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Chapter

Tumor Necrosis Factor Alpha:
A Major Cytokine of Brain
Neuroinflammation
Mubarak Muhammad

Abstract

Tumor necrosis factor (TNF) is one of the most extensively studied cytokine
with about 19 distinct superfamily members and many more to be found. Promi-
nent among these members is tumor necrosis factor alpha (TNF-α) that is known
to be a potent promoter of inflammation, as well as many normal physiological
functions in homeostasis and health and antimicrobial immunity. Nuclear factor
kappa-light-chain enhancer of activated B cells (NFκB) is one of the most important
transcription factors that activate transcription of many proinflammatory genes,
and the unraveling of TNF-α induced NFκB activation forms the foundation of
TNF-α as major cytokine of neuroinflammation. This review discusses summary of
literature on unique role of TNF-α in neuroinflammation and various agents that
mediate neuroinflammation via TNF-α modulation.

Keywords: tumor necrosis factor, tumor necrosis factor alpha, neuroinflammation,
cytokine, brain, inflammation

1. Introduction

Tumor necrosis factor (TNF) alpha is one of the first discovered cytokines
shown by Carswell [1] in 1975 and was named for tumor regression activity induced
in the serum of mice treated with Serratia marcescens polysaccharide [2]. Cytokines
are low-molecular-weight peptides secreted by activated immune cells as well as
stromal cells and exerting biological activities through binding to cognate receptors
on cell surface. Cytokines are produced by a number of cell types, predominantly
leukocytes that regulate a number of physiological and pathological functions
including innate immunity, acquired immunity, and a plethora of inflammatory
responses [3]. Cytokines excite or hinder the generation, propagation, and differ-
entiation of different associated target cells positive on antigen induction, thus
leading to mediation in the activity of diverse other cells involved in the immune
response especially the more pronounced macrophages, mast cells, B cells, T cells,
and natural killer (NK) cells. Thus, cytokine is regarded as secreted proteins with
growth, differentiation, and activation functions that regulate and determine the
nature of immune responses [4]. The broad classification of cytokines are termed in
a group as follows: interleukin (IL), interferon (IFN), tumor necrosis factor (TNF),
colony stimulating factor (CSF), and chemokine and growth factor (GF), and these
exerts biological functions through action mode and characteristics as paracrine,
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autocrine, and endocrine. TNF being one of the prominent cytokine has about 19
different members of the TNF superfamily that includes tumor necrosis factor
alpha (TNF-α), tumor necrosis factor beta (TNF-β), TNF-related weak inducer
of apoptosis (TWEAK), TNF-related apoptosis-inducing ligand (TRAIL),
lymphotoxin-β (LT- β), CD40L, CD30L, 4-1BBL, CD27L, glucocorticoid-induced
TND receptor ligand (GITRL), fibroblast-associated ligand (FasL), OX40 ligand
(OX40L), LIGHT, A proliferation-inducing ligand (APRIL), B-cell-activating factor
(BAFF), receptor activator of NFκB ligand (RANKL), vascular endothelial cell-
growth inhibitor (VEGI), and ectodysplasin A ((EDA)–A1, EDA-A2) [2].

TNF-α is a potent mediator of inflammation, as well as many normal physiolog-
ical functions in homeostasis and health and antimicrobial immunity [5]. Inflam-
mation is a classical host defense response of vascularized living tissue to infection
and injury, and in the central nervous system (CNS), the term neuroinflammation
is used to denote cellular and inflammatory responses of vascularized neuronal
tissue through activation of resident cells in the brain (microglia, astrocytes, and
endothelial cells), the recruitment of blood-derived leukocytes including neutro-
phils, lymphocytes, and macrophages, and a plethora of humoral factors [6, 7].
More appropriately, neuroinflammation is a term used to denote inflammation
associated with the brain and is characterized by the activation of microglia and
expression of major inflammatory mediators without typical features of peripheral
inflammation such as edema and neutrophil infiltration [8]. Neuroinflammation
in the brain supposedly has a positive effect such as increasing blood flow and
removal of damaged tissue by phagocytosis, but in a disease state, the resulting
inappropriate inflammation caused negative effects which by far out weight the
positive effect [6].

