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1. Introduction  

1.1 Glucose, enzymes and mediators 

Glucose becomes more and more important and popular research topics for medicine and 
biochemistry that monitoring biomarkers of chronic diseases, such as glucose to diabetes, 
bilirubin to jaundice and creatinine to kidney disease. Among many biomarkers, glucose is a 
common and an important biological species of human blood, found out normally in the 
range of about 4~8 mM. According to statistical information system of World Health 
Organization (WHO), the number of people with diabetes is estimated more than 180 
million worldwide and it is likely to more than double by 2030. Besides, it is also estimated 
that 9% of all deaths worldwide are due to diabetes. Most notably, diabetes deaths are 
projected to increase by over 80% in upper-middle income countries between 2006 and 2015. 
Therefore, it is necessary to develop an efficient glucose biosensor for monitoring the 
glucose level of diabetics.  
Glucose is an attractive target, because it is not only an important biomarker for diabetes but 
also a kind of fuel for biofuel cells. In other words, the glucose biosensor can work for 
detecting the glucose level and for the anode of the biofuel cell. The biofuel cells were 
intended to power cardiac assist devices, such as artificial hearts or cardiac pacemakers (Rao 
& Richter, 1974; Rao et al., 1974). For getting a good specific property, enzymes are widely 
applied as recognized molecules. Two kinds of enzymes with different redox potentials and 
electron transfer pathways are usually used to catalyze the glucose. One is the glucose 
oxidase (GOD) (Franke & Deffner, 1939) from Aspergillus niger and the other is glucose 
dehydrogenases (GDH) from Acinetobacter calcoaceticus. For GOD catalyst, the cofactor is 
flavin adenine dinucleotide (FAD) with a strong bond to apo-GOD, but the cofactor can be 
nicotinamide adenine dinucleotide (NAD) (Boguslavsky et al., 1995), FAD (Tsujimura et al., 
2006) and pyrrole quinoline quinone (PQQ) (Duine et al., 1979) for GDH. As an example, the 
FAD-GOD was selected in this chapter as the recognized molecule. The FAD-GOD has an 
apparent formal redox potential of -0.048 V vs. standard hydrogen electrode (SHE) (Kulys et 
al., 2006) and it has a catalyzed rate of 5×103 glucose molecules per second (Willner et al., 
2007a). The series catalytic mechanisms in a solution with oxygen are shown in Eqs. (1) and 
(2) (Warburg & Christian, 1932).  

                 glucose + FAD-GOD (oxidized, yellow) →  
                                                               gluconic acid + FADH2-GOD (reduced, colorless) 

(1)

Source: Intelligent and Biosensors, Book edited by: Vernon S. Somerset,  
 ISBN 978-953-7619-58-9, pp. 386, January 2010, INTECH, Croatia, downloaded from SCIYO.COM
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 FADH2-GOD (reduced, colorless) + O2 → FAD-GOD (oxidized, yellow) + H2O2  (2) 

 H2O2 → 2H+ + O2 + 2e-  (3) 

 H2O2 + 2H+ + 2I- → 2H2O + I2  (4) 

 2H2O2 + 4-aminoantipyrine + phenol ⎯⎯⎯ →⎯peroxidase  4H2O + quinoneimine  (5) 

 FADH2-GOD + mediator (oxidized) → FAD-GOD + mediator (reduced)  (6) 

The glucose concentrations can be determined indirectly by the consumption of O2 or the 
further reaction of H2O2. For example, the amperometric current can be collected by the 
oxidation of H2O2 directly (shown in Eq. (3)) (Chaubey & Malhotra, 2002), the reaction of 

