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Abstract

Ferrite-based nanoparticles, namely, bismuth ferrite (BiFeO3) and calcium fer-
rite (CaFe4O7), have been synthesized via sol-gel and chemically dissolved method, 
respectively, employing hematite (α-Fe2O3) as the Fe3+ ion source. Firstly, α-Fe2O3 
nanoparticles were prepared from natural iron sand containing mostly magnetite 
(Fe3O4) phase through coprecipitation technique continued by sintering process 
at 800°C for 2 h. Higher BiFeO3 phase content was achieved after Bi-Fe gel being 
annealed at 650°C for 1 h in air atmosphere. Furthermore, major phase of CaFe4O7 
was formed with molar ratio of Fe3+/Ca2+ = 6 and sintering temperature of 800°C 
for 3 h. Interestingly, the powders with dominant CaFe4O7 phase, known as cal-
cium biferrite, exhibit higher ferromagnetism at room temperature. The magnetic 
properties of the calcium biferrite are comparable to those of barium hexaferrite 
which can be applied for radar-absorbing material. Meanwhile, BiFeO3 powders 
also show weak room temperature ferromagnetism. It has also demonstrated that 
Ni doping in the bismuth ferrite (BiFe1−xNixO3 with x = 0.1) nanoparticles results in 
enhancement of the magnetic properties. Moreover, a ferroelectric hysteresis loop 
and a trend of frequency dependence of the dielectric constant have been observed, 
which were enhanced by Pb doping (Bi1−yPbyFeO3 with y = 0.1). These results sug-
gest a multiferroic behavior in the BiFeO3 nanoparticles.

Keywords: bismuth ferrite, calcium ferrite, iron sand, multiferroic, nanoparticles, 
precipitation, sol-gel

1. Introduction

Development of functional nanomaterials for scientific and industrial applica-
tions is very crucial for advanced technologies. The use of natural resources as the 
starting compounds for producing nanomaterials is currently developing. Many 
researchers are exploring natural materials and even waste biomass applied as a 
functional material that has a high selling value for various specific applications. 
For example, the use of silica sand from Tanah Laut, Kalimantan, Indonesia, as a 
raw material for manufacturing pure SiO2, zircon, and zirconia with high phase 
purity and crystallite size in nanometer range was reported [1]. Moreover, natural 



Nanocrystalline Materials

2

iron sand exploration as a starting material has been shown to produce magnetite 
(Fe3O4) nanoparticles as magnetic coating, magnetic fluid (ferrofluid), and mag-
netic gel (ferrogel) for radar-absorbing materials, biomedical applications, and 
tissue engineering, respectively [2–5].

Fe3O4 is one of the magnetic particles that can be obtained from natural iron 
sand after conducting the separation technique from its impurities by mechanical 
and chemical processes. In nature, iron sand consists of more than 90 wt% of Fe3O4 
particles. Generally, Fe3O4 has been synthesized using commercial raw materials, 
such as FeCl2.4H2O and FeCl3.6H2O [6]. The commonly used synthesis methods 
are sol-gel, hydrothermal, and coprecipitation techniques [7–9]. Because Fe3O4 
nanoparticles tend to agglomerate among particles, the addition of surfactants or 
templates has been widely applied to produce homogeneous nanoparticles with 
certain sizes and morphologies [10–14]. Research on preparing Fe3O4 nanoparticles 
from iron sand has been the main topic for the past few years. The use of doping, for 
example, doping Mn and Zn, on Fe3O4 makes it superparamagnetic so that it can be 
applied in biomedicine applications [15–18].

Hematite (α-Fe2O3) is the most stable iron oxides at high temperatures. α-Fe2O3 is 
commonly obtained from iron rust which is one of the dominant corrosion products 
of iron metal or iron alloys. In general, α-Fe2O3 nanoparticles have been success-
fully prepared by several methods, namely, hydrothermal [19] and coprecipitation 
technique [20], using commercial raw materials, such as Fe(NO3)3·9H2O and 
FeCl3.6H2O, respectively. It is found that the concentration of Fe3+ ions used in the 
preparation of α-Fe2O3 nanoparticles may influence the particle size and morphol-
ogy, as well as the optical bandgap [20]. α-Fe2O3 nanoparticles with particle size of 
8 nm possess superparamagnetic properties with relatively high magnetization at 
room temperature [21]. Therefore, it is possible to be applied for biomedical and 
spintronic applications. Moreover, Liu et al. have successfully prepared porous 
Fe2O3 nanorods with particle size of ~10 nm and pore sizes in the range of 5–50 nm. 
These porous Fe2O3 nanorods exhibit excellent photocatalytic properties [22].