Nuclear factor kappa-light-chain enhancer of activated B cells (NFκB) otherwise
called nuclear factor kappa B is a heterodimer and one of the most important
transcription factors that activate transcription of many proinflammatory genes.
It is well documented that TNF-α induces at least five different types of signals
that include activation of NFκB, apoptosis pathways, extracellular signal-regulated
kinase (ERK), p38 mitogen-activated protein kinase (p38MAPK), and c-Jun
N-terminal kinase (JNK) [2]. These biological functions of TNF-α makes its role in
neuroinflammation critically prominent. It is therefore expedient to elucidate and
expand the rational basis of TNF-α as major cytokine of neuroinflammation. Hence,
this review discusses summary of literature on unique role of TNF-α in
neuroinflammation and various agents that mediate neuroinflammation via TNF-α
modulation.

2. Neuroinflammation

Microglia being major immune cells involved in defense in the central nervous
system, its activation is considered to be the hallmark of neuroinflammation [7, 9].
Activation of microglia cells constitutes the first key acute response in the brain to
external aggression such as acute brain ischemia, traumatic brain injury, or micro-
bial pathogen, and this microglial activation is coupled with subsequent activation
of blood-borne monocytes/macrophages to yield a full-blown neuroinflammatory
thick rim around ischemia infarct that becomes observable after 1 week in both
human and animal models [10]. Microglia in the CNS constitutes 5–15% of total
brain population; having share common precursor with peripheral macrophages,
they produced transient inflammatory changes like macrophages such as phagocy-
tosis, inflammatory cytokine production, and antigen presentation, normally
returning to their basal state when the activation stimulus is resolved [11]. In a
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disease state such as in the onset of focal cerebral ischemia or traumatic brain
injury, however, the microglia response becomes inappropriately more reactive and
exaggerated to produce plethora of inflammatory mediators that trigger apoptosis
and exaggerate neuronal damage [12]. Therefore, microglia/macrophages are the
key immune cells concerned with the protection of brain against injury. Their
architectural and functional changes are linked with the liberation of injury signals
induced by pathology. These cells are usually responsible for clearance of demised
neural cells and allow for restoration of lost neuronal functions. However, when
markedly activated by the damage-associated molecular patterns subsequent to a
disease state, they can generate a huge amount of proinflammatory cytokines that
are capable of interrupting neural cells and the blood-brain barrier, and manipulate
neurogenesis [9].

The primary function of microglia in the brain is to control any external aggres-
sion and neutralize its effect by a process of phagocytosis, which is a chronologically
multistep system including oriented gradient motility (chemotaxis); identification
of alien foreign agents by membrane lectins and receptors (recognition);
encompassing flow round the injurious foreign agents into a vacuole/phagosome
(engulfment); unraveling of intracellular secretor pools (granules); and liberation
of innate antibiotics and enzymes into the phagosome, generation of reactive oxy-
gen species by an intricate enzymatic system sequestrated on the phagocyte mem-
brane and/or reactive nitrogen species by an inducible nitric oxide synthase, and
decapitating and digestion of engulfed foreign substance in the multifaceted
phagolysosomal medium (microbial killing) [13]. Therefore, there are four impor-
tant events of phagocytosis: chemotaxis, recognition, engulfment, and microbial
killing.

Chemotaxis is the immediate restricted, valuable host inflammatory reaction
that is initiated by local tenant macrophages, demised cells and tissues, plasma
factors, and microbial products. Specifically, the closely generated factors of
inflammation (cytokines, activated complement protein, kinins, etc.) and microbial
factors construct chemotactic gradients, alter endothelial cell membrane receptors,
and encourage decrease of the blood flow. Blood-borne monocytes/macrophages
that are rolling along the endothelial surface act in response to the chemotactic and
cell-mediated signals and are primarily activated to definitely attach to the endo-
thelium by way of their membrane integrins; the second pace is transendothelial
migration, denoted as diapedesis, followed by tilting motility toward the inflam-
matory site (chemotaxis) [13].