H2O2 and I- gave a I-/I2 potentiometry (shown in Eq. (4)) (Malmstadt & Pardue, 1961), and a 
spectrum change of the red dye (quinoneimine) was observed based on the reaction of Eq. 
(5) (Nien et al., 2008). However, the above sensing signals are sensitive to ambient oxygen 
concentration by any detection methods, so mediators are added into the system as shown 
by Eq. (6) instead of Eq. (2). The electron transfer from the redox center of FADH2 to an 
electrode is very sluggish and hard, because the FADH2 is embedded inside GOD by 
glycoprotein at a distance of about 1.3-1.5 nm (Hecht et al., 1993). The mediators not only 
facilitate the electron transfer from FADH2 to electrodes but also lower the sensing potential, 
so the choice of the mediator is very important to the sensing performance. Cyclic 
voltammogram is a good electro-analytical method to obtain the properties of mediators 
and to find suitable mediators (Gilmartin & Hart, 1995; Nakaminami et al., 1997). The most 
used mediators for GOD with their formal potentials vs. standard calomel electrode (SCE) 
are partially listed in Table 1 (Chaubey & Malhotra, 2002). Generally speaking, the 
mediators can be classified into three kinds, including organic, inorganic and metal-organic 
(Heller & Feldman, 2008). In the organic mediators, methylene blue (Karyakin et al., 1993; 
Willner et al., 2007a; Willner et al., 2007b), quinone and its derivatives (Battaglini et al., 1994; 
Bourdillon et al., 1986; Cenas et al., 1983; Cosnier et al., 1998; Williams et al., 1970) have been 
studied for a long time. In the second kind, the main inorganic mediators are the hexacyano-
complexes of iron (Dubinin et al., 1991; Jaffari & Turner, 1997; Shulga et al., 1994), cobalt and 

ruthenium, especially Fe(CN)6
4- is widely used in commercial glucose strips. In the final 

category, the metal-organic mediators cover ferrocene (Hendry et al., 1993; Luong et al., 
1994), ferrocenemethanol (Bourdillon et al., 1995; Yang et al., 2003; Zhang et al., 2005; Zhang 
et al., 2006b; Zhao & Wittstock, 2005), ferrocenecarboxylic acid (Chen et al., 2002; Kohma et 
al., 2007; Tian & Zhu, 2002), Os-complex (Mano et al., 2005; Mao et al., 2003; Zakeeruddin et 
al., 1992) and so on. Besides, Wang et al. reported that the multi-walled carbon nanotubes  
 

Mediators Formal potentials (mV vs. SCE) 

1,1-dimethyl ferrocene 100 

ferrocene 165 

ferrocene carboxylic acid 275 

hydroxyl methyl ferrocene 185 

benzoquinone 39 

[Fe(CN)6]4- 180 

Table 1. A partial list of the commonly used mediators for GOD. 
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(MWCNTs) can disturb the secondary structure of GOD and get close to its redox center to 
pass the electron directly without mediators (Wang et al., 2009). 

1.2 The immobilization of enzymes and mediators 

Among various detection methods, the amperometric enzyme-based biosensor probably is 
the best choice for biochemical analysis due to its good selectivity, high sensitivity, rapid 
response, convenient measurement, miniature size, and reproducible results (Hamdi et al., 
2006). In order to reuse the expensive recognized biomolecules, the enzyme has to be 
immobilized on the electrode. In 1972, the company of Yellow Spring Instrument in America 
manufactured the first commercial glucose biosensor according to the prototype of the 
enzyme-immobilized electrode reported by Clark and Lyons (Clark & Lyons, 1962). In the 
following decades, the immobilization of enzyme became a key issue in developing the 
enzyme-based biosensor. Generally speaking, the immobilized methods (Cunningham, 
1998) of enzyme include adsorption (Chu et al., 2007; Ekanayake et al., 2007), entrapment 
(Ngounou et al., 2007; Seo et al., 2007), cross-linking (Akyilmaz & Yorganci, 2007) and 
covalent bonding (Lin et al., 2007a; Seo et al., 2007). For adsorption, the enzyme was 
attached on the electrode by the attractive force of hydrogen bonds or opposite charges, 
such as nylon (Gamati et al., 1991) and ion exchange resin (Zhujun & Seitz, 1986), but it did 
not form a good adhesive force between biomolecules and a transducer. The enzyme also 
can be entrapped in a matrix, such as sol-gel (Lin et al., 2007b), Nafion® (Bogdanovskaya et 
al., 1997) and a conducting polymer (Brahim et al., 2001; Singh et al., 2004). The cross-linking 
and covalent bonding methods must be carried out by specific functional groups to link 
together, such as –NH2 and –COOH groups (Battaglini et al., 2000; Tamiya et al., 1990) or 
cross-linking agents (Tamiya et al., 1990). In addition, there are other methods used to 
immobilize the enzyme on the electrodes by thermal inkjet printing (Setti et al., 2005) or by 
enzyme-linked-immunosorbent-assay (ELISA) (Sehr et al., 2001). Among all methods, 
entrapment is considered to be one of the most attractive and popular methods to grasp the 
biomolecules. The electrochemical devices made by different conducting polymers 
entrapping recognized biomolecules have been reported extensively (Habermuller & 
Schuhmann, 1998; Rahman et al., 2004; Selampinar et al., 1997), because their major 
advantages (Cosnier, 1999) are that polymer film can be polymerized with immobilizing 
enzyme in one step, and the film thickness can be controlled easily by adjusting capacity. 
The most common polymers used as matrixes to entrap enzyme are polyaniline (Borole et 
al., 2004), polythiophene, polypyrrole and its derivatives (Trojanowicz et al., 1995).  
In addition to enzymes, the mediators should be immobilized in the same matrix for 