In the field of environmental engineering, α-Fe2O3 nanoparticles can be synthe-
sized from hydrated ferric chloride and ferrous sulfate salt solution through chemi-
cal coprecipitation method and calcination process at relatively high temperature 
of 500°C [23]. In addition, a simple chemically coprecipitation method has been 
employed to obtain Fe3O4 nanoparticles using HCl and NH4OH as dissolving and 
precipitating agent, respectively [3]. Some researchers have investigated the trans-
formation from Fe3O4 to α-Fe2O3 phase through oxidation process of Fe2+ to Fe3+ 
ions [24]. It is noted that Fe3O4 nanoparticles could be transformed into maghemite 
(γ-Fe2O3) and hematite (α-Fe2O3) via dry oxidation process at temperature range 
between 350 and 400°C and 600 and 800°C, respectively [25]. Focusing on the use 
of natural resources as raw materials for synthesizing functional materials, in this 
chapter, α-Fe2O3 nanoparticles were synthesized from natural iron sand through 
chemical coprecipitation method followed by sintering process at temperature of 
800°C. Then, the obtained α-Fe2O3 nanoparticles were utilized as one of the raw 
materials for preparing calcium ferrite (Ca-ferrites) and bismuth ferrite (BiFeO3) 
nanoparticles as potential materials for radar-absorbing and data storage materi-
als, respectively. The physical characterizations for all obtained ferrite-based 
nanoparticles include elemental and phase identification, particle morphology, and 
magnetic and electrical properties.

Based on the phase diagram of CaO-Fe2O3 system [26, 27], it is known that there 
are three main phases of calcium ferrite compounds and those are 2CaO.Fe2O3 
(Ca2Fe2O5), CaO.Fe2O3 (CaFe2O4), and CaO.2Fe2O3 (CaFe4O7). It is possible that the 
reaction between CaO and Fe2O3 results in other unstable calcium ferrite phases, 
such as CaFe12O19. In addition, Boyanov [28] has pointed out that the mixture of 
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CaCO3-Fe2O3 after thermal treatment has produced various types of calcium ferrite 
compounds consisting of ~50% CaO.2Fe2O3, ~20% CaO.Fe2O3, ~8% 2CaO.Fe2O3, 
and other ferrite products. The formation of calcium ferrite compounds depends 
on the kinetics of chemical reaction at the boundary between the phases and oxide 
diffusion during the reaction affected by the concentration ratio of the existing Ca2+ 
and Fe3+ ions as the precursors and also the atmospheric condition [29].

Calcium ferrite compounds exhibit soft ferromagnetism, and, therefore, it can 
be used for radar-absorbing materials in the calcium ferrite/graphite nanocompos-
ites [30]. In this case, calcium ferrite nanoparticles have magnetic properties that 
are comparable to barium ferrite (BaO.6Fe2O3) and strontium ferrite (SrO.6Fe2O3) 
known as M-type hexaferrite for microwave-absorbing applications. In order to be 
used for this application and also for biomedical applications as targeted drug deliv-
ery, calcium ferrite should exhibit superparamagnetic behavior [31]. Compared 
with the other ferrites, such as MFe2O4 (M = Zn, Mn, Ni, and Cu), CaFe2O4 is one of 
the biocompatible materials and environmentally friendly due to the use of calcium 
rather than heavy metals. Moreover, Ca2Fe2O5 with the brownmillerite structure 
has a specific application as p-type thermoelectric device [32]. This is due to the fact 
that this compound has interesting electrical properties [33, 34]. Oxygen deficien-
cies in the Ca2Fe2O5 crystals may enhance the electrochemical activity [35]. On the 
other hand, CaFe4O7 has not been explored yet regarding its magnetic properties. 
In contrast to the other calcium ferrites, in this chapter, CaFe4O7 nanoparticles 
were prepared by mixing Fe2O3 from natural iron sand and CaCO3 from natural 
limestone.

Bismuth ferrite (BiFeO3) is one of multiferroic system showing a magnetic-elec-
tric coupling at room temperature. Multiferroic material has perovskite structure 
with chemical formula ABO3. The type of A and B sites, the cation nonstoichiom-
etry, and the presence of oxygen vacancies may have an impact on the structural, 
electronic, and magnetic properties [36]. BiFeO3 crystallizes in a distorted rhom-
bohedral perovskite with space group R3c [37]. It has high Curie temperature and 
Néel temperature of 1100 and 640 K, respectively [38]. It is difficult to obtain a 
pure phase of BiFeO3 because the kinetics of phase formation leads to the formation 
of secondary phases, such as Bi25FeO40 (sillenite) and Bi2Fe4O9 (mullite). Various 
techniques have been reported to prepare single phase of BiFeO3, and those are 
chemical coprecipitation [39], hydrothermal [40], and sol-gel methods [41–43]. 
The ideas of those techniques are to achieve a single phase of BiFeO3 with a simple 
route, low temperature, and cost-effectiveness. Wang et al. have found that the 
formation of BiFeO3 phase starts at 425°C with impurity phases about 30% by the 
low-heating temperature solid-state precursor method [44, 45]. Further calcina-
tion from 450 to 550°C results in a pure BiFeO3 phase without any impurity phases. 
However, impurity phase of Bi2Fe4O9 has been detected in the powder calcined at 
above 650°C. Moreover, BiFeO3 nanoparticles synthesized by microwave-assisted 
sol-gel method at calcination temperature of 450°C exhibit a pure phase of BiFeO3 
structure with particle size of 40 nm and no detected secondary phase [46].