Recognition involves identifying and attachment of particle to be ingested by the
microglia/phagocytes. There are two methods of recognition: opsonin/opsonin
dependent/receptor mediated and non-opsonin/opsonin independent. Opsonin/
opsonin dependent is where microglia/phagocytes recognize pathogens via their
membrane receptors for opsonins (e.g., complement factors C3b and iC3b and Fc
component of immunoglobulins), which are present on the microbial surface, while
non-opsonin/opsonin independent is where microglia/phagocytes recognize patho-
gens via microbial and phagocyte lectins [13]. Because microglia/phagocytes
express high-affinity receptors for opsonin, the term opsonization is used to indi-
cate a process, whereby injurious foreign particle becomes coated with substance,
thereby enhancing its recognition by leukocyte and making it more open to phago-
cytosis. As aforementioned, the injurious foreign agents or microbes are usually
opsonized by specific protein substances such as immunoglobulin G (IgG) anti-
bodies, breakdown product of compliment (C3b), and fibrinogen all of which
phagocytes express high-affinity receptors.

Engulfment refers to microglia/phagocyte extension of cytoplasm (pseudopods)
flow around the injurious foreign agents or microbes after its binding with
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phagocyte and subsequent pinches off to form vesicles (phagosome) that enclose
the injurious foreign agents or microbes. Phagocyte extensions (pseudopods) finally
engulf the injurious foreign agent or microbe in a vacuole and trigger the activation
of two functions: the release of granule contents into the phagosome and the oxida-
tive burst. Coiling engulfment is the most frequent unusual uptake: unilateral pseu-
dopods wrap around the microorganism in multiple turns, giving rise to largely self-
apposed pseudopodial surfaces [13].

Microbial killing can be achieved through oxygen-dependent or oxygen-
independent/non-oxygen-dependent method of pathogen or injurious agent killing.
Oxygen dependent involves the use free radicals. A free radical is clearly referred to
as atom or molecule having one or more unpaired electrons in valence shell or outer
orbit and is competent for autonomous survival [14]. The strange quantities of odd
electron(s) possess by a free radical make it unbalanced, short lived, and extremely
reactive. This high reactivity makes free radical exert a pull on electrons from
further compounds to reach steadiness. The newly pulled attacked molecule loses its
electron and becomes a free radical itself, opening a chain of feedback cascade of
reaction. Free radicals/oxidants derived from both endogenous sources and exoge-
nous sources have gained importance in the field of biology due to their central role
in various physiological conditions as well as their implication in a diverse range of
diseases. They include reactive oxygen species (ROS) which are hydroxyl radicals
(˙OH), superoxide (O2

�), hydrogen peroxide (H2O2), and reactive nitrogen species
(RNS) which are nitric oxide (NO) and peroxynitrite (OONO�). At reasonable or
little concentrations, ROS/RNS encompasses desirable effects and engage in a vari-
ety of physiological purposes such as in immune function (i.e., guard in opposition
to pathogenic microorganisms), in certain cellular signaling pathways, in mitogenic
reaction, and in redox directive. Conversely, at excessively elevated concentrations,
both ROS and RNS lead to oxidative stress and nitrosative stress, respectively, that
potentially cause adverse effect to biological molecules [14].

The mechanism of oxygen-dependent microbial killing is initiated after engulf-
ment where oxygen burst is activated to cause increase in oxygen consumption (50-
to 100-fold increase) and metabolism; this leads to massive production of nicotin-
amide adenosine diphosphate (NADP) as by-product of adenosine triphosphate
(ATP) generation by oxidative phosphorylation. The oxygen burst is unrelated to
mitochondrial respiration and reflects the activity of the NADPH oxidase system in
the cytosol and membrane constituents, which are separated in resting microglia/
phagocytes and are reassembled upon microglia/phagocytes activation. The gener-
ated NADP through NADPH oxidase enzyme activity generates superoxide (O2

�)
which is further converted to hydrogen peroxide (H2O2) either spontaneously or
through enzymatic catalysis of superoxide dismutase (SOD) enzyme by combining
with hydrogen ion (H+). Both hydrogen peroxide (H2O2) and superoxide (O2

�) can
cause microbial killing. For instance, H2O2 in the presence of myeloperoxidase
(MPO) released from microglia/phagocytes azurophilic (primary) granules and a
halide generates very potent oxidizing agents such as hypochlorous acid (HOCl)
and chloramines [13]. Other oxidative species such as singlet oxygen has been
suggested to be important for microbial killing through the formation of ozone [15].

