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Chapter

Analysis and Control of
Nonlinear Attitude Motion of
Gravity-Gradient Stabilized
Spacecraft via Lyapunov-Floquet
Transformation and Normal
Forms
Peter M.B. Waswa and Sangram Redkar

Abstract

This chapter demonstrates analysis and control of the attitude motion of a
gravity-gradient stabilized spacecraft in eccentric orbit. The attitude motion is
modeled by nonlinear planar pitch dynamics with periodic coefficients and addi-
tionally subjected to external periodic excitation. Consequently, using system state
augmentation, Lyapunov-Floquet (L-F) transformation, and normal form simplifi-
cation, we convert the unwieldy attitude dynamics into relatively more amenable
schemes for motion analysis and control law development. We analyze the dynam-
ical system’s periodicity, stability, resonance, and chaos via numerous nonlinear
dynamic theory techniques facilitated by intuitive system state augmentation and
Lyapunov-Floquet transformation. Versal deformation of the normal forms is
constructed to investigate the bifurcation behavior of the dynamical system. Out-
come from the analysis indicates that the motion is quasi-periodic, chaotic, libra-
tional, and undergoing a Hopf bifurcation in the small neighborhood of the critical
point-engendering locally stable limit cycles. Consequently, we demonstrate the
implementation of linear and nonlinear control laws (i.e., bifurcation and sliding
mode control laws) on the relatively acquiescent transformed attitude dynamics. By
employing a two-pronged approach, the quasiperiodic planar motion is indepen-
dently shown to be stabilizable via the nonlinear control approaches.

Keywords: gravity gradient, nonlinear attitude control, sliding mode,
Lyapunov-Floquet transformation, normal forms

1. Introduction

Ever since the launch of Sputnik—the first artificial satellite put into earth’s orbit
in 1957—mankind has increasingly become dependent on space-based technology
in many areas of our daily lives. For instance, space-based technology performs an
indispensable role in telecommunications, navigation, personal entertainment,
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weather forecasting, farming, security, defense, scientific exploration, research,
innovation, etc. Undoubtedly, the prominence of space technology in shaping
humanity’s future is unequivocal. The success or failure of a given space mission is
largely contingent upon the complex system analysis and design methodologies
exerted in converting the initial idea into an elaborate functioning enterprise [1]. It
is for this reason that reliable and efficacious methodologies and tools are consis-
tently utilized in space mission formulation and implementation. Thus, there is a
need to continuously examine the effectiveness of prevailing space mission analysis
and design methodologies. This is in order to improve prevailing tools and
approaches that shall expedite relatively simpler, more reliable, and accurate mis-
sion modeling and analysis.

Space systems are required to function nominally in their designated orbital
locations, maintain appropriate orientation, and conform to planned trajectories
despite the ambient perturbing space environment. Strict mission pointing require-
ments normally constrain spacecraft in orbit around a large body to maintain a fixed
stable orbital position and orientation during operation. However, perturbing
space-environment torques act to dislodge positioned spacecraft and disorient sta-
bilized ones [2, 3].

Modeling, analyzing, and controlling dynamics of space systems are therefore a
crucial component of space mission design. The quest for relatively simpler, more
accurate, and more reliable analytical methodologies and tools to represent, scruti-
nize, and manipulate the dynamics of space systems is therefore a worthwhile
undertaking.

Inopportunely, dynamics of space systems tend to be commonly represented by
coupled analytical models that possess complex structures encompassing
nonlinearity, parameter-variant coefficients, and periodic external excitation terms
[4–9]. The requisite analysis essential to fathom such motion is not a trivial under-
taking—except for few special cases, the general solution for such dynamical sys-
tems cannot be found. The complex structures of the motion’s analytical models
characteristically point to nondeterministic and potentially chaotic systems over a
range of initial conditions and system parameters. Therefore, to analyze dynamical
space systems, we often have to be content with nonautonomous, nonlinear, and
periodic differential equations [10, 11]. This presents an immense analysis chal-
lenge. For instance, time-varying eigenvalues of the periodic linear system matrix
cannot determine the system stability. Consequently, methods such as linearization
[12], averaging [13], and perturbation techniques [14, 15] have been consistently
used to analyze such complex nonlinear, periodic motion. However, the two latter
approaches tend to be limited to minimally excited systems (parameter multiplying
the periodic terms is small), while linearization is restricted to small domains about
the operating point. Further, such methods are inclined to be relatively cumber-
some and normally augmented with numerical approaches to analyze dynamical
systems and accomplish real-life applications [16–18].

The presence of perturbing torques in the ambient space environment tends to
disorient an already stabilized spacecraft and further alters the orbital motion [2, 3].
This is contrary to the prevailing strict pointing requirements that constrain the
satellite in orbit to maintain a stable orbital motion and fixed orientation during
mission operation. A number of strategies are employed to stabilize spacecraft
attitude motion and maintain a desired orientation despite the presence of
perturbing torques in the space environment. The most common attitude control
and stabilization approaches are three-axis stabilization, spin stabilization, and
gravity-gradient stabilization. To provide the determined control input required to
offset undesired attitude deviations, these methods employ either active control
systems (e.g., thrusters, magnetic torquers, reaction wheels) or passive control
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systems (e.g., booms). Unlike passive controllers, active controllers utilize an
external source of energy to drive the attitude control actuators [17, 19].

Among the stated attitude stabilization methods, gravity-gradient stabilization
of spacecraft attitude is attractive due to its relatively intrinsic simplicity, reliability,
and low cost [20]. However, it is mostly feasible in low earth orbit due to its
principle of operation as discussed in Section 2.

The motion about COM of a rigid gravity-gradient stabilized spacecraft is libra-
tory about the pitch axis. This axis is normal to the orbital plane in an inverse-
square gravity field. The satellite will oscillate about a position of stable relative
equilibrium if the work done by external perturbing forces is greater than the
rotational kinetic energy. The sufficient conditions for stability of relative equilib-
rium are explained in Section 2. The complete formulation of COM motion for a
gravity-gradient stabilized satellite in eccentric orbit consists of six coupled,
nonlinear second-order differential equations. This system of equations is consid-
ered analytically unsolvable in closed form [5, 7, 21–23].

This chapter aims to first investigate the periodicity, quasi-periodicity, and
chaotic behavior of the gravity-gradient stabilized attitude motion. Moreover, the
motion stability, resonances and bifurcation behavior will also be examined. Subse-
quently in Section 4, we synthesize suitable controllers to adequately offset the
attitude perturbations experienced by the gravity-gradient stabilized spacecraft in
an eccentric orbit. Requisite assumptions made to facilitate the attitude motion
analyses will be explicitly stated and qualified.

To model, analyze, and control the nonlinear motion with parameter-variant
coefficients and periodic forcing terms, we intend to use approaches based on:

• System state augmentation

• Lyapunov-Floquet (L-F) transformations

• Normal form (NF) theory

The fitting use of the aforementioned transformations and techniques enables
dynamical system analysis and control law development in transformed, parameter-
invariant, and more tractable coordinates that preserve the original system Lyapunov
stability properties [24, 25]. Consequently, we intend to exploit this propitious attri-
bute in our investigation. Applications of L-F transformations in spacecraft dynamics
have been previously investigated by authors such as [8, 26]. The former demon-
strates how L-F theory enhances the representation of relative spacecraft dynamics in
elliptical orbits, while the latter further proposes an orbit control law based on L-F
theory. On the other hand, this chapter focuses on the dynamics of a rigid body about
its COM while in elliptical orbit around a central large mass.

2. Gravity-gradient attitude stabilization in eccentric orbit

A gravity-gradient stabilized spacecraft attains a state of stable relative equilib-
rium when its Iz points along the radius vector, Iy points along the normal to the
orbit plane, and Ix is along the tangent to the orbit in the LVLH frame (Hill frame)
as shown in Figure 1a. In addition, the condition Iy > Ix > Iz must similarly be
satisfied.

If the work done by external perturbing torques is greater than the rotational
kinetic energy of the spacecraft about its COM, motion of the spacecraft in an
elliptical orbit will be libratory as illustrated in Figure 1b. Equations representing the
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spacecraft orbital motion are identical with those of a point mass in an inverse-square
law force field. To analyze the attitude dynamics, the spacecraft orbital motion
(motion of COM) can be reasonably assumed to be independent of the spacecraft
attitude motion (motion about COM). This assumption is justifiable because the
satellite is small compared to the dimensions of the orbit. Under this assumption, the
spacecraft’s orbital motion can hence transfer energy to the attitude motion, but the
converse is assumed not to be possible. Thus, orbital parameters as determined
functions of time are considered in analyzing attitude motion [7, 27].

When the spacecraft is considered as a rigid body in an inverse-square force field
along an elliptical orbit, a complete formulation of equations of motion can be
derived [5, 7, 21]. The resulting six second-order differential equations of motion
are nonlinear and coupled. These equations of motion cannot be solved analytically
in this exact form.

Ignoring other torques such as aerodynamic, magnetic, thermal bending, and
solar radiation pressure, we can derive the equations of spacecraft attitude motion
under the influence of inverse-square force field in an elliptical orbit. Additional
assumptions are an ideal, perfect sphere earth without oblateness; largest spacecraft
dimensions are extremely small compared to the orbit radius, and the spacecraft
mass is negligible compared to the mass of the central body [27].

We further assume that the exact equations of motion can be linearized in small-
angle motion characterization. Subsequently, the attitude dynamic models may be
considered to consist of two equations with coupled roll-yaw angles and a third
uncoupled equation describing the pitch angle dynamics. The pitch motion equation
is hence independent of roll-yaw motion. The coupled roll-yaw Ψð -ΩÞ equations are
homogeneous and can be solved for Ψ ¼ _Ψ ¼ Ω ¼ _Ω ¼ 0 [5, 7, 21, 27].

Consequently, the exact problem is reduced to the equation of pitchmotionwith
orbital parameters as functions of time and spacecraftmass parameters shown in Eq. (1):

€Θ þ 3
μ

r3
σ sinΘ cosΘ ¼ � _ω (1)

where 0≤ σ ≤ 1 is a dimensionless ratio of the spacecraft’s principal moments of
inertia given by

σ ¼ Ix � Iz
Iy

¼ Iroll � Iyaw
Ipitch

(2)

To analyze attitude motion in eccentric orbit, we substitute time with true
anomaly, where f is the independent variable. Moreover, the COM will obey the
following Keplerian orbit relations:

Figure 1.
Gravity-gradient stabilization. (a) Geometry of orbit and attiutde parameters, and (b) Pitch angle librations.
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r ¼ P

1þ e cos f
(3)

ω ¼ df

dt
¼

ffiffiffiffiffiffi

μP
p

r2
¼

ffiffiffiffiffiffi

μP
p

P2 1þ e cos fð Þ2 (4)

Thus

_ω ¼ �2
μ

r3
e sin f (5)

€Θ ¼ 1þ e cos fð Þ μ
r3

d2Θ

df 2

 !