Magnetic and dielectric properties of BiFeO3 nanoparticles are determined by 
the introduction of doping and particle size influenced by the synthesis method, 
temperature, and duration of calcination. It has been found that all magnetic 
parameters, such as saturation magnetization, enhance with decreasing particle size 
[43]. BiFeO3 nanoparticles with the size below 100 nm have weak ferromagnetism 
at room temperature. This ferromagnetic behavior in the nanoparticles is due to the 
presence of oxygen vacancies in BiFeO3 system [41, 47]. Enhancement of magnetic 
as well as dielectric properties in BiFeO3 can be achieved by adding doping of Mn, 
Ni, Pb, Ti, Sr, and Zn [48–56]. Up to the present, there have been various studies 
examining the doping effects of BiFeO3 nanoparticles with numerous advanced 
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techniques to improve their performance. In the case of the enhancing magnetiza-
tion induced by doping, it has been suggested that this is probably due to increasing 
distortion of local structure, increasing the effect of Dzyaloshinskii-Moriya (DM) 
interaction, distortion of Fe and O bonding, destruction of spin cycloid structure, 
and the presence of impurity phase in the BiFeO3 systems [53, 57]. Besides affecting 
the magnetic properties, introduction of doping in BiFeO3 leads to the improvement 
of dielectric and ferroelectric properties [50, 58, 59]. Yuan et al. [54] have found 
that a sufficient amount of Sr/Pb doping can improve the magnetic properties as 
well as high-frequency dielectric properties.

In addition, the dielectric properties of pure BiFeO3 phase strongly depend on 
the atmospheric condition during the powder synthesis. Liu et al. [60] have found a 
higher spontaneous polarization and lower breakdown field based on polarization-
electrical field (P-E) hysteresis loops in the samples annealed in H2 and N2 atmo-
spheres. In this chapter, BiFeO3 nanoparticles were synthesized by sol-gel method 
using natural iron sand as one of the raw materials and calcined in air atmosphere. 
Then, the ferroelectric and the dielectric properties were intensively investigated in 
the Pb- and Ni-doped BiFeO3 nanoparticles.

2. Preparation of hematite (α-Fe2O3) nanoparticles

Prior to the preparation of α-Fe2O3 nanoparticles, at first, Fe3O4 nanoparticles 
were synthesized from natural iron sand as the raw material by coprecipitation 
technique using HCl as dissolving agent and NH4OH as precipitating agent. The 
detail of experimental procedure to synthesize Fe3O4 nanoparticles was also 
described in elsewhere [3]. First of all, the extracted iron sand was collected 
and dissolved in 12 M HCl at ~70°C under continuous and constant stirring of 
600 rpm. The obtained solution from the reaction process was filtered and added 
slowly with 6.49 M NH4OH under the same temperature and stirring speed for 
30 minutes. Then, the black precipitates were formed. The precipitate (Fe3O4 
phase) was initially washed with distilled water until pH 7 and then dried at 70°C 
for 5 h. In order to get α-Fe2O3 phase, the dried nanopowder (Fe3O4 phase) was cal-
cined at 800°C for 2 h, as shown in Figure 1. Finally, the Fe2O3 powders from this 
calcination were continued by performing coprecipitation process again with the 
same experimental procedure as before until the precipitation process. A reddish 

Figure 1. 
Hematite (α-Fe2O3) synthesized from natural iron sand (Fe3O4) by coprecipitation method followed by 
calcination process at 800°C for 2 h.
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precipitate (Fe2O3.H2O) was formed. The resulted precipitate was then washed and 
collected for further synthesis of CaFe4O7 and BiFeO3 (without and with doping of 
Pb and Ni) nanoparticles.

3. Preparation of calcium ferrite nanoparticles

Calcium biferrite (CaFe4O7) nanoparticles were synthesized by the so-called 
chemically dissolved method using precipitated CaCO3 and Fe2O3 as Ca2+ and Fe3+ 
ion sources, respectively. Fe2O3 powders were obtained as described previously from 
natural iron sand, whereas the precipitated CaCO3 particles were synthesized from 
natural limestone through carbonation process. First, the natural limestone was 
extracted from the existing impurities, such as silica, and then it was calcined at 
900°C for 6 h to produce CaO. The CaO powder was dissolved into distilled water 
to produce Ca(OH)2 solution. The carbonation process using CO2 gas flow was 
performed until it formed a precipitation at pH around 7. The precipitated CaCO3 
was filtered and dried for further synthesis. The detail procedure was also explained 
in the former paper by Arifin et al. [61].