Non-oxygen-dependent/oxygen-independent microbial killing is mediated by
protein molecule and other factors that are mostly found within the lysosome such
as lysozyme, lactoferrin, and elastase. Lysozyme is an enzyme that hydrolyzes N-
acetyl glucosamine bond found in glycopeptide coat of all bacterial cell wall. Thus,
non-oxygen-dependent/oxygen-independent microbial killing is dependent on pro-
tein and peptide antibiotics such as bactericidal permeability-increasing protein,
cationic antimicrobial protein 37, and defensins that are stored in peroxidase-
positive (azurophilic, primary) granules where they are together localize with
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active proteases such as elastase, cathepsin G, and proteinase 3. The synergistic
interaction of oxygen-dependent and non-oxygen-dependent/oxygen-independent
microbial killing systems generally results in pathogen killing [13].

Pathological consequences that result from a disease state of the brain, however,
make microglia response becomes inappropriately exaggerated. Microglia when
transformed into phagocytes can release a variety of substances many of which are
cytotoxic and/or cytoprotective. While cytoprotective substances include
neurotrophic molecules such as brain-derived neurotrophic factor (BDNF), insulin-
like growth factor I (IGF-I), several other growth factors, and anti-inflammatory
factors, cytotoxic substances include proinflammatory cytokines such as TNF-α, IL-
1β, and IL-6 as well as other potential cytotoxic molecules including nitric oxide
(NO), reactive oxygen species (ROS), and prostanoids. The uniquely outburst
cytokines extensively studied in acute ischemic stroke are tumor necrosis factor-α
(TNF-α); the interleukins (IL), IL-1β, IL-6, IL-20, and IL-10; and transforming
growth factor (TGF)-β. Although IL-1β and TNF-α are proinflammatory that
appears to exacerbate cerebral injury, TGF-β and IL-10 are anti-inflammatory that
may exert neuroprotective effects, and IL-6 has both pro- and anti-inflammatory
effects [16]. Astrocytes, like microglia, are also capable of secreting inflammatory
factors such as cytokines, chemotaxis cytokines (chemokines), and NO in response
to brain pathological state.

3. Agents that mediate neuroinflammation via TNF-αmodulation

Table 1 reveals researches of various agents that mediate neuroinflammation via
TNF modulation.

Treatment Experimental model Related TNF finding References

Puerarin Stroke model of rat middle cerebral

artery occlusion

Modulate neuroinflammation by

mark reduction in mRNA

expression of tumor necrosis

factor-α (TNF-α)

[17]

Edaravone and

scutellarin

Stroke model of rat intraluminal middle

cerebral artery occlusion

Modulate neuroinflammation by

attenuating expression levels of

TNF-α

[18]

Matrix

metalloproteinase-8

inhibitor (M8I)

Stroke model of rat middle cerebral

artery occlusion

Modulate neuroinflammation by

abrogating TNF-α expression

[19]

Wogonin (5,7-

dihydroxy-8-

methoxyflavone)

Stroke model of rat middle cerebral

artery occlusion

Modulate neuroinflammation by

decrease in production of TNF-α

[20]

Nicotine Stroke model of rat global cerebral

ischemia

Modulate neuroinflammation by

significant reduction of enhanced

expression of tumor necrosis

factor alpha (TNF-α)

[21]

Glycyrrhizin (GRZ) Brain cognitive impairment and

neuroinflammation of

lipopolysaccharide treated Mice

Modulate neuroinflammation

through inhibition of

proinflammatory TNF-α

[8]

Atorvastatin Stroke model of rat intracerebral

hemorrhage

Modulate neuroinflammation by

dose-dependent reduction of

TNF-α

[22]

Angiotensin-(1–7) Stroke model of mice intracerebral

hemorrhage

Modulate neuroinflammation by

decrease in levels of TNF-α

[23]
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Treatment Experimental model Related TNF finding References

Milk fat globule-EGF

factor VIII (MFG-

E8)

Stroke model of rat permanent middle

cerebral artery occlusion

Modulate neuroinflammation

through decrease in expression of

cerebral TNF-α level

[24]

Compound K (20-O-

D-glucopyranosyl-20

(S)-

protopanaxadiol)

Stroke model of mice transient middle

cerebral artery occlusion

Modulate neuroinflammation

through inhibition of

lipopolysaccharide-induced

production of TNF-α

[25]