� 2
μ

r3
e sin f

dΘ

df

� �

(6)

Substituting Eqs. (5) and (6) into Eq. (1) yields

1þ e cos fð ÞΘ″ � 2e sin fΘ0 þ 3σ sinΘ cosΘ ¼ 2e sin f (7)

This is the well-known equation of plane pitch angle libratory motion in ellipti-
cal orbit [5, 7, 21, 27]. The primes indicate differentiation with respect to f. The
planar pitch attitude motion equation is hence nonlinear with periodic coefficients
in f. Analysis of this motion and subsequent synthesis of a fitting controller is not
a trivial task. We hence intend to analyze this motion and synthesize suitable
controllers to stabilize the system.

3. Attitude motion analysis

In general, L-F transformation techniques facilitate obtaining solutions of
dynamical systems with periodic coefficients, evaluate periodically forced
responses, and design feedback control laws. We shall augment these capabilities
with normal form techniques (simplifies nonlinearity) and state augmentation
(converts nonautonomous to autonomous system). Subsequently, the emanating
synergies serve to accomplish the objectives of this chapter.

Floquet theory enables stability and response analysis of linear systems with
periodic coefficients, i.e., _x tð Þ ¼ A tð Þx tð Þ, s:t A tð Þ ¼ A tþ Tð Þ. Floquet theory uti-
lizes knowledge of characteristic exponents of the state transition matrix (STM) to
infer that if the solution of a system is obtained over a full principle period, then the
solution is known for all time [28, 29].

Further, the the Lyapunov-Floquet (L-F) transformation x tð Þ ¼ Q tð Þz tð Þ
reduces the original nonautonomous linear differential system to an autonomous
one with the form _z tð Þ ¼ Rz tð Þ where R is an n� n constant matrix. In the LFT
matrix, Q tð Þ can be approximated via the methodology described by [25, 30] using
shifted Chebyshev polynomials of the first kind. Chebyshev polynomials are chosen
because they produce better approximation and convergence than other special
orthogonal polynomials [31]. The approximation of LFT matrix via Chebyshev
polynomials contains elements Q ij tð Þ with truncated Fourier representations as

shown in Eq. (8). Q�1
ij tð Þ has similar Fourier representation:

Q ij tð Þ≈
a0
2
þ ∑

q

n¼1
an cos

πnt

T

� �

þ ∑
q

n¼1
bn sin

πnt

T

� �

(8)

Time-independent normal form (TINF) simplification facilitates construction of
relatively lesser complex but qualitatively equivalent models of the original
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nonlinear dynamical systems. On the other hand, time-dependent normal form
(TDNF) simplification considers original nonlinear dynamical systems with peri-
odic coefficients by utilizing Lyapunov-Floquet transformation. This simplification
is generally implemented on equations arising from Taylor series expansion via
successive application of nonlinear near-identity transformations. Such a transfor-
mation entails preservation of the original system’s stability and bifurcation charac-
teristics by the transformed models. The fundamental concept behind normal forms
methodology is to simplify the system by eliminating as many nonlinear terms as
possible. This is accomplished via application of successive series of near-identity
transformations on the original system. The near-identity coordinate transforma-
tions are nonlinear and local. The reader is directed to the well-documented litera-
ture on normal form theory found in works by authors such as [32–35].

To normalize nonlinear systems subjected to external periodic excitation, several
authors such as [34–37] either utilize approaches that introduce equation variables
and/or detuning parameters or incorporate a bookkeeping parameter in their meth-
odology. However, the augmenting parameters involved seemingly lack a uniform
explicit connection to the terms in the dynamic equations under consideration.
Consequently, we shall utilize a relatively more straightforward and intuitive
approach that involves augmenting the system states by converting the periodic
external excitation into a system state. The state augmentation approach here is
intuitive because the augmented states directly emanate from the periodic forcing
term(s); hence, they are neither ad hoc nor arbitrary. Moreover, neither a detuning
parameter nor a bookkeeping parameter is required.

Strictly speaking the behavior of the attitude motion as shown in Eq. (7) is
characterized in terms variation in true anomaly, f. However, the true anomaly
similarly varies with time; hence, the reference as implicit time history is preferred.
To demonstrate implicit time history behavior, we initially select e ¼ 0:2 and
σ ¼ 0:3. Later on in Section 3.3, we shall analyze the impact of different e-σ pair
values on the motion.

Both the motion in original coordinates, Eq. (7) and the corresponding state
augmented system, will be scrutinized. Figure 2 shows the implicit time history
behavior of the motion in original coordinates.

Similarly, we shall scrutinize the history behavior of the system in Eq. (7) after
augmenting the system states. In accordance with binomial expansion theorem
[38], since ∣e cos f ∣< 1 and ∣ �1ð Þe cos f ∣≪ 1, then the magnitude of the terms in the
binomial series progressively become smaller. Therefore, the binomial expansion of
the term 1þ e cos fð Þ�1 can be approximated as 1� e cos fð Þ. Eq. (7) becomes

Θ
″ ¼ 1� e cos fð Þ 2e sin fΘ0 � 3σ sinΘ cosΘþ 2e sin fð Þ (9)

Figure 2.
Motion history behavior in original coordinates for seven complete orbits. (a) Θ and Θ 0, (b) Phase portrait.
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Let

p ¼ cos f

p0 ¼ �sinf ¼ �q

q0 ¼ cos f ¼ p

9

>

=

>

;

(10)

After further substituting the trigonometric product term with its series
approximation given in Eq. (13) to the 7th order, the motion in Eq. (9) can be
expressed as

Θ
″ ¼ 1� epð Þ 2eqΘ0 � 3σ Θ� 2

3
Θ

3 þ 2
15

Θ
5 � 4

315
Θ

7
� �

þ 2eq
� �

(11)

Therefore, the augmented system state-space representation with
Θ1

0 ¼ Θ2;Θ2
0 ¼ Θ1

00ð Þ is shown in Eq. (12):

Θ
0
1

Θ
0
2

q0

p0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

0 1 0 0

�3σ 0 2e 0

0 0 0 1

0 0 �1 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

Θ1

Θ2

q

p

2

6

6

6

6

6

4

3

7

7

7

7

7

5

þ

0

2eq ep 1� Θ2ð Þ þ Θ2½ � � 3σepΘ1 � 3σ 1þ epð Þ � 2
3
Θ

3
1 þ

2
15

Θ
5
1 �

4
315

Θ
7
1

� �

0

0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(12)

Figure 3 shows the augmented state system history behavior. Allowing for the
expected minor discrepancies due to series and binomial expansion approximations,
the system state response is comparable to that of the system in original coordinates
shown in Figure 2.

From Figures 2 and 3a and b, the attitude motion is quasiperiodic as character-
ized by the absence of closed trajectory attractors in the phase space. The pitch
angle librates roughly between �1:5<Θ< þ 1:5 radians, while the pitch angle rate
of change varies between �1:0<Θ

0
< þ 1:5. The orbits generally appear to follow a

“heart-shaped” path starting at the origin with two non-closing lobes on either side.
Conversely, the augmented states are periodic as characterized by the closed circu-
lar limit cycle attractor centered at the origin in Figure 3d. The motion behavior
discussed here indicates that Θ and Θ

0 are susceptible to instability,
unpredictability, and chaos. Consequently, these aspects of the motion flow will be
investigated next. Neither the eigenvalues of the linear periodic term of Eq. (7) nor
of the state augmented system Eq. (12) can be used to determine stability. Conse-
quently, we’ll have to construct the Floquet transformation matrix (FTM) to ana-
lyze the dynamical system’s stability.

3.1 Stability and chaos

Stability analysis is preceded by computation of the dynamical system’s state
transition matrix, Φ tð Þ. We first prepare the motion in Eq. (7) for expansion via
shifted Chebyshev polynomials of the first kind by normalizing the principal
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period. This is because shifted Chebyshev polynomials are only valid for the period
interval 0; 1½ �.

The pitch angle trigonometric product term in Eq. (7) can be represented as a
product of the respective Taylor series expansion of sine and cosine as shown in
Eq. (13):

sinΘ cosΘ ¼ Θ� 2
3
Θ

3 þ 2
15

Θ
5 � 4

315
Θ

7 þ…þ akΘ
2k�1 (13)

where k ¼ 1; 2; 3;4…, also series coefficient ak ! 0 , as k ! ∞:
We can ignore the terms of order greater than 7 in Eq. (13) without significant

loss of accuracy because the follow-on terms have relatively small successive coef-
ficients that rapidly approach zero. For instance, the 9th order term has the
coefficient a5 ¼ 6:7791� 10�4, while the 11th order term’s coefficient is
a6 ¼ 1:98412� 10�5: Substituting the expanded trigonometric product in Eq. (7),
we obtain

Θ
″ ¼ 1

1þ e cos fð Þ 2e sin fΘ0 � 3σ Θ� 2
3
Θ

3 þ 2
15

Θ
5 � 4

315
Θ

7
� �

þ 2e sin f
� �

(14)

To normalize the principal period, let f ¼ 2πζ. Equivalently, ζ∈ 0; 1½ � represents
duration within the principal period. Let Z represent the principal period, and then
this implies that for a periodic term, A ζð Þ ¼ A ζ þ Zð Þ. It follows

Θ
0 ¼ dΘ

dζ
� 1
2π

, Θ
″ ¼ 1

4π2
d2Θ

dζ2
(15)

Figure 3.
Motion history behavior of the augmented state system for seven complete orbits. (a) Θ and Θ 0 response,
(b) Θ and Θ 0 phase portrait, (c) q(f) and p(f) response.
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After substituting Θ
0 and Θ