biosensors or biofuel cells. However, the immobilization of mediators is more difficult than 

that of enzyme, because the mediators usually suffer from the leakage of small molecules, 

water-insoluble. In the literatures reported, the covalent method is a more effective way to 

stabilize the mediators on the electrode. For example, the mediators were linked on the 

MWCNTs (Qiu et al., 2009), the polymer matrix (Himuro et al., 2009) or even the enzyme 

directly (Wu et al., 2008). Moreover, the mediator was linked with the electrode and the 

redox center of enzyme for increasing the efficiency of electron transfer from enzymes to the 

external circuit through mediators (Zayats et al., 2008). Qiu et al. (Qiu et al., 2007) proposed 

that the small molecules, mediators, were linked on the large molecules, Fe3O4@SiO2 

nanoparticles, and afterward the matrix entrapped the enzyme and the nanoparticles at the 

same time. 
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1.3 Challenges 

In the aspect of clinical diagnosis, the selectivity is the most major concern. For the 
amperometric enzyme-based biosensor which is the subject of this chapter, the challenges 
are how to lower the interference signals and get a precise value of glucose level in real 
samples. There are many oxidation-favored species in whole blood resulting in extra 
amperometric sensing signals, and it is a major problem of selectivity especially for 
electrochemical sensing. 
In order to eliminate this factor, a cationic exchange membrane (Nafion®) was the most 
common and easy way to put outside the electrode and this can prevent the negatively-
charged interfering species, such as ascorbic acid, from reaching the surface of the electrode 
(Chen et al., 2009; Mailley et al., 2000; Wu et al., 2002; Zhang et al., 1994). But, the Nafion® 
film raised the resistance of ion-transport, in which, the response time may be increased. 
Another way to eliminate the interference effect is to set a pre-reaction zone on the upstream 
of the major sensing section. For example, L-ascorbate oxidase was immobilized in the front 
section of the channel (Kurita et al., 2002) to catalyze the ascorbic acid, but the other 
interferences passing to the electrode may still result in noises. Besides, for an 
electrochemical system, a new way to decrease the interferences is by means of applying 
different potentials for targets and interfered species. In previous study (Yuan et al., 2005), 
two different potentials were applied at the two working electrodes attached to scanning 
electrochemical microscopy (SECM) system where one was at low potential (0.5 V) on the 
substrate of glucose oxidase modified electrode and the other was at high potential (0.7 V) 
on the tip of bare platinum. Therefore, the oxidation-favored species reacted on the substrate 
electrode at low potential and the glucose can be catalyzed by the enzyme-modified 
electrode to produce hydrogen peroxide. Afterward, the H2O2 was oxidized again on the tip 
of the electrode when the gap between tip and substrate electrodes was small (11 μm). Based 
on the similar idea, Jia et al. (Jia et al., 2008; Jia et al., 2007) proposed the probe-in-tube 
microdevice for eliminating the interference by the tube and detecting the target by the 
enzyme immobilized probe. 