In the synthesis of the calcium ferrite nanoparticles using the chemically dis-
solved method, the obtained Fe2O3 and precipitated CaCO3 were dissolved in HNO3 
to get Fe(NO)3 and Ca(NO)2 solutions, respectively, with a molar ratio of 1:6. Both 
solutions were mixed homogeneously and heated at constant temperature (80°C) 
and stirring rate (600 rpm) until it formed slurry precipitates. The precipitates 
were washed using distilled water and dried at 80°C for 10 h. The resulted powders 
were collected and then sintered at 800°C for 3 h.

4.  Preparation of bismuth ferrite (BiFeO3) nanoparticles without and 
with Pb and Ni doping

Nanoparticles of undoped, Pb- and Ni-doped BiFeO3 (BiFeO3, Bi0.9Pb0.1FeO3, 
and BiFe0.9Ni0.1O3, respectively) were prepared by sol-gel method. The starting 
materials were Fe2O3 synthesized previously from iron sand (94%) as the Fe3+ ion 
source and Bi2O3 (Aldrich, 99.9%) as the Bi3+ ion source. Pb(NO3)2 (powder, 99%) 
and Ni(NO3)2.6H2O (powder, 99%) were used as the Pb and Ni doping, respectively. 
Fe2O3, Bi2O3, Pb(NO3)2, and Ni(NO3)2.6H2O powders were dissolved separately 
by HNO3 (Merck, 65%) to form solutions of ferrite nitrate, bismuth nitrate, lead 
nitrate, and nickel nitrate, respectively, with the stoichiometric molar ratio of (Bi, 
Pb):(Fe, Ni) = 1:1. Acetic acid was added into each solution under constant stirring 
and temperature for 30 minutes. Then, it was followed by addition of ethylene 
glycol under the same condition. Next, the obtained solutions were mixed together 
under the same temperature and stirring rate for 1 h. The resulted solution was 
dried at 80°C for 6 days to obtain the undoped and doped BiFeO3 xerogels. The 
dried gels were ground and collected. Finally, the powders were calcined in air at 
650 and 700°C for 1 h to form undoped BiFeO3 and doped BiFeO3 (Bi0.9Pb0.1FeO3 
and BiFe0.9Ni0.1O3), respectively, for further characterizations.

5. Characterizations

A thermogravimetric/differential thermal analysis (TG/DTA) was performed 
to determine the thermal behaviors of the dried gel of bismuth ferrite. The 
phase formation and crystal structure of all samples were characterized by X-ray 
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diffraction (XRD) with Cu-Kα radiation and λ = 1.54056 Å for scanning 2θ range 
of 20–70°. The lattice parameters and average crystallite sizes were determined by 
XRD patterns which were analyzed by the Rietveld method using the Rietica and 
MAUD programs [62, 63]. Transmission electron microscopy (TEM) with selected 
area electron diffraction (SAED) pattern was conducted to investigate the particles’ 
morphology and crystal structure confirmation of all ferrite-based samples. The 
magnetic properties of the nanoparticles were measured using vibrating sample 
magnetometry (VSM, Oxford VSM1.2H) and superconducting quantum interfer-
ence device (SQUID) magnetometer in external magnetic field range of ±1 T at 
room temperature. The ferroelectric properties of the bismuth ferrites were studied 
from the polarization-electric field (P-E) hysteresis loops using a polarization meter 
(Radiant Technologies 66A). Frequency dependence of the dielectric constant of all 
bismuth ferrites was estimated by two-probe electrical resistance using Automatic 
RCL Meter (type PM6303A).

6.  Structural and magnetic properties of calcium ferrites from natural 
iron sand and limestone

Figure 2 shows the XRD pattern of calcium ferrite compound synthesized 
by the chemically dissolved method from natural iron sand and limestone as the 
raw materials and then sintered at 800°C for 3 h. Based on the analysis of phase 
identification, it can be seen that the resulted powder contains several phases of 
calcium ferrites, CaFe4O7, Ca4Fe14O25, and Ca2Fe9O13, with weight percentages of 
28.8, 46.6, and 24.6 wt%, respectively. The formation of those phases is possible to 
occur due to the atmospheric condition during calcination. Generally, at relatively 
high calcination temperatures, the most stable phases are those that have higher 
coordination numbers, in this case with surrounding oxygen. Hughes et al. [64] 
have also identified these distinct calcium ferrite phases in the mixture of CaO and 
Fe2O3 calcined in air at high temperatures between 1180 and 1240°C. In addition, 
the phase formation of Ca2Fe9O13 can be present in the compound at the lower 
temperatures [65]. With the increase of temperature, the phase formation becomes 
more complex. Related to the phase transformation, it strongly depends on the 
crystallization kinetics of the reaction, the ratio concentration between Ca and Fe 
ions, and the atmospheric condition [66].

