 is the source of the heating infrared
irradiation (erbium fiber laser operating at A = 1.56 um).
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that the vector approach ensures fairly satisfactory reconstructions of strain maps
down to average SNR~1 (i.e., 0 dB) over the image area.

4. Examples of the vector method application for strain mapping
by elastographic processing real OCT scans

To illustrate operability of the vector method for elastographic processing of real
phase-sensitive OCT scans, we demonstrate some examples of mapping thermally
induced interframe strains which were produced in samples of biopolymers (col-
lagenous samples of cartilage and eye cornea) by pulse-periodic irradiation of the
sample by an infrared laser operating at a wavelength of 1.56 pm that is efficiently
absorbed in the water that is present in the tissue. The heating pulses had duration
~ a few seconds and the temperature reached ~50-60°C in the corneal tissue and
~60-80°C in cartilaginous samples. In more detail the experimental conditions are
described in papers [28-30]. The used custom-made OCT device had parameters
close to those assumed for the simulated examples in Figures 3 and 4. A typical
experimental configuration is shown in Figure 5. The measurements were made in
contact mode such that the OCT-probe surface contacted the studied sample though
an intermediate layer of translucent silicone with pre-calibrated Young modulus.
Certainly, measurements in the noncontact mode when the studied samples had
free boundaries were also possible. However, during the irradiation of the water-
saturated biopolymers, the silicone layer played a useful auxiliary role to protect the
sample from drying during the heating. Furthermore, the main destination of such a
layer was to play the role of compliant sensor to estimate the pressure exerted by
the deformed silicone onto the studied sample (similarly to the discussion in [31]).
OCT-based monitoring of strains in the pre-calibrated reference silicone and stud-
ied sample during mechanical compression of the silicone-sample sandwich was
used to obtain stress-strain curves for the studied samples and estimate their Young
modulus.
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Figure 6.

Experimental demonstrations of OCT-based mapping of interframe strains. (a) is a structural OCT image of a
biopolymer layer I (vabbit cornea sample) placed between translucent silicone layers (11); (b) is a typical color
map of interframe phase difference, where the heated vegion is characteriged by pronounced lateral
inhomogeneity; (c) and (d) are the strain maps obtained with straightforward horizontal averaging over the
processing window and using the vector method adapted for processing tilted isophase lines, respectively; (e) is a
waterfall image showing the time evolution of the interframe-strain profile at the depth labeled by the dashed
line in panel (d).

11



Optical Coherence Tomography and Its Non-medical Applications

Figure 6 gives an example of experimentally reconstructed maps of interframe
(“instantaneous”) strain obtained using the experimental configuration shown in
Figure 5 for a rabbit cornea layer during one of the heating pulses. Structural image
in Figure 6a demonstrates that the irradiated region exhibits visually appreciable
local expansion after a series of heating pulses, and Figure 6b shows the interframe
phase-variation map with pronounced inhomogeneity in the lateral direction with
regions of very steep isophase lines. Similarly to simulated Figure 3, the strain map
Figure 6¢c demonstrates the interframe-strain map found using straightforward
horizontal averaging within the processing window (with sizes ~1/20 of the entire
image sizes), and Figure 6d is obtained using the method variant adapted for
processing regions of steep isophase lines. Figure 6¢ and d clearly demonstrates that
the irradiation-induced expansion of the heated water-saturated sample causes
straining with the opposite sign (contraction) of the surrounding silicone layers.
Figure 6e for one of the heating pulses demonstrates a pseudo-3D waterfall image
showing the complex spatiotemporal evolution of the interframe-strain profile
corresponding to the depth marked by the dashed line in the B scans in Figure 6d.
We emphasize that the robustness of the vector method to measurement noises
makes it possible to obtain rather clear quantitative strain maps for aperiodic strain
evolution when periodic averaging for enhancement of SNR is impossible.