2. Reviews and motivations 

In the past decade, the technique of Micro-Electro-Mechanical-Systems (MEMS) has become 
more and more popular for fabricating sensor chips. Due to the recent development in 
biotechnology, bio-MEMS is widely incorporated into the microfluidic devices in biosensors 
with the recognized biomolecules. The sensing chips integrate the steps of sampling, 
reaction, separation and detection on a chip (Richter et al., 2002). Nevertheless, they 
miniature the size and have the properties of fast response, less sample and low cost 
(Auroux et al., 2002) and this kind of sensing chip is also called Lab-on-a-chip. For example, 
the biosensors based on the field effect transistor (FET) made by MEMS immobilize anti-
PSA on the carbon nanotubes (CNTs) (Kojima et al., 2005), liquid-chromatography-based 
biochip detects peptide mixture (Xie et al., 2005), and the biochip combines PCR-based DNA 
amplification and electrochemical detection (Lee et al., 2003) have been reported. Other few 
examples include antibody-based chips for determining protein isoform (Loonberg & 
Carlsson, 2006), liquid-chromatography-based chips for detecting peptide mixture (Xie et 
al., 2005), and electrophoresis-based chips for sensing catechol and dopamine (Schoning et 
al., 2005). Moreover, there are many choices for the materials of the microchannel, such as 
poly(dimethylsiloxane) (PDMS) (McDonald et al., 2000), poly(methyl-methacrylate) 
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(PMMA) (Ford et al., 1998) and polycarbonate (PC) (Liu et al., 2001) … etc. Among this, 
PDMS offers many advantages, including outstanding elasticity, pervious to light, good bio-
compatible, good mechanical stability and convenient to be fabricated, and it can be used 
not only for the channel stamp but also for the gas-pump (Unger et al., 2000) and gas-valve 
(Hosokawa & Maeda, 2000). The PDMS stamp of channel is prepared with an air section 
between two layers. By filling and releasing gas to the air sections inside, the lower PDMS 
layer of channel can close and open the fluidic way in the micro-channel as a valve. Further, 
the fluid can be moved by gas-pump which is operated by three or more air sections in 
series filled and released continuously.  
In the aspect of the electrodes on the MEMS-based biochip, the interdigitated 
ultramicroelectrode arrays (IDUAs) are usually used as they offer several advantages, 
including low ohmic drop (iR drop), high response time, enhanced sensitivity and increased 
signal-to-noise ratio (S/N ratio). The redox cycle of the species in IDUA was proposed by 
Bard et al. in 1986 (Bard et al., 1986). Further applications using IDUA (Fiaccabrino et al., 
1998; Sheppard et al., 1996) and the search for the parameters of IDUA (Min & Baeumner, 
2004) also have been reported. Additionally, there is another new way to increase the 
sensitivity up to 50 times by nanopores (Muller et al., 2007). The metal-insulator-metal 
electrode was created with many porous caves formed by nanoparticles then etched these 
caves to form cylindrical holes by plasma in CF4, so the porous electrode can achieve 
electrochemical redox cycles in each hole vertically.  
Yamato et al. (Yamato et al., 1995), firstly demonstrated that a polythiophene derivative, 
poly(3,4-ethylenedioxythiophene) (PEDOT), has a better long-term electrochemical stability 
than that of polypyrrole, and the good stability of the PEDOT was also confirmed by other 
researchers (Kros et al., 2005; Lerch et al., 1998). They all show that the PEDOT is a suitable 
material for electrochemical biosensor, so it was mainly acted as the matrix to entrap the 
enzyme in the studies. According to the literatures, PEDOT film not only can entrap glucose 
oxidase (Fabiano et al., 2002; Nien et al., 2006) or polyphenol oxidase (Vedrine et al., 2003) to 
fabricate a specific biosensor, but also detect single strand DNA directly (Krishnamoorthy et 
al., 2004).  
In this chapter, two systems were reviewed to cover a good interference-independent 
glucose biosensor. One (system A) was designed that a three-electrode pattern was 
fabricated on the glass substrate by combining the technique of MEMS and covering a 
microchannel by the PDMS to form a sensing chip, thus the biochip worked in a flow system 
with the advantages of miniature, reuse, less injecting sample and continuous operation. 
Based on the electrochemical method, the recognized biomolecules, glucose oxidase, was 
immobilized by the conducting polymer, PEDOT, on the working electrode of the biochip 
for determining the glucose concentration. The enzyme-immobilized working electrode 
directly senses the catalyzed product, H2O2, according to Eqs. (1)-(3). Besides, a second 
working electrode of bare platinum, which is located in the near front of the first enzyme-
immobilized working electrode, is designed for eliminating the oxidation-favored 
interferences near the surface of electrode before the fluid in microchannel reaching the 
enzyme-immobilized working electrode by applying the same potential. The schematic of 
the whole microfluidic sensing system, both the lateral and vertical views, is illustrated in 
Fig. 1.  
The other (system B) is that the all-in-one electrodes, which co-immobilize with the enzymes 
and the mediators based on layer by layer structure shown in Fig. 2. The first layer, the 
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carbon paste which was coated on the flexible substrate of stainless steel (ssteel), was acted as 
an adsorbent layer for the mediator, p-benzoquinone (BZQ), by the hydrophobic force. The 
BZQ and GOD were drop-coated on the electrode in order and the entrapped matrix, PEDOT, 
was electropolymerized on the outer layer to prevent the leakage of mediators and enzymes. 
The all-in-one electrode has the advantages of flexible, workable in oxygen-independent 
solution, convenient, reusable, lower sensing potential and lower interference effect.  
 