00 from Eq. (15) into Eq. (14), the obtained state-
space representation of the normalized attitude motion is given in Eq. (16), where

dΘ=dζ ¼ x
◦

1 and d2Θ=dζ2 ¼ x
◦

2. Further, Θ 0ð Þ ¼ 0; Θ
◦

0ð Þ ¼ 0
n o

constitutes the ini-

tial conditions of the represented motion which correspond to pitch librations at
position 1 of Figure 1b:

x
◦

1

x
◦

2

2

6

6

4

3

7

7

5

¼

0 1

�12π2σ
1þ e cos 2πζð Þ

4πe sin 2πζ
1þ e cos 2πζð Þ

2

6

6

6

4

3

7

7

7

5

x1

x2

2

6

6

4

3

7

7

5

þ 12π2σ
1þ e cos 2πζð Þ

0

2
3
x31 �

2
15

x51 þ
4
315

x71

2

6

6

6

4

3

7

7

7

5

þ

0

8π2e sin 2πζ
1þ e cos 2πζð Þ

2

6

6

6

4

3

7

7

7

5

(16)

It is clear that Eq. (16) is of the form

x
◦

ζð Þ ¼ A ζð Þx ζð Þ þ f ζ;xð Þ þ F ζð Þ (17)

3.1.1 Floquet multipliers and exponents

To facilitate computation of STM, FTM, and L-F transformation matrices using
Chebyshev polynomials, we utilized the Chebfun software package on MATLAB™
[39]. Summarily, Chebfun applies piecewise Chebyshev polynomial interpolation to
construct smooth functions over the interval �1;þ1½ �. Recall that ζ ¼ f=2π and Z are
the normalized principal period; hence, the computed FTM ¼ Φ Zð Þ is

Φ Zð Þ ¼
0:9462 �0:0529

1:9796 0:9462

� �

(18)

The computed Floquet multipliers are critical since they lie on the unit circle
with values of 0:9462� 0:3236ið Þ as shown in Figure 4. Consequently, this reveals a
marginally stable system for the chosen e-σ pair. It follows that the corresponding

Figure 4.
Floquet multiplier location.
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Floquet exponents 0� 0:3295ið Þ are purely imaginary. This is consistent with the
quasiperiodic system phase portraits that illustrate a librational motion.

The motion is hence stable in the sense of Lyapunov, but the inherent oscilla-
tions are disruptively significant to jeopardize nominal execution of the spacecraft
mission.

3.1.2 Poincaré map

Figure 5 shows the constructed Poincaré section of the flow. There is a discern-
ible main cluster of points in close proximity to the origin but restricted to the
positive side of Θ0. Relatively scanty, isolated discrete points occupy the lower
bottom half of the plot bound by �1<Θ< 2:

The Poincaré section composition suggests two possible flow behaviors. The
groupings suggest a quasiperiodic trajectory. On the other hand, the scanty random
points devoid of clustering could be due to transient behavior or chaos. A chaotic
motion can briefly dwell on a near periodic trajectory before changing to a disparate
trajectory with a period that is a multiple of the preceding motion. Consequently, it
is needed to further investigate the presence of chaos in the attitude motion
dynamics.

3.1.3 Chaos

We define chaos as a bounded aperiodic steady-state motion behavior that is not
in equilibrium and is sensitive to initial conditions. A minuscule divergence in the
input rapidly grows to spawn an overwhelming difference in the system response.
We begin investigating chaos in the attitude motion by plotting the system implicit
time history with a minute divergence to the initial condition of the state, Θ. We set
the first initial condition to zero; the divergent second initial condition is obtained

Figure 5.
Poincaré section of the attitude motion.

Figure 6.
Chaos: attitude motion sensitivity to initial conditions.

10

Advances in Spacecraft Attitude Control



by adding ϵ ¼ 10�12 to the zero initial condition. The obtained implicit time history
of the two curves reveal the onset and progression of an overwhelming difference in
the system response as illustrated in Figure 6. The slightly divergent initial condi-
tion results in an overwhelming difference in response that begins in the second half
of the 4th orbit and then rapidly grows in the subsequent orbits. The attitude
motion is hence chaotic.

3.1.4 Lyapunov exponents

To determine the average rate of divergence between the initially neighboring
trajectories defined locally in the state space, we shall scrutinize the dynamic
behavior of the motion’s Lyapunov exponents. Lyapunov exponent stability analysis
affords a means of quantifiable expression for initial conditions sensitivity and
dependence (i.e., chaos), by describing the exponential rate of growth or decay of a
perturbation to a trajectory as time progresses [40]. Lyapunov exponent λ is
numerically expressed as

λ ¼ lim
t!∞

1
t
ln

δy tð Þ
δy 0ð Þ

	

	

	

	

	

	

	

	

� �

(19)

where δy tð Þ is the tiny separating perturbation vector between the trajectories.
The value of Lyapunov exponent will distinguish the nature of the trajectory
according to the following criteria: (i) λ<0: Trajectory is stable and the motion is
asymptotically stable. (ii) λ ¼ 0: Trajectory is neutral and the motion is character-
ized by some sort of steady-state. (iii) λ>0: Trajectory is unstable and chaotic.
The Lyapunov exponent behavior for the motion given Eq. (16) is illustrated in
Figure 7.

The computed Lyapunov exponents are equal in magnitude but opposite in
sign with increasing periods because the flow in Eq. (16) is nonautonomous
Hamiltonian. Hamiltonian systems are conservative. Therefore, the magnitude of λ1
which measures expansion in one direction is equal to the magnitude of λ2 which
measures contraction in another direction. Since λ1 >0 always, then as prescribed
by the above distinction for λ, the attitude motion is chaotic. This outcome is
consistent with the preceding chaos analyses that scrutinized motion sensitivity
to initial conditions.

Figure 7.
Dynamics of Lyapunov exponents for the attitude motion.
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3.1.5 Stability charts

The orbit eccentricity and spacecraft’s ratios of principal moments of inertia are,
respectively, defined as e∈ 0; 1f g and σ ∈ 0; 1f g. On the other hand, our stability
analysis so far has been illustrated in the courtesy of arbitrarily set values of
e ¼ 0:2 ; σ ¼ 0:3ð Þ. Consequently is it essential to holistically scrutinize the motion
behavior for all possible values of e and σ. Constructing stability charts which
partition the e-σ plane into stable and unstable regions enables scrutiny of motion
stability as e and σ vary simultaneously. Transition curves in stability charts consti-
tute frontiers that separate stable regions from unstable regions. We can derive
transition curves in closed form via the FTM. Floquet theory requires a stable
system to have a Floquet multiplier of magnitude, ∣ρk∣ ≤ 1. It can hence be proven
that the transition from stability to instability occurs when both Floquet multipliers
are equal to 1 or both are equal to �1 (see Figure 4). Therefore, the transition
curves in the e-σ plane where the solution to the linear periodic term of Eq. (17)
changes from stable to unstable (or vice versa) are determined by the conditions
Trace FTM½ � ¼ �2 or ∣ρk∣ ¼ 1.

Even though we can only construct transition curves associated with the linear
term of the attitude motion equation, the outcome provides insightful perusal into
the behavior of the whole equilibrium solution. The complete solution behavior can
be arrived at by augmenting the evaluated linear periodic stability behavior with the
combined effect of the nonlinear term f x; ζð Þ and forcing term F ζð Þ in Eq. (17). For
instance, if a given e-σ pair is initially located in the unstable region of the FTM-
dependent stability chart, then the nonlinear and forcing terms will tend to exacer-
bate this instability, rendering the complete solution unstable for that particular
e� σ combination. A similar argument can be made for an e-σ pair located in a
stable region. The constructed stability chart of the attitude motion is shown in
Figure 8.

The darker regions constitute stable points while the lighter regions are unstable.
The stability chart has a slightly larger stable region than the unstable region.

Figure 8.
Stability chart of the attitude motion.
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Unstable solutions appear to be dominated by two regions approximately defined
by (i) σ ∈ 0;0:2f g and increasing values of e plus (ii) e∈ 0;0:3f g and increasing
values of σ. Essentially, a spacecraft with mass distribution such that σ >0:2 is
amenable to a wider range of eccentricity values above 0.2 to achieve an intended
stable pitch angle motion.

For instance, we have previously considered the pair e ¼ 0:2; σ ¼ 0:3f g; this pair
is located in the stable region corresponding to critical Floquet multipliers con-
firmed in Figure 4. The motion at this location is stable in the sense of Lyapunov.
The stability chart further accords a means of scrutinizing generalized stability
behavior trends or commonalities between disparate e-σ pairs. By picking represen-
tative e-σ pairs from different regions, we tabulate the resultant illustrative Floquet
multipliers as shown in Table 1.

From Table 1, we note that both selected marginal and stable regions are asso-
ciated with critical Floquet multipliers. This implies that the pertinent e-σ pair
characterizes a motion stable in the sense of Lyapunov; i.e., the pitch angle libra-
tions are bound by Θ∈ �π;þπf g. This is consistent with the dynamics presented in
Figures 1 and 3. However, in the unstable regions, Floquet multipliers have magni-
tudes ∣ρk∣> 1, implying that the pitch angle wanders beyond �π:

3.2 Resonance

The attitude dynamics are dominated by the linear and forcing terms delineated
in Eq. (17). This is because if we consider the motion composed of only the linear
and forcing terms, i.e., x◦ ζð Þ ¼ A ζð Þx ζð Þ þ F ζð Þ, the numerical solution is
unbounded as shown in Figure 9. This is not the case if we consider motion
composed of any of the following term combinations: x◦ ζð Þ ¼ A ζð Þx ζð Þ,
x
◦

ζð Þ ¼ A ζð Þx ζð Þ þ f x; ζð Þ, or x◦ ζð Þ ¼ f x; ζð Þ þ F ζð Þ.
Moreover, if we consider the L-F transformed motion, Floquet exponents

(eigenvalues of R) represent frequencies associated with the linear term. Periodic
elements of the nonlinear matrix are a product of the truncated Fourier series
matrices Q ζð Þ and Q�1 ζð Þ. On the other hand, periodic elements of the forcing
matrix are likewise multiplied by Q�1 ζð Þ. Subsequently, resonance between the
Floquet exponents and any of the periodic terms in the forcing matrix elements will
trigger instability in the motion as well.