It can be said that in the above examples, strains were “instantaneous,”
corresponding to the time interval between the neighboring scans (for the examples
in Figure 6, this interval was 50 ms). However, in other biomedical and technical
applications, it may be interesting to monitor cumulative strains over larger time
intervals, during which the studied sample may be subjected to an external action
(like laser irradiation in the above examples) or may exhibit other structural varia-
tions, e.g., chemical curing of polymers, influence of drying or impregnation by a
liquid, etc.

The developed technique readily makes it possible to perform the summation of
interframe strains in order to find the resultant cumulative strain. The issue of
finding cumulative strains is discussed in more detail in [1] since this can be done in
somewhat different ways, the result of which do not strongly differ for fairly small
strains, but this difference may become appreciable for larger strains (~10%). It
can be said that the choice of the method of strain cumulation depends on the
particular problem. For example, straightforward summation of interframe strains
on larger interval may give a biased estimate of the total change in the sample
thickness but may be preferable if the difference in strain over the imaged area
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Figure 7.

Experimental demonstrations of OCT-based mapping of cumulative strains in the same experimental
configuration as for Figure 6. (a) is a waterfall image showing the time evolution of the cumulative-strain
profile at the depth labeled by the dashed line in Figure 6d; (b) is a representative graph showing the
cumulative strain as a function of time for a particular lateral coordinate and depth.
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should be used for estimating the differences in the elastic modulus in different
image regions. Referring to [32] for details, for illustration purposes we will use
simple straightforward summation of interframe strain. Figure 7a shows an exam-
ple of the so-found evolution of lateral profile of cumulative strain (in the same
experimental configuration as for evolution of interframe strains along a particular
depth shown in Figure 6e). Figure 7b shows a representative graph for the time
dependence of cumulative strain for a given lateral position. The profile demon-
strates that during the heating, the tissue experiences internal structural changes
with changes in the functional behavior upon reaching certain threshold tempera-
tures (see peculiar inflection points in the dependence in panel Figure 7b). These
changes are related to heating-induced active generation of pores as discussed in
more detail in [30].

In examples shown in Figures 6 and 7, we showed the results for only 2D
mapping of evolving strain that evolved fairly rapidly, so that their 3D mapping via
comparison between entire 3D sets of OCT data was impossible for a conventional
scanning OCT system with a moderate rate of obtaining A-scans of ~20-80 kHz.
Utilization of a much faster scanning system may be also problematic for suffi-
ciently long-time monitoring because of huge data flows and total amounts of OCT
data that would require special means for signal acquisition and storage, as well as
supercomputing performance for real-time processing. However, there are many
processes of high interest, for which strains evolve much slower (e.g., drying of a
sample, gradual curing of a polymer, various osmotic phenomena [33], etc.) To
monitor such slow processes with acceptable time resolution, much larger time
steps ~1 sec and even greater may be sufficient. Furthermore, it can be shown that
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Figure 8.

Monitoring of slow-rate strains arising in the near-surface layer of porcine eye cornea due to its drying in open
air. Panel (a) is a typical structural OCT scan of the near-surface cornea vegion; (b) is the time dependence of
interframe strains found with averaging over the rectangle avea shown in panel (a); (c) is an example of the
spatially vesolved map of cumulative strain after 20 min of drying; (d) is the time dependence of cumulative
strain corresponding to interframe strain shown in (a).
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Figure 9.

3D visualization of cumulative strains for a cartilaginous sample (porcine vib cartilage). Drying of the near-
surface layer causes its gradual shrinking (negative sign of strain). The presented snapshots correspond a
monitoring interval of 145 s. Panel (a) is the hovizontal CT scan of cumulative-strain distribution
corresponding to the plane marked by dashed lines in an isometric 3D view in panel (b). The localized area
with positive strain sign is velated to dilatation of the tissue arvea preliminary subjected to compression by
inserting a needle.

from the viewpoint of enhancing SNR in problems of monitoring of slow processes,
temporal rarefaction of OCT data may be even more advantageous than acquisition
with the maximal rate (see details of the corresponding discussion in [34]).