Figure 2. 
XRD pattern of calcium ferrite powders synthesized by the chemically dissolved technique from natural iron 
sand and limestone as the Fe3+ and Ca2+ ion sources, respectively, and then continued by calcination process at 
800°C for 3 h.
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Focusing on the high intensities of the diffraction peaks, the sample exhibits 
XRD lines of both CaFe4O7 and Ca4Fe14O25 phases as the dominant phases. CaFe4O7 
has monoclinic structure and Ca4Fe14O25 has hexagonal structure. Both phases have 
similar crystalline structure related to hexagonal ferrite structures [67]. The XRD 
pattern in Figure 2 shows that CaFe4O7 and Ca4Fe14O25 phases have broad diffrac-
tion peaks. This indicates that the average crystallite sizes are in a nanometer scale. 
Based on the Rietveld analysis, CaFe4O7 phase in the calcium ferrite compound has 
average crystallite size of about 46 nm. In order to clarify the nano-sized particles, 
TEM image is important to be investigated in detail.

Figure 3 displays TEM image of the calcium ferrite sample together with the 
selected area electron diffraction (SAED). The TEM image proves that the particle 
size of the sample is in the range of 40–60 nm. This is in a good agreement with the 
Rietveld analysis of the XRD pattern in Figure 2. The analysis of electron diffrac-
tion from SAED pattern reveals that CaFe4O7 and Ca4Fe14O25 phases are dominantly 
present and Ca2Fe9O13 is the minor phase in the sample. This result is also consistent 
with the XRD pattern analysis.

Magnetic properties of the calcium ferrite compound were studied by the 
magnetic hysteresis curve (M-H curve) at room temperature as shown in Figure 4. 
It is clear that the sample exhibits ferromagnetic behavior. A detailed observation 
on the M-H curve of the sample shows that the values of remanent magnetization 
and magnetization at 1 T are 2.11 and 10.94 emu/g, respectively. This indicates 
that a soft magnetism is realized in the calcium ferrite compound. It has been 
found that the dominant phase existing in the sample has a contribution to the 
ferromagnetic behavior [68]. The value of magnetism in the sample is comparable 
with that of the barium-calcium hexaferrite prepared by sol-gel and microemul-
sion techniques, in which the saturation magnetization value is approximately 
24 emu/g [69]. Moreover, Samariya et al. [70] have studied the magnetic properties 
of calcium ferrite, in the form of CaFe2O4, nanoparticles. They have found similar 
value of magnetization compared with the present result in this work. Concerning 
the multiphase compound, the magnetic parameters in the sample are influenced 
by the presence of nonmagnetic phase, magnetic domain and its orientation, and 
defect formation. Therefore, it is important to investigate more detail on how to 
prepare a pure certain phase of calcium ferrite from natural resources as the start-
ing materials. Accordingly, this result demonstrates that the present calcium ferrite 
nanoparticles could be used as one of the potential materials for microwave absorp-
tion application.

Figure 3. 
TEM image with selected area electron diffraction (SAED) pattern for calcium ferrite powders synthesized 
by the chemically dissolved technique from natural iron sand and limestone as the Fe3+ and Ca2+ ion sources, 
respectively, and then continued by calcination process at 800°C for 3 h.
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7. Magnetoelectric properties of bismuth ferrite nanoparticles

TG/DTA curve of the uncalcined powder of the undoped BiFeO3, shown in 
Figure 5, exhibits about 29% weight loss from room temperature to 550°C due 
to the evaporation of water, organics, and nitrate decomposition [71, 72]. Based 
on this thermal behavior, the powder could be thermally treated at temperatures 
from 500 up to 700°C for 1 h. Carvalho et al. [73] have reported that the increas-
ing time of the heat treatment increases the formation of secondary phases and, 
therefore, they have suggested to avoid a long heat treatment to synthesize BiFeO3 
nanoparticles.

Figure 6 shows the XRD patterns of the undoped and doped BiFeO3 samples 
calcined at 650 and 700°C, respectively, for an hour in air atmosphere. This heat 
treatment was conducted to form BiFeO3 phase. The influence of the atmosphere 
in the phase formation has been investigated by Xu et al. [72]. They have reported 
that crystallization in the atmosphere is important to obtain a pure BiFeO3 phase 
prepared by sol-gel method. It can be seen from the phase identification of the XRD 
patterns that multiphases of bismuth ferrite compounds such as BiFeO3, Bi25FeO40, 
and Bi2Fe4O9 were observed in the synthesized powders. Moreover, Bi2O3 was still 
observed in the XRD patterns in minor composition. BiFeO3 is a metastable phase 
which easily decomposes to secondary phases, Bi25FeO40 and Bi2Fe4O9, at high 
temperatures [73]. In this present work, it is found that higher BiFeO3 phase is 
achieved with heat treatment at 650°C for 1 h. This result is consistent with the TG/
DTA and XRD data analyzed by Sakar et al. [74] which corresponds to sharp dif-
fraction peaks of the BiFeO3 phase. The formation of secondary phases increases at 
higher temperature than 650°C. BiFeO3 began to decompose because of its unstable 
thermodynamic character when the calcination temperature was further increased. 
The relative weight percent and average crystallite size of the BiFeO3 phase were 
determined from the diffraction patterns by Rietveld method using Rietica and 
MAUD program, respectively. Overall, the analysis results show that the bismuth 
ferrite powders contain about 75 wt% of BiFeO3 phase. The average crystallite size 
of the BiFeO3 sample prepared at 650°C is about 84 nm.