Bifurcation triggers the system’s equilibrium solutions to transition between the
disparate regions of the stability chart. The orbit eccentricity, e, is the bifurcation
parameter for the attitude motion (see Eq. (16)). This is because the general on-
orbit spacecraft mass properties represented by σ typically tend to be constant for a

Stability region e σ Floquet multipliers (ρ1, ρ2Þ ∣ρ1∣ ∣ρ2∣

0.82 0.6 �1:06522, � 0:93877 1.06 0.94

Unstable 0.6 0.1 �0:20126, � 4:96854 0.20 4.96

0.8 0.14 �0:10212, � 9:79244 0.10 9.79

Marginal 0.2 0.5 0:13463� 0:99099i 1 1

0.4 0.4 0:79713� 0:60382i 1 1

Stable 0.6 0.5 �0:1117 � 0:99373i 1 1

0.8 0.9 0:71565� 0:69844i 1 1

Table 1.
Stability of representative e-σ pairs.
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gravity-gradient stabilized spacecraft. Therefore, it is essential to analyze the equi-
librium solution dynamics as small increments are applied on the bifurcation
parameter. We develop the normal form of our dynamics in the next section to
facilitate bifurcation behavior analysis. Normal forms are not unique, consequently
near identity transformation for the state-augmented system, and the L-F
transformed system will be undertaken separately.

3.3 Versal deformation of the normal form and bifurcation analysis

Versal deformation refers to embedding the system in a parameterized family of
systems containing all possible dynamics that can occur near the bifurcation point.
Moreover, the family of systems should be transverse to the bifurcation surface with
the number of parameters equal to the codimension of the bifurcation [41]. The
attitude motion undergoes a codimension-one bifurcation because only one parame-
ter e is responsible for the loss of stability (for gravity-gradient stabilization to be
maintained, σ has to remain fixed). Because our critical Floquet multipliers are
complex and lie on the unit circle, this system will experience a Hopf bifurcation.
Further, it is “well-known” that Hopf bifurcation is a codimension-one bifurcation.
Firstly, we shall formulate the normal forms of nonlinearities up to the cubic order in
Eqs. (16) and (12) to demonstrate the intended approach. Normalization of dynamics
with higher order nonlinearities can be accomplished via the same techniques.

3.3.1 State-augmented system

To normalize the state-augmented system, we first apply the modal transforma-
tion Θ ¼ My to Eq. (12) and obtain Eq. (20), where Θ ¼ Θ1 Θ2 q p½ �T :

y0 ¼ JyþM�1

0

2eq ep 1� Θ2ð Þ þ Θ2½ � � 3σepΘ1 � 3σ 1þ epð Þ � 2
3
Θ

3
1

� �

0

0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(20)

Figure 9.
Resonance in linear and forcing terms.
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This system now possesses 4th order nonlinearity. J is in the Jordan canonical
form. The normal form is evaluated by successive application of near identity
transformation of the form

y ¼ vþ h4 v; fð Þ (21)

where hr vð Þ is an n� 1 homogeneous vector of monomials in v of degree r. The
state-augmented system is independent of periodic coefficients; hence, we solely
obtain the TINF given in Eq. (22):

v01
v02
v03
v04

2

6

6

6

4

3

7

7

7

5

¼

�iv1

iv2

�i0:948683v3 þ i30:4002v1v2v3 þ i1:05409v23v4
i0:948683v4 � i30:4002v1v2v4 � i1:05409v3v24

2

6

6

6

4

3

7

7

7

5

(22)

When the external forcing term is augmented as a system state, the magnitude
of the external forcing frequency appears as solitary, linear, imaginary conjugate
coefficients in the normal form, i.e., 1 (see Eq. (9)). Eigenvalues of the linear matrix
in Eq. (12) constitute the conjugate coefficients in the linear terms of the reduced
nonlinearity normal forms (i.e., �i0:948683).

Moreover, after obtaining the straightforward solutions of v1 fð Þ and v2 fð Þ and
then substituting these values in the equations for v03 fð Þ and v04 fð Þ, the last two
equations of the normal form can be expressed as

v03 ¼ i �0:948683þ 30:4002C1C2ð Þv3 þ i1:05409v23v4
v04 ¼ i 0:948683� 30:4002C1C2ð Þv4 � i1:05409v3v24

where C1 and C2 are the integration constants originating from the analytical
solutions of v1 fð Þ and v2 fð Þ, respectively.

We shall investigate the bifurcation of Eq. (12) via its normal form given above.
Because the periodic system maintains the same general structure, we may treat the
respective limit cycles as equilibria and study their bifurcations. We utilize the
versal deformation of the normal form to investigate the change in the stability
structure of the dynamics in the neighborhood of the critical point of the bifurca-
tion parameter. Essentially, construction of versal deformation of the normal form
facilitates characterization of system dynamics at the critical point and its small
neighborhood. Therefore, we handily gain complete understanding of the qualita-
tive phase space dynamics of the dynamical system in the neighborhood of the
critical point.

We define the normal form versal deformation parameter as μ1. The parameter
μ1 represents a small change in the eigenvalues of the normal form corresponding to
a small change in the bifurcation parameter in the original system coordinates. It is a
prerequisite condition to obtain a relationship between the versal deformation
parameter μ1 and the original system bifurcation parameter e. Incorporating μ1 in
Eq. (22), we obtain Eq. (23):

v01
v02
v03
v04

2

6

6

6

4

3

7

7

7

5

¼

μ1 � i 0 0 0

0 μ1 þ i 0 0

0 0 μ1 �ϖ 0

0 0 0 μ1 þϖ

2

6

6

6

4

3

7

7

7

5

v1

v2

v3

v4

2

6

6

6
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3

7

7

7

5

þ

0

0

i1:05409v23v4
�i1:05409v3v24

2

6

6

6

4

3

7

7

7

5

(23)

where ϖ ¼ i 0:948683� 30:4002C1C2ð Þ.
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By defining small increments on the bifurcation parameter as η, we can write
ek ¼ ec þ ηk to represent the k disparate sets of bifurcation parameter in the neigh-
borhood of the critical parameter ec ¼ 0:2. We employ the least squares, curve
fitting technique proposed by [42] to obtain the relationship between μ1 and η, as
μ1 ¼ 1:47476þ i0:301628ð Þη� 1:82052þ i0:414608ð Þη2. NB values of C1 and C2 in
Eq. (23) were evaluated by forward action transformations of initial conditions in
the original coordinates, i.e., Θ1 ¼ Θ2 ¼ 0, p ¼ 1, q ¼ 0:

The closed-form analytical solutions for v1 fð Þ and v2 fð Þ in the versal deformation
in Eq. (23) are straightforward. To obtain v3 fð Þ and v4 fð Þ, we introduce the complex
changes of variable v3 fð Þ ¼ u1 � iu2 and v4 fð Þ ¼ u1 þ iu2 followed by the polar
coordinates u1 ¼ R cos θ and u2 ¼ Rsin θð Þ. The last two equations in Eq. (23)
become

R0 ¼ Re μ1ð ÞR
θ0 ¼ 0:948683� 30:4002C1C2 � 1:05409R2




(24)

After solving Eq. (24), we utilize the results to complete the closed-form ana-
lytical solution of Eq. (23) as given in Eq. (24):

v1 fð Þ ¼ eμ1 fC1 exp �ifð Þ
v2 fð Þ ¼ eμ1 fC2 exp ifð Þ

v3 fð Þ ¼ eμ1 fC3 exp � 0:948683� 30:4C1C2ð Þf � 0:52705e2μ1tC2
3

μ1
þ C4

� �

i

v4 fð Þ ¼ eμ1 fC3 exp 0:948683� 30:4C1C2ð Þf � 0:52705e2μ1fC2
3

μ1
þ C4

� �

i

(25)

Similarly, C3 and C4 are the integration constants originating from the analytical
solutions of v3 fð Þ and v4 fð Þ, respectively. The values of these integration constants
are evaluated from the initial conditions specified in the original coordinates. After
back transformation of the normal form closed-form analytical solutions above, we
obtain the motion in the original coordinates.

The back transformed v1 fð Þ and v2 fð Þ constitute the augmented states given in
Figure 3c. Moreover, μ1 6¼ 0 but is generally small in the order of magnitude 10�4.
The integration constants on evaluation are imaginary whose magnitudes are
close to identity. Consequently, from Eq. (25), back transformation of the
sinusoidal v1 fð Þ and v2 fð Þ will result in the trigonometric augmented states whose
amplitude is determined by the magnitude of the integration constants. From
Eq. (24), we can express the transient solution of R as R ¼ ei ∓iμ1�jCjð Þ. Since μ1 6¼ 0,
the motion is characterized by a locally stable limit cycle in the neighborhood of
the bifurcation point. The limit cycle is stable in the sense of Lyapunov but not
asymptotically stable. Post-bifurcation attractors that transform into
quasiperiodic attractors portraying a limit cycle in the original coordinates are
obtained via back transformation and subsequently shown in Figure 10
(η ¼ 0:00001).

3.3.2 L-F transformed system

Here, we also demonstrate analysis of bifurcation behavior subject to
different values of e-σ pair. Consequently, by utilizing the developed stability chart
(Figure 8), we select e ¼ 0:1; σ ¼ 0:2f g. This e-σ pair lies on a transition curve;
hence, the system is guaranteed to be bifurcating. Again, by considering up to the
cubic nonlinearity, the history behavior from Eq. (16) is shown in Figure 11.
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The system likewise possesses critical Floquet multipliers that lie on the unit
circle of values (0:1435� 0:9896i) and purely imaginary Floquet exponents,
�1:4268i. The computed FTM and R matrices are given in Eq. (26):

Φ Zð Þ ¼
0:1435 �0:1914

5:1161 0:1435

� �

, R ¼
0 �0:276

7:376 0

� �

(26)

The computed periodic L-F transformation Q ζð Þ matrix and Q�1 ζð Þ are plotted
in Figure 12.

Figure 10.
Poincaré map of state augmented motion post-bifurcation behavior.