In such situations, even systems with moderate acquisition rate can be quite
sufficient for realization of efficient monitoring of slow deformations. Figure 8
gives an example monitoring of fairly slow strains for drying cornea of a porcine eye
(total duration of the record in 20 min with 1 s time step). The development of
pronounced shrinking of the drying near-surface layer is clearly seen.

Figure 9 shows a 3D example of monitoring of slow strain caused by mechanical
relaxation of a cartilaginous sample, in which initially a local compression was
produced by an inserted needle. In this example the strain was reconstructed via
comparison of entire 3D sets of complex-valued OCT data (acquisition of one 3D
data set required 1.6 s). The signal processing, as in the other previous examples,
was made using the above-described vector method for estimating gradients of
interframe phase variations. More detailed discussion of optimizations for the
monitoring of slow strains can be found in [34].

5. Obtaining of quantitative stress-strain curves and estimation
of Young modulus in phase-sensitive compressional OCE

Consider now possibilities of the developed approach to mapping strains for
quantitative mapping of the Young modulus in the studied samples. As was
discussed in paper [7] related to ultrasound-based elastography and pointed out in
the Introduction to this chapter, if a rigid piston compresses a material that can
fairly freely expand in the lateral directions, the stress distribution near the piston
can be close to uniaxial. Consequently, the reaction to such compression is deter-
mined by the Young modulus of the material. This statement is the basic principle
of compression (or compressional) quasistatic elastography [8]. Thus, the Young
modulus can be estimated by measuring strain produced by a known stress applied
to the sample by a compressing piston. It was also mentioned in paper [7] that a
reference pre-calibrated layer overlaying the studied material can be used as a kind
of compliant sensor to control the stress by measuring the strain within the refer-
ence layer. This idea has not found application in the ultrasound-based
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compressional elastography (where the compression approach is mostly used for
visualization of relative distribution of stiffness); however, the application of a
reference layer has proven to be useful in OCT-based quantitative elastography
[31, 35]. In [35] special attention was paid to the effects of stiction between the
compressing rigid piston (usually, the output window if the OCT probe) and the
reference silicone layer. The stiction impedes free lateral expansion of the com-
pressed layer. Consequently, its compressibility becomes lower (in other words, the
distorted apparent Young modulus seems to be greater), because under constrained
lateral expansion, the layer reaction to loading is determined by some mixture of the
Young modulus and much greater bulk modulus (the proportion of their contribu-
tions being determined by the strength of stiction). If the possibility to observe
inhomogeneity of the local strain inside the translucent reference layer is ensured,
this makes it possible to detect the presence of stiction and take the necessary
measures to reduce its distorting effect (e.g., to add a lubricant liquid between the
compressing solid surface and the silicone layer). For a non-scattering, very trans-
parent reference layer, its strain can be estimated only by observing its total thick-
ness, so that the strain distribution inside the layer is impossible to detect optically.
Besides, the accuracy of strain estimation via changes in the total thickness usually
is lower, so that the usage of translucent layers is preferable in practice. Panels (a)
and (b) in Figure 10 illustrate the application of a reference layer as a compliant
sensor. The interframe phase-variation distribution in Figure 10b demonstrates
evident inhomogeneity of the vertical phase-variation gradient, although the mate-
rial of the layer is mechanically homogeneous. The layer region contacting with the
stiff surface of the OCT probe looks more stiff because of the silicone-glass stiction.
Figure 10c and d demonstrates the interframe-strain profiles within the mechani-
cally compressed reference silicone layer and the underlying tissue in the experi-
mental configuration shown in Figure 5 for two different degrees of silicone-glass
stiction. In Figure 10c pronounced inhomogeneity of strain is visible, which looks
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Figure 10.