The addition of doping substituting the A and B sites in the ABO3 perovskite 
structure of BiFeO3 greatly affects the crystal distortion and changes in the 

Figure 4. 
Magnetization curve at room temperature for calcium ferrite powders synthesized by the chemically dissolved 
technique from natural iron sand and limestone as the Fe3+ and Ca2+ ion sources, respectively, and then 
continued by calcination process at 800°C for 3 h.
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composition of the secondary bismuth ferrite phases. Pb ion substitutes A site, 
namely, the Bi3+ ion, in the structure of BiFeO3. As a result, Pb doping has an effect 
on the diffraction peak shift of the BiFeO3 phase to the lower diffraction angle. 
This is because the ionic radius of Pb2+ ion (0.119 nm) is greater than that of Bi3+ 
ion (0.103 nm). Moreover, it can also be seen that there is a combination of the 
diffraction peaks for the crystal plane (006) and (202) into the diffraction peak 
(111) at 2θ of 31–32o. This indicates a small change in the distortion of the crystal 
from distorted rhombohedral to pseudocubic system. XRD analysis confirms 
that Bi0.9Pb0.1FeO3 has cubic structure with space group of Pm-3 m, compared 
with the undoped BiFeO3 having rhombohedral structure with space group of 
R3c. It is important to mention that the secondary phase in the Pb-doped BiFeO3 
(Bi0.9Pb0.1FeO3) sample, which is PbFe12O19, has been reported to be one of the 
hexaferrite materials exhibiting good superparamagnetic behavior [75]. Further 
Rietveld analysis from the XRD patterns gives the values of lattice parameters of 
BiFeO3, Bi0.9Pb0.1FeO3, and BiFe0.9Ni0.1O3 as shown in Table 1.

Figure 6. 
XRD patterns of the undoped BiFeO3 and doped BiFeO3 (Bi0.9Pb0.1FeO3 and BiFe0.9Ni0.1O3) powders 
synthesized by sol-gel method calcined at 650 and 700°C, respectively, for 1 h in air.

Figure 5. 
TG/DTA curves of the uncalcined BiFeO3 powder.
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On the XRD pattern of the Ni-doped BiFeO3 (BiFe0.9Ni0.1O3) sample, shown in 
Figure 6, it is clear that there is no change of the crystal structure due to Ni doping 
at the B site (Fe3+ ion) of BiFeO3 crystal. This is displayed by the rhombohedral 
peak which can still be observed at 2θ of 31–32o. The result of the phase composi-
tion analysis gives that there is an increase of secondary phases (Bi25FeO40) and 
the presence of NiFe2O4 in the sample. Interestingly, both secondary phases have 
also unique magnetoelectric properties. It has been reported by Zhu et al. [76] that 
Bi25FeO40 has good dielectric and electrical properties which can be used as one 
of integrated circuit components. NiFe2O4 is one of magnetic spinel structures 
with good magnetic and dielectric properties [77]. In addition, Ni doping in the 
BiFeO3 system has an effect on diffraction peak shift to the lower diffraction angle 
because ionic radius of Ni3+ ion (0.069 nm) is slightly larger than that of Fe3+ ion 
(0.065 nm). The change of lattice parameter due to Pb and Ni doping in BiFeO3 
system is summarized in Table 1.

Figure 7 shows the TEM image and selected area electron diffraction (SAED) 
patterns of BiFeO3 powders annealed at 650°C for 1 h in air. Sharp diffraction spots 
seen from SAED pattern confirm the formation of well crystalline bismuth ferrites. 
Phases identified from SAED pattern are relatively matching with the XRD patterns 
in Figure 6 consisting of BiFeO3, Bi25FeO40, Bi2Fe4O9, and Bi2O3. The TEM image 
shows typical morphology of particle agglomeration. The particle size is greater 
than the average crystallite size estimated by Rietveld analysis due to agglomeration 
of the nanoparticles.