Figure 11.
L-F transformed system implicit time history response for seven complete orbits. (a) x1 and x2, and (b) Phase
portrait

Figure 12.
Plot of elements of the LFT matrix and its inverse. (a) Qij (ζ), (b) Qij

�1 (ζ).
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We consider the L-F transformed dynamics in Eq. (27) up to the cubic
nonlinearity. After applying the L-F transformation given in Eq. (19) on the attitude
motion in Eq. (16), we obtain the system in Eq. (27):

z
◦ ¼ Rz þQ�1

0
12π2σ

1þ e cos 2πζð Þ
2
3

Q11z1 þQ12z2ð Þ3
� 


2

4

3

5þQ�1
0

8π2e sin 2πζ
1þ e cos 2πζð Þ

2

4

3

5

(27)

To normalize this externally excited motion, the system states are augmented to
convert the system from nonautonomous to autonomous. We define additional
states shown in Eq. (28) and plotted in Figure 13:

p ¼ cos 2πζð Þ
p
◦ ¼ �2πsin 2πζð Þ ¼ �q

q
◦ ¼ 4π2 cos 2πζð Þ ¼ 4π2p

9

>

=

>

;

(28)

After substituting the above augmented states into Eq. (27), we obtain the
system shown in Eq. (29)—whose order of nonlinearity increases to four. The
transformed denominator term 1þ e cos 2πζð Þð Þ�1 has been approximated by the
binomial expansion equivalent, i.e., 1þ epð Þ�1 ≈ 1� epð Þ:

Apart from raising the order of nonlinearity, state augmentation further intro-
duces periodic linear terms, 4πeQ�1

12 q and 4πeQ�1
22 q in Eq. (29). Consequently, the

augmented dynamics with linear parameter-variant coefficients necessitate a sec-
ond L-F transformation to convert the linear term to parameter invariant:

z
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q
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5

þ 8π2σ

1� epð Þ Q11z1 þ Q12z2ð Þ3Q�1
12

1� epð Þ Q11z1 þ Q12z2ð Þ3Q�1
22

0

0
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þ 4πe

q 1� epð ÞQ�1
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q 1� epð ÞQ�1
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0

0
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7

7

7

5

(29)

The computed parameters corresponding to the second L-F transformation are
as follows: critical Floquet multipliers, 0:1435� 0:9897i, and purely imaginary

Figure 13.
Augmented system states behavior. (a) p(ζ) and q(ζ), (b) Phase portrait.
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Floquet exponents, 0� 1:4268i. The computed second FTM and constant R
matrices are given in Eqs. (30) and (31), respectively:

Φ
∗ Zð Þ ¼

0:1435 �0:1914 �0:4343 �0:054

5:1161 0:1435 �2:0844 0:307

0 0 1 1

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(30)

R ∗ ¼

0 �0:276 �0:6456 �0:0022

7:376 0 �0:1165 0:4524

0 0 0 0

0 0 0 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(31)

The computed second periodic L-F transformation matrix, Q ∗ ζð Þ, and its
inverse, Q ∗�1 ζð Þ, are similarly presented as plots in Figure 14.

We designate the second L-F transformation as z ¼ Q ∗w. Here,
z ¼ z1 z2 p q½ �T. After applying the second L-F transformation to the state
augmented periodic system, we obtain

w
◦ ¼ R ∗wþQ ∗�1 8π2σ

� 

1� epð Þ Q11z1 þQ12z2ð Þ3Q�1
12

1� epð Þ Q11z1 þQ12z2ð Þ3Q�1
22
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�Q ∗�1 4πe2
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qpQ�1
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22
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7

7

5

(32)

Applying the modal transformationw ¼ M ∗ y to Eq. (32) transmutes this system
into Eq. (33):

y
◦ ¼ JyþM

∗�1Q ∗�1 8π2σ
� 

1� epð Þ Q11z1 þQ12z2ð Þ3Q�1
12

1� epð Þ Q11z1 þQ12z2ð Þ3Q�1
22
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∗�1Q ∗�1 4πe2
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7

5

(33)

where

z1 ¼ ∑
4

i¼1
Q ∗

1iwi, z2 ¼ ∑
4

i¼1
Q ∗

2iwi, p ¼ ∑
4

i¼1
Q ∗

3iwi, q ¼ ∑
4

i¼1
Q ∗

4iwi

and

w1 ¼ ∑
4

i¼1
M ∗

1iyi, w2 ¼ ∑
4

i¼1
M ∗

2iyi, w3 ¼ ∑
4

i¼1
M ∗

3iyi, w4 ¼ ∑
4

i¼1
M ∗

4iyi

J, y, and y
◦ take the form previously described in Eqs. (20) and (21).

We first evaluate the TDNF and then average out the periodic terms to obtain
the simplified TINF. The closed-form analytical solutions for v1 ζð Þ and v2 ζð Þ are
constants. Variables v1 ζð Þ and v2 ζð Þ in the v◦3 and v

◦

4 differential equations are
substituted by their respective computed constants. This computation is carried out
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through the forward action transform of the L-F, modal, and near-identity trans-
formations of the initial conditions declared in the original coordinates:

v
◦
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7

7
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(34)

The Floquet exponents are conjugate coefficients in the linear terms of the
normal forms before being multiplied by the substituted constant values equal to
v1 and v2.

Figure 14.
Plot of elements of the second LFT matrix and its inverse. (a) Qij

* (ζ), (b) Qij
*�1 (ζ).
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Similarly, we define the normal form versal deformation parameter as μ2 and
incorporate it into Eq. (34):
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(35)

where λ3 ¼ 0:0106945þ i2:12186ð Þ and λ4 ¼ 0:0106945� i2:12186ð Þ.
After defining small increments on the bifurcation parameter again as η, we

express the k disparate sets of bifurcation parameter in the neighborhood of the
critical parameter ec ¼ 0:1 as, ek ¼ ec þ η. The relationship between μ2 and η is
evaluated via the procedure previously stated in Section 3.3.1 to yield
μ2 ¼ 0:132784� i0:842528ð Þη� 3:04196� i7:13545ð Þη2.

The closed-form analytical solutions for v1 ζð Þ and v2 ζð Þ of the versal deformation
normal form are straightforward. To obtain v3 ζð Þ and v4 ζð Þ, we introduce the com-
plex changes of variable, v3 ζð Þ ¼ u1 � iu2 and v4 ζð Þ ¼ u1 þ iu2 followed by the polar
coordinates u1 ¼ R cos θ and u2 ¼ Rsin θð Þ. The last two equations in (35) become

R
◦

¼ Re μ2ð Þ � 0:0106945½ �R
θ
◦

¼ 2:12187 þ 0:0005599R2

9

=

;

(36)

We solve Eq. (36) and use the results to obtain the remaining analytical solutions
of Eq. (35) as shown in Eq. (37):

v1 ζð Þ ¼ μ2ζ þ C1

v2 ζð Þ ¼ μ2ζ þ C2

v3 ζð Þ ¼ e �0:01069þμ2ð ÞζC3e
�Γi

v4 ζð Þ ¼ e �0:01069þμ2ð ÞζC3e
Γi

(37)

where Γ ¼ 2:1219ζ þ 0:00028e �0:02138þ2μ2ð ÞζRe C2
3ð Þ

μ2�0:01069 þ Re C4ð Þ
� �

.

Ci (i ¼ 1; 2; 3;4) are the respective constants of integration whose value is eval-
uated from the initial conditions specified in the original coordinates. C1 and C2 are
real, whereas C3 and C4 are complex. μ2 is similarly small in the order of magnitude

Figure 15.
Poincaré map of L-F transformed motion post-bifurcation behavior.
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10�4. v1 ζð Þ and v2 ζð Þ back transformation via inverse near-identity, modal, and
single L-F transformations forms the augmented states given in Eq. (28) and is
plotted in Figure 13. Eq. (36) yields a steady-state solution of the limit cycle
amplitude as R ¼ Re μ2ð Þ

0:0106945. When μ2 6¼ 0, the solution of v3 ζð Þ and v4 ζð Þ results in
locally stable limit cycle with amplitude corresponding to R ¼ Re μ2ð Þ

0:0106945. Conse-
quently, the quasiperiodic attractors in the original coordinates delineating a limit
cycle are obtained after back transformation as shown in Figure 15 (η ¼ 0:0001).

Solutions of the versal deformation equations enable investigation of the post-
bifurcation steady-state behavior in the small neighborhood of the bifurcation
point. However, as observed by [42], this method is only useful for local analysis.
This is because minor errors introduced by back transformation close to the bifur-
cation points significantly grow as you move further away.

4. Attitude motion feedback control

After setting e ¼ 0:2 and σ ¼ 0:3, the motion in Eqs. (9) and (16) is then
numerically integrated to obtain the uncontrolled responses shown in Figure 16a
and b, respectively (NB Figure 16a is the same as Figure 2a). The slight difference
in the long-term motion behavior in Figure 16b may be attributed to the approxi-
mation of the trigonometric product term by a truncated series in Eq. (13) and
possibly fidelity of the numerical integrator used in the computation. As established
in Section 3.1, the attitude motion for the considered eð -σÞ pair is quasiperiodic,
marginally stable, and chaotic. Despite the system being stable in the sense of
Lyapunov, the inherent oscillations are disruptively significant and require stabili-
zation if the spacecraft is expected to successfully conduct its mission.

Motion controller design shall be undertaken on augmented state system, L-F
transformed, and near-identity transformed coordinates. We shall hence first trans-
form the system dynamics into these more amenable but topologically equivalent
dynamical structures that retain the Lyapunov stability and bifurcation properties of
the original system. Augmentation of the attitude dynamic states has been conducted
in Section 3. Control law development will be first considered in L-F transformed
coordinates and then followed by near-identity transformed coordinates of Eq. (16).

4.1 Lyapunov-Floquet transformation

Prior to computing the L-F transformation matrix Q ζð Þ and its inverse, Q�1 ζð Þ
matrices (for the e ¼ 0:2, σ ¼ 0:3 case), we computed the FTM and R matrices
over the interval ζ∈ 0; 1½ � via shifted Chebyshev polynomials of the first kind for the

Figure 16.
Uncontrolled attitude motion.
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system in Eq. (16). The evaluated aforementioned matrices are shown below. Here
we alternatively present elements of Q ζð Þ and Q�1 ζð Þ as truncated Fourier series
described in Eq. (8). Previously in Figures 12 and 14, we have presented the
periodic plots of these series. Further, recall that ζ ¼ f

2π and Z are the normalized
principal period; hence, FTM ¼ Φ Zð Þ:

Φ Zð Þ ¼
0:9462 �0:0529

1:9796 0:9462

� �

, R ¼
0 �0:0539

2:0159 0

� �

(38)

Q ζð Þ ¼ Q11 Q12

Q21 Q22

� �

, Q�1 ζð Þ ¼ Q�1
11 Q�1

12

Q�1
21 Q�1

22

" #

(39)

where

Q11 ¼ �0:138896þ 1:24968 cos 2πζð Þ � 0:121824 cos 4πζð Þ þ 0:0121464 cos 4πζð Þ
� 0:00121854 cos 8πζð Þ þ 0:000122567 cos 10πζð Þ

Q12 ¼ 0:201902 sin 2πζð Þ � 0:0196812 sin 4πζð Þ þ 0:00196227 sin 6πtð Þ
� 0:000196857 sin 8πζð Þ