Elucidation of principle of OCE-based quantitative compressional elastography and potential stiction-related
distortions. Panel (a) schematically shows the reference silicone layer over the studied tissue; (b) is a real
example of interframe phase variation with inhomogeneous phase-variation gradient within the homogeneous
silicone layer; (c) is an example of pronouncedly inhomogeneous phase variation as a function of depth because
of noticeable stiction at the silicone-glass interface; (d) is a similar graph obtained in the same configuration
after adding a drop of lubricating liquid at the silicone-glass interface for reduction of stiction.
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as if the Young modulus of silicone varied ~4 times over the layer thickness. In
Figure 10d obtained in the same configuration by adding a lubricating liquid
between the glass and silicone, the stiction is strongly reduced, so that the distribu-
tion of strain within the layer becomes rather homogeneous (as should be expected
for the homogeneous silicone). Thus, one should pay due attention to controlling
the stiction in order to avoid possible strong distortions in the apparent Young
modulus of the reference layer.

If sufficiently low stiction at the interface with the glass is ensured, by measuring
strain within pre-calibrated silicone layers, one can estimate stress applied to the
studied underlying material. In this context another essential point is whether it is
possible to neglect the dependence of the Young modulus of the silicone on the
degree of silicone straining. In other words, what is the strain range within which
silicone behaves as fairly linear material with stiffness independent of the applied
stress? This is an important point, because unlike acoustics with typical strains
below 10~* — 103, in mechanical tests of polymers and biological samples, their
strains may reach several percent and even 10%. In this context, Figure 11a demo-
nstrates the results of a kind of “self-calibrating” tests allowing to verify linearity of
mechanical behavior of silicones. In this test, sandwich structures composed of
silicone layers with different Young moduli were used. The stiffer layer experienced
smaller strain for the same stress remaining within an expectedly more linear region.
If both compressed materials are linear, then for one strain plotted against another,
one should expect a linear function. The curves shown in Figure 11a obtained for
various combinations of softer/stiffer silicones are fairly linear with a rather broad
strain ranging up to several tens of percent. This confirms that silicone is a good
candidate for linear reference material in which strain is proportional to stress.

Consequently, if the dependence of strain in a studied tissue plotted against
strain in the reference silicone layer looks nonlinear, the reason for this is that the
stress-strain dependence for this tissue is nonlinear. For pre-calibrated reference
layers, this opens the possibility to obtain quantified stress-strain dependences as
illustrated in Figure 11b. The example in Figure 11b demonstrates the importance
of the tissue pre-straining: even for apparently insignificant pre-straining within
2.5%, the apparent Young modulus may vary several times because of possible
nonlinearity of the studied sample.

Further, we demonstrate that the described OCT-based technique opens the
possibility to observe spatially localized inhomogeneities of the material stiffness.
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Figure 11.

Panel (a) shows cumulative strain in one silicone layer plotted against strain in another layer. The numbers
near the curves indicate the corresponding ratios of the Young moduli for the compaved silicone types. The
dependences in panel (a) remain fairly linear up to strains of ~10%. Panel (b) shows another example of a
pronounced nonlinear stvess-strain curve, for which the strain in pre-calibrated silicone is vecalculated in stvess
and the horigontal axis shows the strain in an excised sample of breast cancer. Note that the slope of this curve
(corresponding to the Young modulus of the tissue) strongly varies from 400 kPa to 1400 kPa for the strain
range in the tissue <2.5%.
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Demonstration of complementary irradiation-induced vesidual strain and reduction in the Young modulus in
the irradiated vegion of corneal sample. Panel (a) is a structural OCT image before ivradiation, and (b) is a
similar postivradiation structural image, in which slight expansion of the corneal tissue is distinguishable in the
encircled zone. Panel (c) is an elastographic map of the postirradiation cumulative strain, where expansion of
the heated region is clearly visible. Panel (d) is the elastographic mayp of spatially fairly uniform distribution of
the inverse Young modulus (compressibility) before irradiation. Similar map (e) obtained after ivradiation
clearly demonstrates appearance of local increase in compressibility (veduction in the Young modulus) in the
center of irradiation region.