Kaempferol

glycosides

Stroke model of rat transient middle

cerebral artery occlusion

Modulate neuroinflammation by

inhibiting expression of tumor

necrosis factor alpha

[26]

Angiotensin-(1–7) Stroke model of rat permanent middle

cerebral artery occlusion

Modulate neuroinflammation by

inhibiting increase in TNF-α

[27]

Nicotine Stroke model of rat global ischemia Modulate neuroinflammation by

reduction of enhanced expression

of tumor necrosis factor alpha

(TNF-α) induced by ischemia/

reperfusion

[21]

Propofol Brain neuroinflammation of

lipopolysaccharide-induced

inflammation in activated microglia

Modulate neuroinflammation by

inhibiting lipopolysaccharide-

mediated production TNF-α

[28]

Zileuton Stroke model of rat permanent middle

cerebral artery occlusion

Modulate neuroinflammation

through attenuating release of

TNF-α in the serum

[29]

Caffeic acid ester

fraction (Caf)

Stroke model of rat middle cerebral

artery occlusion in vivo and

lipopolysaccharide-induced microglial

activation in vitro

Modulate neuroinflammation by

inhibiting TNF-α induced by

lipopolysaccharide treatment in

primary microglia in a dose-

dependent manner

[30]

Telmisartan Stroke model of rat intracerebral

hemorrhage

Modulate neuroinflammation by

decrease in tumor necrosis

factor-α

[31]

Setarud (IMOD™) Human patients with acute ischemic

stroke

Modulate neuroinflammation by

decrease in TNF-α levels

[32]

Caffeine Brain neuroinflammation of

lipopolysaccharide (LPS)-stimulated

murine BV2 microglial cells

Modulate neuroinflammation by

suppressing generation of

proinflammatory TNF-α

[33]

SCH58261 Stroke model of rat bilateral common

carotid artery occlusion

Modulate neuroinflammation by

reversing ischemia reperfusion

injury induced elevation of TNF-

α.

[34]

Caffeine Stroke model of rat bilateral common

carotid artery occlusion

Modulate neuroinflammation by

reduction of TNF-α activity

[35]

Fluoxetine Stroke model of rat subarachnoid

hemorrhage

Modulate neuroinflammation by

decreasing the expression of

proinflammatory mRNA levels of

TNF-α

[36]

Matrix

metalloproteinases 8

(MMP-8) inhibitor

Brain neuroinflammation of lipoteichoic

acid (LTA)-stimulated rat primary

astrocytes

Modulate neuroinflammation by

inhibiting lipoteichoic acid (LTA)

induced expression of TNF-α

[37]

Sildenafil Brain neuroinflammation and

demyelination induced by cuprizone in

Mice model of multiple sclerosis.

Modulate neuroinflammation by

reduction in the expression of the

proinflammatory cytokines TNF-

α

[38]

Table 1

Various agents that mediate neuroinflammation via TNF modulation
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4. Agents that induce neuroinflammation

In a comprehensive review of agents that induce neuroinflammation, Nazeem
[39] has classified models of neuroinflammation based on mechanism through
which agents induce neuroinflammation into three as follows: immune challenge-
based models which include lipopolysaccharide (LPS)-induced neuroinflammation
and polyriboinosinic-polyribocytidilic acid (PolyI:C)-induced neuroinflammation;
neurotoxin-induced models which consist of streptozotocin-induced
neuroinflammation, okadaic acid-induced neuroinflammation, and colchicine-
induced neuroinflammation; genetically manipulated models that contain interleu-
kin-1β (IL-1β) overexpression model, p25 transgenic model, anti-nerve growth
factor (NGF) transgenic models, and transforming growth factor-β (TGF-β)-
deficient models.

The most commonly studied model of neuroinflammation is LPS-induced
neuroinflammation which activates microglia in the brain [40]. LPS also termed
endotoxin is a constituent of the external membrane of Gram-negative bacteria, and
the mechanism of LPS-induced neuroinflammation is mediated through LPS bind-
ing with CD14 on microglia membranes. The LPS-CD14 complex then interacts
with the Toll-like receptor-4 (TLR-4), which, in turn, activates microglia by initi-
ating signal transduction cascades leading to rapid transcription and release of
proinflammatory cytokines, chemokines, and the complement system proteins, as
well as anti-inflammatory cytokines like IL-10 and transforming growth factor-β
(TGF-β) [39].