Q21 ¼ �7:44496 sin 2πζð Þ þ 1:49121 sin 4πζð Þ � 0:224998 sin 6πζð Þ
þ 0:0302284 sin 8πζð Þ

Q22 ¼ 0:0074811þ 1:20128 cos 2πζð Þ � 0:24076 cos 4πζð Þ þ 0:0363337 cos 6πζð Þ
� 0:00488192 cos 8πζð Þ þ 0:000615458 cos 10πζð Þ

Q�1
11 ¼ 0:178684þ 0:831759 cos 2πζð Þ � 0:00416167 cos 4πζð Þ

� 0:00201274 cos 6πζð Þ � 0:001088 cos 8πζð Þ � 0:000706808 cos 10πζð Þ
� 0:000523275 cos 12πζð Þ � 0:000466034 cos 14πζð Þ
� 0:0258801 sin 2πζð Þ þ 0:000259231 sin 4πζð Þ þ 0:000188365 sin 6πζð Þ
þ 0:000136072 sin 8πζð Þ þ 0:000110821 sin 10πζð Þ þ 0:000103106 sin 14πζð Þ

Q�1
12 ¼ �0:0043031 cos 2πζð Þ � 0:000772303 cos 4πζð Þ þ 0:00012908 cos 6πζð Þ

þ 0:000115479 cos 8πζð Þ þ 0:000107006 cos 10πζð Þ þ 0:000110097 cos 12πζð Þ
þ 0:000112704 cos 14πζð Þ � 0:138297 sin 2πζð Þ � 0:0123985 sin 4πζð Þ
þ 0:00137926 sin 6πζð Þ þ 0:000923347 sin 8πζð Þ þ 0:00068248 sin 10πζð Þ
þ 0:000583058 sin 12πζð Þ þ 0:000509416 sin 14πζð Þ

Q�1
21 ¼ 0:155206 cos 2πζð Þ � 0:00365144 cos 4πζð Þ � 0:00363534 cos 6πζð Þ

� 0:00338305 cos 8πζð Þ � 0:00343186 cos 10πζð Þ � 0:00327608 cos 12πζð Þ
� 0:00335147 cos 14πζð Þ þ 4:98815 sin 2πζð Þ � 0:0586199 sin 4πζð Þ
� 0:0388447 sin 6πζð Þ � 0:0270502 sin 8πζð Þ � 0:0218882 sin 10πζð Þ
� 0:0173497 sin 12πζð Þ � 0:0151485 sin 14πζð Þ

Q�1
22 ¼ 0:0835005þ 0:844365 cos 2πζð Þ þ 0:0815938 cos 4πζð Þ � 0:00321618 cos 6πζð Þ

� 0:00173261 cos 8πζð Þ � 0:0010434 cos 10πζð Þ � 0:000742632 cos 12πζð Þ
� 0:00062635 cos 14πζð Þ � 0:0262723 sin 2πζð Þ � 0:00508249 sin 4πζð Þ
þ 0:000300991 sin 6πζð Þ þ 0:00021669 sin 8πζð Þ þ 0:000163595 sin 10πζð Þ
þ 0:000140229 sin 12πζð Þ þ 0:000138575 sin 14πζð Þ

After applying the L-F transformation, x ζð Þ ¼ Q ζð Þz ζð Þ, to the attitude motion
in Eq. (16), it becomes
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z◦ ¼ Rz þQ�1
0

12π2σ
1þ e cos 2πζð Þ

2
3
k3 � 2

15
k5 þ 4

315
k7

� 


2

4

3

5þQ�1
0

8π2e sin 2πζ
1þ e cos 2πζð Þ

2

4

3

5

(40)

where k ¼ Q11z1 þQ12z2ð Þ.
The Lyapunov stability properties are preserved in the new coordinates after the

system is transformed by the L-F transformation matrix. The L-F transformation
theory guarantees that a suitable controller realized in the L-F transformed coordi-
nates will be correspondingly efficacious after back transformation into the original
system coordinates. Consequently, we shall endeavor to systematically synthesize
suitable controllers to stabilize the motion in the transformed coordinates. Our
control synthesis strategy will first consider linear control laws before exploring
nonlinear control strategies.

In order to formulate appropriate control laws that would stabilize the quasipe-
riodic motion analyzed in Section 3, we introduce a control input u tð Þ in Eq. (1) as
shown below:

€Θ ¼ �3
μ

r3
σ sinΘ cosΘ� _ω þ u tð Þ (41)

Using Eqs. (5) and (6), we perform a change of independent variable from time
(t) to true anomaly (f). The closed-loop attitude dynamics hence will be

Θ
00 ¼ 1

1þ e cos fð Þ 2e sin fΘ0 � 3σ sinΘ cosΘþ 2e sin fð Þ þ u fð Þ (42)

The control action u fð Þ will generally represent torque per unit moment of
inertia as a function of true anomaly. Eq. (42) is first used to synthesize linear
control laws followed by nonlinear control law development.

4.2 Linear control

Though linear control law principles are conventionally intended for controlling
linear parameter invariant systems [43], we initially consider them to control our
nonlinear dynamics as an initial analysis step. Since most linear control methods
tend to be relatively simpler to analyze and implement compared to nonlinear
control methods, it is prudent to ascertain the suitability of linear control prior to
embarking on relatively more complicated techniques. To implement linear control,
we shall consider pole-placement approach to determine the negative feedback gain
required to stabilize the system.

4.2.1 State-augmented system

The autonomous state-augmented system in Eq. (12) can be represented in
abbreviated form as shown in Eq. (43):

Θ
0 ¼ AΘ fð Þ þ f Θ; fð Þ (43)

where f Θ; fð Þ constitutes the nonlinear terms, A is the linear matrix, and
Θ ¼ Θ1 Θ2 q p½ �T is the state vector. To synthesize the parameter-invariant linear
state feedback controller, Eq. (42) becomes
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Θ
0 ¼ AΘ fð Þ þ f Θ; fð Þ þG1u fð Þ (44)

The linear state feedback controller is of the form u ¼ �KΘ fð Þ, and the control
input scaling vector is G1 ¼ 0 1 0 0½ �T . Though A is full rank, the linear pair
A ;G1f g is not controllable. This is because the system controllability matrix, CM,

shown in Eq. (45) has a rank of 2, instead of rank 4:

CM ¼

0 1 0 �0:9

1 0 �0:9 0

0 0 0 0

0 0 0 0

2

6

6

6

4

3

7

7

7

5

(45)

Consequently, a linear state feedback controller cannot stabilize the system
dynamics associated with the e-σ pair considered. It is to be noted that the two
states, p; qð Þ in Eq. (44), are virtual states serving to simplify the system but are not
accessible in the actual system dynamics. This is illustrated by the fact that control-
lability matrix does not have full rank.

4.2.2 L-F transformed system

In this case, the parameter-invariant linear state feedback controller is similarly
of the form u ζð Þ ¼ �Kz ζð Þ. The control input is scaled by the matrix G2 ¼ 1 1½ �T in
L-F transformed coordinates. Back transformation of the G2u ζð Þ product via
inverse L-F transformation will guarantee a single control input in the system
original coordinates as will be demonstrated in Eqs. (54) and (55). R is full rank and
the linear pair R;G2f g is controllable. The L-F transformed Eq. (42) will be shown
in Eq. (46):

z
◦ ¼ Rz ζð Þ þQ�1f z; ζð Þ þQ�1F ζð Þ þG2u ζð Þ (46)

Therefore, the system closed-loop dynamics subjected to a linear control law will
be of the form

z
◦ ¼ R�G2K½ �z ζð Þ þQ�1f z; ζð Þ þQ�1F ζð Þ (47)

We initially place poles at �1 ;0ð Þ. Then we evaluate the corresponding matrix
K ¼ K1 K2½ � to realize this pole placement. Several stable double pole locations with
a decreasing factor of 10 (i.e., �1, �10, �100, �1000...) were considered. None of
these pole-placement locations demonstrated notable success in stabilizing the sys-
tem. For instance, poles placed at p1 ¼ �0:1 ; p2 ¼ �0:2

� �

produce a response for
a duration of slightly beyond 1.5 cycles before the states abruptly become indeter-
minate at about ζ≈ 1:74 as shown in Figure 17.

In this analysis, the system response in the original coordinates is realized via the
back transformation z ζð Þ ¼ Q�1 ζð Þx ζð Þ. Therefore, similar to the state augmenta-
tion case, the L-F transformed nonlinear system demonstrates inability to be stabi-
lized by a linear control law. The presence of periodic coefficients (elements of
Q�1 ζð Þ) associated with the nonlinear and forcing terms renders the system unten-
able to be controlled via LTI system control approaches. In general, the “region of
application” of linear control for nonlinear systems is dependent on magnitude of
nonlinearity and initial conditions. Many times, linear control may stabilize
nonlinear systems locally, but this is not guaranteed.
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4.3 Nonlinear control

Nonlinear control appears more suitable than linear control to stabilize the
attitude motion. However, conventional nonlinear techniques are not readily ame-
nable to dynamics with periodic coefficients and periodic external excitation.
Hence, requisite system state augmentation, L-F, or near-identity transformations
will be undertaken prior to controller design. We shall first consider sliding mode
control (SMC), and then bifurcation control will be implemented on the marginally
stable system to stabilize post-bifurcation response.

4.3.1 Sliding mode control

Sliding mode control is a robust nonlinear feedback control methodology that is
suitable for achieving accurate tracking for a class of nonlinear systems. SMC
methodology is based on variable structure control law that results in the state
trajectory “sliding” along a discontinuity surface in the state space [44, 45]. Though
SMC is deterministic, nonlinear, and robust, its implementation is prone to unde-
sirable “chattering” along the sliding surface [46]. Design of SMC involves (i)
selection of the switching function (stable hyperplane in the state space on which
the dynamics will be restricted) and (ii) control law synthesis.