 

Fig. 1. The schematic of the whole system in operation for system A. (Nien et al., 2008) 
 

ssteel

C

BZQ

GOD

PEDOT

 

Fig. 2. The schematic of the layer by layer structure for system B. 

3. Experimental 

3.1 Chemicals and instruments 

The target (or fuel), D-(+)-glucose, and the interferences, ascorbic acid (AA) (> 99%), uric 
acid (UA) (> 99%), dopamine hydrochloride (DA) and acetaminophen (AP) (> 99%), were 
purchased from Sigma. For the enzymes, glucose oxidase (GOD) (EC 1, 1, 3, 4) type VII-S 
from Aspergillus niger, and laccase (Lac) (EC 1, 10, 3, 2) from Trametes versicolor were 
purchased from Sigma and Fluka, respectively. For the mediators, p-benzoquinone (~ 98%, 
reagent grade) 2,2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) diammonium 
salt were purchased from and Aldrich and Sigma, respectively. The monomer, 3,4-
ethylenedioxythiophene (EDOT), surfactant, polyethylene glycol (PEG, MW=20,000) and 
bacteriostat, sodium azide (>99.5%) were purchased from Aldrich, Merck and Sigma, 
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respectively. The phosphate buffer containing monosodium phosphate monohydrate, 
disodium phosphate heptahydrate and potassium chloride (99.0~100.5%), were all 
purchased from Sigma. Besides, in system A, the positive photoresist, FH-6400, and the 
developer, FHD-5, were purchased from Fujifilm. The pre-polymer PDMS (Sylgard 184) and 
curing agent were from Dow Corning. The photolithographic equipments in clean-room are 
following: UV mask aligner (EVG 620) and inductively coupled plasma-reactive ion etching 
(ICP-RIE). The solution in the channel was pumped by a syringe pump (KdScientific, model 
100). In system B, the flexible substrate was stainless steel SUS 301 and the membrane for 
biofuel cell was Nafion® 117 (thickness is 0.007 in). The de-ionized water (DIW) was used 
throughout the experiments. All electrochemical experiments, including CV and 
amperometric measurements were performed with a potentiostat/galvanostat (CHI 440 and 
CHI 900). 