Another popular emerging noninvasive, effective, and sterile method of induc-
tion neuroinflammation in animal model is MRI-guided pulsed focused ultrasound
(pFUS) combined with systemic infusion of contrast agent microbubbles (MB).
This MRI-guided pFUS+MB has advantage over all other methods of inducing
neuroinflammation in a way that it induces neuroinflammation without systemic
involvement [40].

5. Mechanism leading to the production of TNF-α in the brain and
TNF-α signaling

Within the brain, TNF-α is produced and discharged in the brain predominantly
by glial cells and neurons, with microglia and astrocytes being the major glial cells
involved. Upon arrival of appropriate TNF-α production stimulus, TNF-α is formed
as a 27-kDa (233 amino acids) precursor, which binds to cell membrane of produc-
ing cells. This precursor is cleaved by proteolysis to liberate a 17-kDa (157 amino
acids) subunit by the action of TNF alpha-converting enzyme (TACE). TACE also
known as ADAM17 is well-identified proteinase enzyme that mediates the process
TNF-α production and is a member in the family of mammalian adamalysins (or
ADAMs: A disintegrins and metalloproteinases) [41].

Upon cleavage by TACE/ADAM17, the free TNF-α forms a bioactive
homotrimer that lead to biological effect of TNF-α. The actions of TNF-α is
achieved through two distinct cell surface receptors: TNFR1 and TNFR2. TNF-α
generates the activation of TNF receptors (TNFR1 and TNFR2), and the resultant
TNF-induced TNFR signaling pathways are complex and wide ranging in different
cell types, and precise circumstances, thereby accounting for TNF-α pleiotropic
nature of action [5]. For instance, with TNFR1 signaling pathway, binding of TNF-α
to the cognate receptor leads to the recruitment of TNF-α adaptor protein termed as
TNF receptor-associated death domain (TRADD), which then creates a platform
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for binding of additional cytoplasmic adaptor proteins including TNF receptor-
associated factor 2 (TRAF2), receptor-interacting protein (RIP), and FAS-
associated death domain (FADD). The TRAF2 and RIP are concerned in escalating
the transcriptional gene regulation; TRAF2 triggers the activation of a mitogen-
activated protein kinase (MAPK) pathway, thereby leading to the activation of
c-Jun N-terminal kinase (JNK), thus increasing its transcriptional activity; the RIP is
a protein kinase vital to the activation of the transcription factor NFκB by phos-
phorylation of IκB kinase (IKK). On the other hand, FADD pathway leads to
activation of caspase-8, thereby leading to initiate a caspase cascade of apoptosis
cellular demise [41]. Although TNF-α binds to both TNFR1 and TNFR2 receptors
with high affinity, there are some species specificity in terms of the receptor
subtype and TNF-α binding [42]. TNF-α-induced p38 MAPK pathway transcription
activity has been also implicated to induce proinflammatory IL-6 synthesis [43].

6. TNF-α and neuroinflammation

Neuroinflammation involves activation of microglia and astrocytes as well as
influx of hematogenous cells recruited by cytokines, adhesion molecules, and
chemokines across the activated blood vessel wall [44]. Neuroinflammatory signal-
ing involves a coordinated effort of different molecules and cells types and is largely
coordinated by a ubiquitous transcription factor NFκB. This signal transduction
pathway for the activation of the transcription factor NFκB leads to control the
expression of numerous genes activated during inflammation (i.e., cytokines,
chemokines, growth factors, immune receptors, cellular ligands, and adhesion mol-
ecules). Thus, NFκB regulates a number of genes (including those coding for key
inflammatory cytokines, like IL-6, TNF-α, etc.) involved in inflammation, making
it the most important transcription factor that plays a key role in the inflammatory
response. The collective gene targets of NFκB include various adhesion molecules,
cytokines and chemokines (involved in proinflammatory signaling and NFκB acti-
vation, e.g., IL-1β and TNF-α), metalloproteinases (e.g., MMP-9), immune recep-
tors, acute phase proteins, cell surface receptors, and inflammatory enzymes [45].
Various stimuli, such as cytokines, viruses, and oxidants, result in the activation of
the transcription factor NFκB by separating it from inhibitor of NFκB alpha (IκBα)-
bound protein in the cytoplasm, which becomes degraded and allows NFκB to move
to the nucleus, where it binds to the DNA of the genes for numerous inflammatory
mediators, resulting in their increased production and secretion [46].