4.3.1.1 State-augmented system

Here, we implement a SMC that tracks a desired null pitch angle via a negative
rate of growth. Dynamics in the original coordinates possess periodic coefficients
rendering the dynamics unwieldy and unfavorable to synthesize a SMC. Therefore,
we develop the SMC law based on the augmented state dynamics—which are
liberated from periodic coefficients. To design a sliding mode controller for the state
augmented systems, we designate the switching function as given in Eq. (48). The
switching function represents the actual system state (i.e., attitude pitch angle)
reference error (difference between desired and actual pitch angle) that the con-
troller desires to maintain at zero. Therefore, when s1 ¼ 0, Θ1 ! 0 as Θ2 ! 0:

s1 ¼ βΘ1 þ Θ2ð Þ2 (48)

Subsequently, the closed-loop dynamics of the controlled system are similar to
Eq. (42) as shown in Eq. (49):

Figure 17.
Linear control of L-F transformed state.
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Θ
0
1 ¼ Θ2

Θ
0
2 ¼ 2eqþ 2e2pq 1� Θ2ð Þ þ 2eqΘ2 � 3Θ1σ � 3epΘ1σ

� 3 1þ epð Þ � 2
3
Θ

3
1 þ

2
15

Θ
5
1 �

4
315

Θ
7
1

� 


σ þ u fð Þ

q0 ¼ p

p0 ¼ �q

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

(49)

where u fð Þ represents the control input. Derivative of the switching function
with Θ

0
1 and Θ

0
2 substituted from Eq. (49) is

s01 ¼
2

105
βΘ1 þ Θ2ð Þ 1þ epð Þ 210eqþ σΘ1 �315þ 210Θ2

1 � 42Θ4
1 þ 4Θ6

1

� �� �

þ 105 β � 2e �1þ epð Þqð ÞΘ2Þ þ u fð Þ
(50)

Setting β ¼ 1, we derive the following control input:

u fð Þ ¼ � 2
105

Θ1 þ Θ2ð Þ 1þ epð Þ 210eqþ σΘ1 �315þ 210Θ2
1 � 42Θ4

1 þ 4Θ6
1

� �� �

� 105 1� 2e �1þ epð Þqð ÞΘ2Þ � ρ sgn s1ð Þ
(51)

where

ρ Θð Þ> � 2
105

βΘ1 þ Θ2ð Þ 1þ epð Þ 210eqþ σΘ1 �315þ 210Θ2
1 � 42Θ4

1 þ 4Θ6
1

� �� �

�

�

�

�

�105 β � 2e �1þ epð Þqð ÞΘ2Þ
�

�

�

�

(52)

A sigmoid function, s1
∣s1∣þε

is preferred instead of the signum function to reduce
chattering around the sliding surface typical of sliding mode controllers. ε is gener-
ally small. Employing a direct Lyapunov approach, stability of the sliding mode
controller applied here is ascertained by setting V ¼ 1

2 s
2
1 to be the Lyapunov func-

tion. Hence, V 0 ¼ s1s
0
1. The guaranteed negative definiteness of the Lyapunov func-

tion derivative demonstrated in Eq. (53) points to a stable controller. This equation
is obtained after subsequent substitution for s01 and u fð Þ in the equation of V 0:

V 0 ¼ �2s
3
2
1 ϱ

s1
∣s1∣þ ϵ

� �

<0 ∀s1 6¼ 0 (53)

Figure 18 shows the sliding mode controlled system response.
It is observable that the sliding mode controller in the state-augmented system

achieves stabilization of the motion throughout any number of orbits. Both Θ1 and Θ2

are adequately confined to zero. The augmented states p and q remain unaffected.

4.3.1.2 L-F transformed system

In this case, we similarly assume a control input u ζð Þ first applied to Eq. (16),
prior to L-F transformation as shown in Eq. (54). G3 ¼ 0 1½ �T is the control input
scaling vector:
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x
◦

1

x
◦

2

" #

¼
0 1

�12π2σ
1þ e cos 2πζð Þ

4πe sin 2πζ
1þ e cos 2πζð Þ

2

6

4

3

7

5

x1

x2

" #

þ 12π2σ
1þ e cos 2πζð Þ

0
2
3
x31 �

2
15

x51 þ
4
315

x71

2

4

3

5þ
0

8π2e sin 2πζ
1þ e cos 2πζð Þ

2

6

4

3

7

5
þG3u ζð Þ

(54)

It then follows from Eq. (40) that the controlled L-F transformed system is as
shown in Eq. (55):

z
◦ ¼ R11z1 þ R12z2 þ Q�1

12
12π2σ

1þ e cos 2πζð Þ
2
3
k3 � 2

15
k5 þ 4

315
k7

� ��

þ 8π2e sin 2πζ
1þ e cos 2πζð Þ

� �

þ u ζð Þ
�

z
◦ ¼ R21z1 þ R22z2 þQ�1

22
12π2σ

1þ e cos 2πζð Þ
2
3
k3 � 2

15
k5 þ 4

315
k7

� ��

þ 8π2e sin 2πζ
1þ e cos 2πζð Þ

� �

þ u ζð Þ
�

9

>

>

>

>

>

>

>

>

>

>
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>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(55)

where k ¼ Q11z1 þ Q12z2. We define the sliding function according to Eq. (56) to
ensure that when s2 ¼ 0, z1 ! 0 as z2 ! 0. The sliding surface represents the
reference pitch angle error. The controller attempts to maintain a zero error
throughout, i.e., s2 ¼ 0, ∀f >0:

s2 ¼ αz1 þ z2 (56)

After obtaining the derivative of the sliding function, we substitute for z◦1 and z
◦

2

from Eq. (55) to obtain Eq. (57). Moreover, from Eq. (38), R11 ¼ R22 ¼ 0:

s
◦

2 ¼ R21z1 þ αR12z2 þ αQ�1
12 þ Q�1

22

�  12π2σ
1þ e cos 2πζð Þ

2
3
k3 � 2

15
k5 þ 4

315
k7

� ��

þ 8π2e sin 2πζ
1þ e cos 2πζð Þ

� �

þ u ζð Þ
�

(57)

Figure 18.
Sliding mode controlled actual and augmented states. (a) Θ1 and Θ2, (b) q and p.
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From Eq. (57), we set α ¼ 1 and derive the following sliding mode control law:

u ζð Þ ¼ �R21z1 � R12z2 � Q�1
12 þ Q�1

22

�  12π2σ
1þ e cos 2πζð Þ

2
3
k3 � 2

15
k5 þ 4

315
k7

� ���

� 8π2e sin 2πζ
1þ e cos 2πζð Þ

� �
�

1
Q�1

12 þQ�1
22

� � ρ sgn s2ð Þ

(58)

where

ρ zð Þ> �R21z1 � R12z2ð � Q�1
12 þ Q�1

22

�  12π2σ
1þ e cos 2πζð Þ

2
3
k3 � 2

15
k5 þ 4

315
k7

� ���

�

�

�

� 8π2e sin 2πζ
1þ e cos 2πζð Þ

� �
�

1
Q�1

12 þQ�1
22

� � ρ sgn s2ð Þ
�

�

�

�

�

(59)

To reduce chattering around the sliding surface typical of sliding mode control-
lers due to fast switching of the signum function, a sigmoid function is similarly
preferred. We again apply the direct Lyapunov approach to analyze the sliding
mode controller stability by selecting V ¼ 1

2 s
2
2 as the Lyapunov function. Asymptotic

stability will be guaranteed if the sliding function derivative is negative definite.

Hence, the switching function derivative is V
◦

¼ s2s
◦

2. Substituting for s◦2 with the
control input likewise substituted, we obtain the stability-criteria satisfying
relationship below:

V
◦

¼ �s2 ρ
s2

∣s2∣þ ϵ

� �

<0, ∀s2 6¼ 0 (60)

Figure 19 shows the sliding mode controlled system in L-F transformed coordi-
nates. The response in Figure 19 is back transformed via the inverse L-F transfor-
mation resulting in controlled states in the original coordinates shown in Figure 20.

We observe that, similar to the state augmented case, the sliding mode controller
stabilizes the L-F transformed motion as well by invariably confining the states to
zero as desired. Though specific values for the e-σ were used to demonstrate this
technique, stabilization of the planar pitch motion by SMC approach is independent
of the assigned e-σ values. However, the possibility of a synthesized sliding mode

Figure 19.
Sliding mode controlled states in L-F transformed coordinates.
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controller being impractical to implement exists if the required control effort is
colossally prohibitive.

4.3.2 Bifurcation control

The critical Floquet multipliers corresponding to purely imaginary Floquet
exponents indicate that the system is in the stability boundary. Consequently,
it is essential to stabilize the system post bifurcation apart from modifying other
motion characteristics such as rate of growth. To achieve these objectives, we
engage nonlinear bifurcation control with full state feedback. Synthesis of such a
controller is facilitated by the normalized dynamics which are relatively more
tractable compared to the dynamics as represented in the original coordinates.
Periodic coefficients and complexity in structure of the dynamic equations in the
original coordinates drastically convolute synthesis of bifurcation control law.
Dynamics of the states in the original coordinates will eventually be obtained via
back transformation of the normal form, modal, and L-F transformations. Location
of the complex Floquet multipliers on the unit circle (Figure 4) indicates that the
pitch attitude motion is undergoing a Hopf bifurcation with a limit cycle attractor of
controllable radius. Therefore, the structure of the normal form will also verify a
Hopf bifurcation occurring in the neighborhood of the critical point of the bifurca-
tion parameter (i.e., orbit eccentricity).

To illustrate the intended approach, we shall formulate the normal forms of
nonlinearities up to the cubic order in Eqs. (12) and (16). Normalization of dynam-
ics with higher order nonlinearities can be accomplished through the same tech-
niques. Similar to the preceding cases, we’ll consider the augmented states and L-F
transformed systems separately.

4.3.2.1 State-augmented system

In Section 3.1.1, we demonstrated how to obtain the TINF of the state-
augmented system—shown in Eq. (23). Obtaining the closed-form analytical
solutions for v1 fð Þ and v2 fð Þ in Eq. (23) is straightforward. On the other hand to
evaluate v3 fð Þ and v4 fð Þ, we introduce the complex changes of variable,
v3 ¼ u1 � iu2 and v4 ¼ u1 þ iu2 followed by the polar coordinates u1 ¼ Rcosθ and
u2 ¼ Rsin θð Þ. The last two equations in Eq. (23) become

R0 ¼ 0

θ0 ¼ 0:948683� 30:4002C1C2 � 1:05409R2




(61)

Figure 20.
Sliding mode controlled states in original coordinates. (a) x1 state, (b) x2 state.
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where C1 and C2 are the integration constants obtained when solving for v1 fð Þ
and v2 fð Þ, respectively.