The nonlinear magnetic hysteresis curve of the bismuth ferrite powders, as 
shown in Figure 8, illustrates weak ferromagnetism. The remanent magnetization 
of 0.044 emu/g and coercive field of 68.5 Oe in the undoped BiFeO3 confirm the 
weak ferromagnetism behavior at room temperature. The complete saturation of 
magnetization of powders was not achieved up to applied magnetic field of 1 T. The 
hysteresis loop of bulk BiFeO3 is generally linear indicating antiferromagnetic order 
at the ground state (5 K) [78]. The weak ferromagnetic order of these powders 
can be understood as a result of residual magnetic moment caused by its canted 
spin structure [79]. The canting of the spins can be caused by reduction of particle 
size. When the particle size decreases, the number of surface asymmetry atoms 
increases, then it changes the angle of the helical ordered spin arrangement, and 
finally the net magnetic moment appears [80]. Moreover, the existence of defects, 
for instance, oxygen vacancies [81], and the secondary phases [82] may contribute 
to the weak ferromagnetic behavior.

Based on the magnetic hysteresis loops of the doped BiFeO3 nanoparticles, the 
Pb doping in the BiFeO3 structure seems to have a small effect on the magnetic 
properties. Substitution of Pb2+ ions at the Bi3+ sites induces oxygen vacancies which 
may lead to the enhancement of magnetic moments in the sample [83]. However, 

Sample Structure Lattice parameters (Å)

BiFeO3 Rhombohedral a = b = 5.578 (1)

c = 13.862 (3)

Bi0.9Pb0.1FeO3 Cubic a = b = c = 3.958 (1)

BiFe0.9Ni0.1O3 Rhombohedral a = b = 5.574 (1)

c = 13.840 (4)

Table 1. 
Rietveld analysis results for the XRD patterns of the undoped BiFeO3 and doped BiFeO3 (Bi0.9Pb0.1FeO3 and 
BiFe0.9Ni0.1O3) powders.
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Verma and Kotnala [84] have confirmed through the SQUID measurements that 
BiFeO3 with Pb doping exhibits a strong antiferromagnetism suggesting that the 
reduction of oxygen vacancies is realized in the system. Moreover, Ederer and 
Spaldin [85] have proposed that the magnetization value can be affected by the 
presence of oxygen vacancies but with a small change due to the formation of Fe2+ at 
the BiFeO3 sites adjacent to the vacancy. Therefore, there is almost no increase in the 
magnetic parameters after Pb doping. Moreover, the weak ferromagnetism is com-
monly observed in the Bi1−xAxFeO3 (A = Ca, Sr., Pb, Ba) system providing a canting 
of the antiferromagnetic sublattice [86], which is in line with this present work. On 
the other hand, Ni-doped BiFeO3 nanoparticles show a significant increase on the 
magnetic parameters, namely, remanent and saturation magnetization. This result 
is consistent with the previous paper by Hwang et al. [87], in which the Ni-doped 
BiFeO3 sample exhibits similar rhombohedral perovskite structure compared to that 
of the undoped one and the magnetic properties show enhancement with respect to 
the undoped one. The increase in magnetic properties can occur due to the effect of 
nanoparticle surface area and ferromagnetic interaction exchange between neigh-
boring Fe3+ and Ni3+ ions in the BiFeO3 system [88].

Figure 7. 
TEM image with selected area electron diffraction (SAED) pattern for barium ferrite powders synthesized by 
sol-gel method and then calcined at 650°C for 1 h in air.

Figure 8. 
Magnetic hysteresis curves of the undoped BiFeO3 and doped BiFeO3 (Bi0.9Pb0.1FeO3 and BiFe0.9Ni0.1O3) 
powders synthesized by the sol-gel method.
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The room temperature P-E loop of the prepared undoped bismuth ferrite, 
presented in Figure 9, exhibits unsaturated hysteresis loop. The curve was not 
fully saturated because of the low applied electric field. The remanent polariza-
tion (Rs) and the coercive field (Ec) of the undoped BiFeO3 nanoparticles are 
about 20.5 μC/cm2 and 5.5 V/cm, respectively. These values are lower than the 
values reported in the single crystal which has a large polarization of ~100 μC/
cm2 along (111) for bulk bismuth ferrite [89]. The existence of secondary phases, 
such as Bi25FeO40, Bi2Fe4O9, and Bi2O3, affects the lower values of Rs and Ec in the 
sample. Pradhan et al. [78] have reported that leakage current is one of the major 
reasons for obtaining lower values of saturation polarization (Ps), Rs, and Ec in 
BiFeO3 system.