The examples presented in Figure 12 are also obtained in the experimental config-
uration shown in Figure 5. Figure 12a and b shows structural images of the silicone-
cornea-silicone sandwich before and after pulse-periodic infrared irradiation. The
latter causes deformation (expansion) of the irradiated region such that after
postirradiation cooling the residual expansion persists. It is slightly visible in the
structural image Figure 12b and can be quantitatively estimated and clearly visual-
ized as shown in Figure 12c. For the pre-compression used in the discussed exper-
iment, the Young modulus of the corneal tissue is close to the Young modulus of the
silicone (~200 kPa). Consequently, before the irradiation the reconstructed distri-
bution of the compressibility (inverse Young modulus) over the image found via
comparison of spatial distribution of mechanically produced small straining ~0.5%
is fairly uniform and does not vary laterally in the cornea (see Figure 12d). In
contrast, after laser heating, the compressibility of cornea demonstrates strong
increase in the center of the heated region (see Figure 12e). This local increase in
the compressibility of the heated region is attributed to the laser-induced appear-
ance of crack-like microscopic pores that are not directly resolved in the OCT
images, but due to enhanced deformability, they manifest themselves via reduction
of the tissue Young modulus. Analysis of the post-heating local dilatation of the
tissue and the complementary reduction in the Young modulus makes it possible to
make quantitative conclusions about the volume content and averaged geometrical
parameters of the pores. These results well agree with independent data of micro-
scopic examination of the tissue (see details in [30]).

6. Conclusions

The described elastographic OCT-based approach can be viewed as an optical
counterpart of the elastographic approach [7] proposed in medical ultrasound.
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However, an important distinction is that in contrast to the initially proposed
correlational tracking in ultrasound, in OCT the speckle tracking based on analysis
of the scattered signal phase appeared to be more advantageous. The difficulties in
realization of correlational speckle tracking in OCT arise because of strain-induced
decorrelation of speckle patterns in OCT scans, so that super-broadband sources are
required to reduce the strain-induced speckle blinking/boiling as discussed in detail
in [19].

It can be shown that the phase-sensitive OCT-based speckle tracking is more
tolerant to strains [21], so that phase-resolved tracking of axial displacements can be
efficiently realized even using OCT systems with “typical” parameters. In problems
of mapping strains, the difficulties in phase unwrapping for super-wavelength
displacements of scatterers can be efficiently obviated by direct estimation of
interframe phase-variation gradients within a chosen processing window. This can
be done using the proposed robust “vector” method [24, 25]. The resolution of the
resultant strain maps is mostly determined by the dimensions of the used processing
window, the size of which should usually be at least 5-10 times greater (depending
on the noise level) than the resolution scale in the initial structural OCT images to
ensure sufficient SNR.

Additional ways of SNR enhancement can be based on application of stable
periodic actuators producing strain and periodic averaging (e.g., see [11]; however,
this solution cannot be used to determine the quasistatic Young modulus). Alterna-
tively in the case of aperiodic strains, efficient averaging can be obtained by finding
cumulative strains as discussed in [32], which is also a key point allowing for
obtaining nonlinear stress-strain curves as demonstrated above. Additional
improvements in terms of optimization of interframe intervals may be required in
the case of long-term monitoring of slowly varying small strains [34]. In the context
of biomedical applications, some examples related to biomechanics of such bio-
polymers such as cartilaginous and corneal tissues were given above (a more
detailed discussion can be found in [28-30]). Other examples related to oncological
applications can be found in [11, 12]. It is likely that monitoring of slow strains
(as discussed in [34]) may be of special interest for technical applications related
to studies of curing of polymers, etc.
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