We solve Eq. (61) and then utilize the results to complete the closed-form
analytical solution of Eq. (23). The closed-form solutions of v1 fð Þ, v2 fð Þ, v3 fð Þ,
and v4 fð Þ are then back transformed to the original coordinates producing
the uncontrolled motion behavior shown in Figure 20. The system response in
Figure 21 is a cognate approximation of the originally obtained numerical solution
in Figures 3a and 16. Again, a quasiperiodic motion is characterized by non-closed
curves and is observed in the corresponding phase portrait. Moreover, a
codimension-one Hopf Bifurcation is verified by the normal form structure.

To synthesize a bifurcation control law of the normal form, we first add a
control input in Eq. (62):
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Let the scaling matrix and control input, respectively, be of the form

G4 ¼

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

, u ¼ γ1

0

0

K1v1v2v3 þ K2v
2
3v4

K1v1v2v3 þ K2v3v
4
2

2

6

6

6

4

3

7

7

7

5

(63)

Back transformation of the G4u product via inverse normal form and modal
transformations will guarantee a single control input in the system original coordi-
nates as demonstrated in Eqs. (54) and (55). The proportional gains are custom
tuned to K1 ¼ �5 and K2 ¼ �10. γ1 ¼ 1 is a scalable parameter meant to suppress

Figure 21.
Uncontrolled dynamics of the normalized state augmented system for seven complete orbits. (a) Θ and Θ0

response, (b) Phase portrait.
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strange trajectory behavior according to Poincaré-Bendixson theorem in the system
phase space. The resulting response of the bifurcation-controlled augmented state
system is shown in Figure 22. The augmented states remain unaffected as previ-
ously shown in Figure 18b.

The libratory amplitude of the quasiperiodic pitch angle motion is tremendously
stabilized and confined to a significantly diminished limit cycle attractor as illus-
trated in Figure 21.

4.3.2.2 L-F transformed system

As already indicated in Section 3.3.2, in addition to synthesizing bifurcation
control law via L-F transformed dynamics, we shall also demonstrate analysis of the
spacecraft attitude dynamics due to different values of e and σ. Therefore, e ¼ 0:1
and σ ¼ 0:2 is once again considered in this section. L-F transformation analysis of
the attitude dynamics associated with these values of e and σ has been comprehen-
sively conducted in Section 3.3.2. Subsequently, the normalized TINF system was
obtained in Eq. (34).

In Eq. (34), the closed-form analytical solutions for v1 ζð Þ and v2 ζð Þ are constants.
Variables v1 and v2 in the v◦3 and v

◦

4 differential equations are substituted by their
respective computed constants. This computation is carried out through the for-
ward action transform of the L-F, modal, and near-identity transformations of the
initial conditions declared in the original coordinates.

The Floquet exponents are conjugate coefficients in the linear terms of the
normal forms before being multiplied by the substituted constant values equal to v1
and v2.

To obtain v3 ζð Þ and v4 ζð Þ, we introduce the complex changes of variable
v3 ¼ u1 � iu2 and v4 ¼ u1 þ iu2 followed by the polar coordinates u1 ¼ R cos θ and
u2 ¼ Rsin θð Þ. The last two equations in Eq. (34) become

R
◦

¼ �0:0106945R

θ
◦

¼ 2:12186þ 0:0005599R2

)

(64)

Results from Eq. (64) which is easier to solve are then used to obtain the closed-
form analytical solutions to Eq. (34). Then, v1 ζð Þ v2 ζð Þ v3 ζð Þ v4 ζð Þ½ �T are then
back transformed to the original coordinates, producing the uncontrolled motion
shown in Figure 23. The system response in Figure 23 (with nonzero initial

Figure 22.
Dynamics of the bifurcation-controlled state-augmented system. (a) Θ and Θ 0 response, (b) Phase portrait.
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conditions) is a cognate approximation of the originally obtained numerical inte-
gration solution in Figure 11. The back transformed augmented states are similarly
shown in Figure 24 corresponding to Eq. (28) where the amplitude of q ζð Þ is 2π
times that of p.

The normal form in Eq. (34) verifies that this is a system undergoing a
codimension-one Hopf bifurcation. To synthesize a bifurcation control law, a
control input is added to Eq. (34) as shown below:

v
◦

1

v
◦

2

v
◦

3

v
◦

4

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

0 0 0 0

0 0 0 0

0 0 �0:0106945� i2:12186 0

0 0 0 �0:0106945þ i2:12186

2

6

6

6

6

6

4

3

7

7

7

7

7

5

v1

v2

v3

v4

2

6

6

6

6

6

4

3

7

7

7

7

7

5

þ

0

0

�i0:0005599v23v4

i0:0005599v3v24

2

6

6

6

6

6

4

3

7

7

7

7

7

5

þG5u

(65)

Figure 23.
Behavior of the normalized L-F transformed system states for seven complete orbits. (a) Original back
transformed normalized states, (b) Phase portrait.

Figure 24.
Behavior of back-transformed normalized augmented states for seven complete orbits.
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Let the scaling matrix and control input be of the form

G5 ¼

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

2

6

6

6
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3
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7

7

5

, u ¼ γ2

0

0
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2
3v4

K2v3v
2
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7

7

7

5

(66)

The proportional gains are custom-tuned to K1 ¼ K2 ¼ �2 and γ2 ¼ 1. Figure 25
shows dynamic behavior of the implemented bifurcation control in original coordi-
nates with nonzero initial conditions.

The oscillating amplitude of the quasiperiodic pitch angle motion is tremen-
dously stabilized relative to the initial behavior illustrated in Figure 23. This hence
demonstrates successful control of the post-bifurcation attitude dynamics about the
spacecraft center of mass.

Bifurcation control is a nonlinear control technique that affects the behavior of
the closed-loop system by modifying nonlinearity and post-bifurcation behavior.
Therefore, the location of Floquet multipliers (exponents) is generally preserved
post-bifurcation control. Figure 26 shows the preserved locations of the Floquet
multipliers before and after bifurcation control (e ¼ 0:1 and σ ¼ 0:2). This location
of Floquet multipliers is consistent with the limit cycle shown in Figure 25b
corresponding to a simply stable system with relatively subdued librations.

Figure 25.
State response of the bifurcation-controlled L-F transformed system. (a) x1 and x2 response, (b) Phase portrait.

Figure 26.
Preserved locations of Floquet multipliers after bifurcation control.
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5. Conclusions

In this chapter, we illustrated techniques for analyzing and stabilizing the atti-
tude motion of a gravity-gradient stabilized spacecraft. The motion dynamics are
shown to be nonlinear with periodic coefficients and subjected to external periodic
excitation. Methodologies employed here utilize state augmentation, Lyapunov-
Floquet transformation theory, and normal forms to realize relatively more
tractable dynamical systems that are amenable to conventional controller synthesis
techniques. Floquet theory was used to investigate system stability. State augmen-
tation facilitated analysis via normal forms by transforming the dynamical system
from nonautonomous to an autonomous one.

Outcome from the analysis showed that the attitude motion is quasiperiodic,
chaotic, and stable in the sense of Lyapunov for the particular e-σ pairs considered.
Subsequently, the motion stability chart that was constructed facilitated prediction
of e-σ combination leading to stable or unstable dynamics. The stable regions of the
stability curves were found to predict marginal and not asymptotically stable
dynamics. However, the emanating librations need to be stabilized for nominal
mission operations to be realized. Conversely, the e-σ combinations located in the
unstable regions resulted in aperiodic unstable dynamics. The computed Lyapunov
exponents indicate that the chaotic dynamics also depend on initial values of
Θ; Θ

0f g pair, not just on the magnitudes of e-σ pairs.
Both outcomes of the twofold versal deformation analyses (disparate values of

e-σ pairs considered) indicate establishment of locally stable limit cycles by the
quasiperiodic flow post bifurcation. Since the eccentricity varies as 0< e< 1, rela-
tively small deviations from the critical point ec of the order 10�4

< η< 10�3 trigger a
significant topological change in the structure of the motion flow.

The quasiperiodic, nonlinear, and periodically forced pitch attitude motion is
challenging to control. The synthesized linear controller served as starting point for
developing more adept control laws. Not surprisingly, the linear controller failed to
stabilize the complexly structured nonlinear dynamical system. As stated, in general
the “region of application” of linear control for nonlinear systems is dependent on
magnitude of nonlinearity and initial conditions. Many times, linear control may
stabilize nonlinear systems locally, but this is not guaranteed.

On-orbit perturbations cause disturbing torques that bifurcate the attitude
motion; it is hence imperative to stabilize the system attitude dynamics in the small
neighborhood of the bifurcation parameter’s critical point. Local nonlinear bifurca-
tion control law implemented on the attitude motion undergoing a Hopf bifurcation
was shown to stabilize the attitude motion. The bifurcation controller which mod-
ifies the nonlinearity and post-bifurcation behavior further prevents the attitude
motion from becoming chaotic because bifurcation is the path to chaos.
Implemented in the TINF, the bifurcation control law would subsequently stabilize
the secular and periodic attitude perturbations experienced by a spacecraft in ellip-
tical orbit about its nominal operating point.

Sliding mode control law was based on driving both system states to zero on the
sliding surface when the sliding surface reference error is equal to zero. The SMC
law was similarly shown to be successful by invariably restricting the pitch angle to
zero.

Future work will consider torques generated by sources such as magnetism and
oblateness of the earth, atmospheric drag, solar radiation pressure, thermal bend-
ing, etc. Further, nonlinearities beyond the cubic term in the L-F transformation
and TDNF case of near identity transformation would also be analyzed. In addition,
physical implementation of the controllers and derivation of TDNF-based control
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laws requires future scrutiny. As demonstrated, all the control effort inputs are
single torques per unit moment of inertia which for instance can be implemented
via thrusters. Consequently, sizing and implementation of the control effort are an
essential task.
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Nomenclature

e eccentricity
f true anomaly, radians
r orbit radius, m
COM center of mass
I identity matrix
Ix, Iy, Iz principal moment of inertia about the roll, pitch, and yaw axes,

respectively, kgm2

LVLH local-vertical/local-horizontal
P semilatus rectum
Q tð Þ Lyapunov-Floquet transformation matrix (LFT)
TDNF time-dependent normal forms
TINF time-independent normal forms
μ earth gravitational parameter, 3:986004418� 1014 m3s�2

σ Ix�Izð Þ
Iy

ω spacecraft angular velocity, rad/s
Θ spacecraft pitch angle, radians
Ψ spacecraft roll angle, radians
Ω spacecraft yaw angle, radians
Φ tð Þ state transition matrix (STM)
Φ Tð Þ Floquet transition matrix (FTM)
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