In the Pb-doped BiFeO3 nanoparticles, the Pb substitution improves the 
dielectric and ferroelectric properties [90]. It can be seen from Table 2 that the 
electric properties, including dielectric constant, electrical conductivity, and 
electrical permittivity, increase with Pb doping in the BiFeO3 crystal. It has been 
found that Pb substitution on the Bi site in the BiFeO3 may destroy ferroelectric-
ity ordering induced by Bi lone pair in the rhombic structure until it reaches a 
stable pseudocubic structure of BiFeO3 [91]. In this work, addition of Pb doping 
in BiFeO3 with x = 0.1 has already resulted in a pseudocubic structure, and, hence, 
the enhancement of the electrical properties is realized in the present sample. 
The value of dielectric constant with Pb doping, x = 0.1, at 1 kHz is in a good 
agreement with the work done by Zhang et al. [92]. The defect of oxygen vacancy 
due to Pb doping can increase the polarity of the sample and finally increase its 
dielectric constant. In addition, oxygen vacancy created as the consequence of Pb 
substitution on Bi site in the BiFeO3 system plays an important role related to the 
ferroelectricity for Pb-doped BiFeO3 sample. Moreover, the presence of Pb doping 
causes the existence of Fe2+ ion at Fe3+ sites which can produce holes around the 
Fe3+ site [93]. This effect is shown by the increasing value of electrical conductiv-
ity. It has been suggested that the relatively low number of oxygen vacancies in 
this sample may result in an improvement of the ferroelectric properties [94], as 
shown in Table 2.

As mentioned earlier, the Ni doping in BiFeO3 nanoparticles enhances the mag-
netic properties as reported in the former paper [88]. However, the dielectric and 

Figure 9. 
Room temperature polarization-electric field (P-E) hysteresis loop of the undoped BiFeO3 pellet sintered at 
750°C.
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other electrical properties of the Ni-doped BiFeO3 have lower values than those of 
the undoped one, as displayed in Table 2. This means that the sample has inappro-
priate Ni doping concentration to improve the ferroelectricity. Moreover, the reduc-
tion in the dielectric constant is attributed to the decrease in the total polarization 
occurring in the sample. It is well known that the total polarization of a dielectric 
material is a combination of electronic, ionic, dipolar, and interfacial/space charge 
polarizations. The lower value of dielectric constant is probably caused by the effect 
of Ni doping on the ionic transformation from Fe2+ to be Fe3+ again. As the con-
sequence of the charge stability, it may consume holes. Hence, the holes as charge 
carrier decrease. This is one reason of the decrease of sample’s conductivity [95]. 
Another possible reason on decreasing value of electrical properties in Ni-doped 
BiFeO3 sample is the impurity effect. It should be noticed that the impurity phases 
such as Bi2Fe4O9 and Bi25FeO40 may also contribute to the electrical properties in 
BiFeO3 [48]. The existence of multiphase in the sample leads to the increase of 
insulating grain boundaries affecting the electrical conductivity as well as the total 
polarization in the sample. The increase in the amount of grain boundaries, acting 
as the barrier for charge carrier mobility, results in the decrease of conductivity in 
the system.

8. Conclusions

Exploration related to the use of natural materials for functional materials has 
been applied in this study. Natural iron sand with the dominant magnetite (Fe3O4) 
content has been successfully synthesized through the chemical coprecipitation 
method as a starting material for producing hematite (α-Fe2O3). α-Fe2O3 has been 
successfully used as the source of Fe3+ ions to synthesize calcium ferrite and bis-
muth ferrite nanoparticles. The calcium ferrite powders synthesized by the chemi-
cal dissolved technique produce nano-sized crystals with the dominant phases of 
CaFe4O7 and Ca4Fe14O25. The calcium ferrite powder has soft magnetic properties at 
room temperature which is attributed to the presence of dominant ferromagnetic 
phase and also oxygen vacancy in the nanoparticles. Magnetic parameters, such 
as saturation magnetic, are comparable to the barium-calcium hexaferrites, so 
that these nanoparticles have the potential application as microwave-absorbing 
materials. The bismuth ferrite powder, synthesized by the sol-gel method, exhibits 
multiferroic properties. The undoped BiFeO3 possesses a weak ferromagnetism at 
room temperature. The magnetic parameters can be enhanced by Ni doping in the 
form of BiFe0.9Ni0.1O3 nanoparticles. On the other hand, the electrical properties, 
i.e., dielectric constant, permittivity, and electrical conductivity, can be improved 
by Pb doping in the nanoparticles of Bi0.9Pb0.1FeO3. The multiferroic behaviors 

Sample Dielectric constant 
(εr)

f = 1 kHz, 
T = 300 K

Conductivity  
[×10−4 (Ω m)−1]

T = 300 K

Permittivity  
(×10−10 F/m)
T = 300 K

BiFeO3 19.4 0.012 1.7

Bi0.9Pb0.1FeO3 130.8 0.162 11.6

BiFe0.9Ni0.1O3 17.5 0.010 1.6

Table 2. 
Dielectric constant, electrical conductivity, and permittivity of the undoped BiFeO3 and doped BiFeO3 
(Bi0.9Pb0.1FeO3 and BiFe0.9Ni0.1O3) powders measured at room temperature.
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are strongly determined by the nano-sized effects, the presence of oxygen vacan-
cies and impurities, and also the doping type affecting the phase stability in the 
perovskite structure of BiFeO3 crystals. Considering the importance of applying 
these ferrite-based nanoparticles, investigations for obtaining pure phases of the 
nanoparticles from natural resources are very important and need further study.
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