It is pertinent to note that neuroinflammatory microglia-/macrophage-mediated
phagocytosis is instrumental in neutralizing injurious foreign agent and conducting
brain cleanup, the process which must occur to allow for tissue repair and functional
recovery. This fast and efficient removal of apoptotic, dislocated, and damaged cells,
before the discharge of injurious and proinflammatory cell contents occur, may help
to reduce secondary damage. But inappropriate inflammatory responses generated by
microglia/macrophages in a disease state may aggravate brain injury [45].

Proinflammatory TNF-α being one of the most key important early initiators of
neuroinflammation interacts with two receptors R1 and R2, to mediate extrinsic
apoptotic death signal via Fas-associated death domain (FADD) and inflammation
via nuclear factor kappa-light-chain enhancer of activated B cells (NFĸB), respec-
tively [5]. NFκB is a major regulatory transcription factor with a pivotal role in
inducing genes involved in inflammation [47]. In its dormant state, NFκB resides in
the cytosol where it is bound to its inhibitory proteins known as inhibitors of NFκB
(IκB), most commonly inhibitor of NFκB alpha (IκBα), making it unable to trans-
locate into the nucleus [48]. Inflammatory stimuli resulting from wide range of
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brain pathological processes, such as cerebral ischemia, leads to degradation of these
inhibitors upon their phosphorylation by the IκB kinase (IKK), which allows NFκB
to migrate into the nucleus, where it binds with DNA, and activates transcription of
many proinflammatory genes [49]. This includes increase in expression of the genes
for proinflammatory cytokines, chemokines, enzymes that generate mediators of
inflammation, and adhesion molecules [50]. Thus, TNF-α both activate and are
activated by NFκB, creating a type positive regulatory loop that amplify and per-
petuate local inflammation [50]. Hence, these pathways of TNF-α-induced NF-kB
explain the ability of TNF-α to induce other inflammatory cytokines such as IL-6
and IL-8 and synergize with interferons [5].

Apart from IκB-NFκB pathway, another intracellular signaling pathway
through which TNF-α induces other inflammatory cytokines is Janus family of
tyrosine kinase (JAK)-signal transducer and activator of transcription (STAT)
pathway. This JAK-STAT pathway can be initiated when there is TNF-α signaling
after binding to its cognate receptors and consequently stimulates STATs. The
STATs subsequently become activated and translocate to the nucleus to transmit
transcriptional genetic expression of many cytokines, thereby leading to their syn-
thesis [43].

Therefore, TNF-α is a proinflammatory cytokine that plays a critical role under
both homeostatic and pathophysiological status within the central nervous system.
Under healthy status, TNF-α has regulatory functions on vital physiological pro-
cesses such as synaptic plasticity, learning and memory, sleep, food and water
intake, and astrocyte-mediated synaptic amplification [51]. Under pathological sta-
tus, astrocytes and mainly microglia excessively release massive concentration of
TNF-α, thereby leading important constituent of neuroinflammatory response that
marks a characteristic of several neurological disorders. Neuroinflammation itself at
the first initial stage is a protective response in the brain, but excessively inappro-
priate inflammatory responses are detrimental, and in fact, it diminish the neuronal
regeneration thereby leading to neurodegenerative diseases and other neurological
disorders [52, 53].

7. Conclusion

Microglia is a pivotal brain endogenous protective mechanism against various
injuries agents. If such an injury is tolerable, it triggers cellular responses that
protect the brain and precondition the body against more severe stimuli. Beyond
tolerable level, it triggers response that may potentially aggravate brain injury.
TNF-α is released by microglia-induced NFκB activation, and activated NFκB in
turn activates more TNF-α. The IκB-NFκB pathway together with other intracellu-
lar signaling pathway such as p38 MAPK pathway and JAK-STAT pathway that all
orchestrate cascade of cytokine production makes TNF-α so-called master regulator
of neuroinflammatory cytokine production. This phenomenon forms the basis of
TNF-α as major cytokine of brain neuroinflammation.
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