3.2 Fabrication of system A 

First, the film mask with a resolution of 10,000 dpi was made by Taiwan Kong King 
Company according to the self-designed electrode shown in Fig. 3. All of the following steps 
were done by silicon planar technology in a clean-room environment. The glass wafer with a 
diameter of 4 in and a thickness of 1 mm was cleaned by acetone, water and N2-purge 
orderly. For enhancing the adhesive force between photoresist and glass wafer, the wafer 
was coated with hexamethyldisilazane (HMDS) in advance by vapor priming. Then the 
glass wafer was covered with chemical positive photoresist (FH-6400) by spin-coating at 
1,500 rpm for 30 s and hardened at 90 oC for 90 s on a hot plate. After soft baking, the wafer 
was selectively exposed through a UV mask aligner to UV light (12 s, 10 mJ/cm2) with the 
first mask, and removed photoresist in the developer soup (FHD-5) for 12 s to form the 
pattern of the reference electrode. For the reference electrode, the metal layers of Cr, Au and 
Ag were deposited by sputtering in order, and the thicknesses of those are about 30, 90 and 
360 nm, respectively. The layers of Cr and Au are served as buffer layers to enhance the 
adhesive force of silver on glass. The unnecessary metal layers were lifted off completely in 
the acetone solution by ultrasonic method. In the same process, the patterns of working and 
counter electrodes with the metal layers, 30 nm Cr and 100 nm Pt, were fabricated by the 
second mask. The working and counter electrodes are the designation of IDA with the same 
width (50 μm) of fingers and gaps, as shown in the insert of Fig. 3. The real geometric 
surface areas of working, counter, and reference electrode are 4.5, 9.75 and 1.3 mm2 
respectively.  
The channel stamp was made by PDMS according to the mother mold of the silicon wafer. 

First, the silicon substrates were washed with acetone and sulfuric acid to remove any 

organic contaminants. All the substrates were then dried under a N2 stream and used 

immediately after cleaning. Silicon wafers were coated with a 2 μm thick positive 

photoresist (FH-6400) by using a spin coater. They were pre-baked on a hot plate with a 

temperature of 90 oC for 90 s. The light exposure was followed for 12 s and developed for 12 

s. Finally, silicon wafer was dry-etched by ICP-RIE for 100 μm deep and the patterns were 

transferred to the silicon mold. A fully mixed viscous precursor of PDMS and curing agent 

in the ratio of 10:1, was poured into the silicon master, pumped in a vacuum for a period of 

time to remove all bubbles, and then thermally cured at 60 oC in an oven for 3 hrs. After 

curing, the PDMS stamp could be peeled off from the silicon master. Finally, the PDMS and 

the glass wafer were bombarded by oxygen plasma at 50 W for 3 min to modify their 

www.intechopen.com



 Intelligent and Biosensors 

 

252 

functional groups of surfaces from hydrophobic to hydrophilic temporarily. Then the 

channel of the PDMS was covered and glued on the glass to form a sensor chip. 

 

 

Fig. 3. The schematic of the microelectrode. 

For the purpose of getting a more stable reference, the silver surface of reference electrode 

was modified to Ag/AgCl by chemical deposition. According to Eq. (7), the Ag surface was 

oxidized to form a thin layer of AgCl in 0.1 M FeCl3 solution spontaneously for 1 hr. For the 

enzyme-modified working electrode, the conducting polymer, PEDOT, was prepared in a 

flow system and the other conditions are the same as described in our previous work (Nien 

et al., 2006). The PEDOT film was obtained by electropolymerization of EDOT with the 

sweeping potential from 0.2 to 1.2 V for 20 cycles at a flow rate of 5 ml/hr and it was used as 

a matrix to entrap the glucose oxidase for immobilization on “WE1” (in Fig. 3) in a 0.02 M 

PBS electrolyte containing 2,000 U/ml glucose oxidase and 0.3 M KCl. After 

electropolymerization, the 0.02 M PBS solution was allowed to flow in the channel for some 

time to wash out the residuals. The sensing chip was stored at 4 oC when not use. 

 Ag + Cl- + Fe3+ → AgCl + Fe2+               E0reaction = 0.55 V  (7) 

3.3 Fabrication of system B 

The substrate, ssteel, was cleaned in the alcohol and water by supersonic wave to remove 

the organic matter. Then the carbon paste was roll coated on the substrate with constant 

spacer and area of 1 x 1 cm2, which is a large area comparing to literatures, and thermally 

cured in the oven at 130 oC for 2 hr to remove solvent. Afterward, the mediator, BZQ (50 

mM) dissolved in dimethylformamide (DMF), and the GOD dissolved in water (5000 U/ml) 

were both dropped a volume of 40 μl on the ssteel/C electrode to dry in order. At last, the 

conducting polymer, PEDOT was electropolymerized on the outer layer of the prepared 

ssteel/C/BZQ-GOD electrode to prevent the leakage of GOD, in a pH 7 phosphate buffer 

solution containing 10 mM EDOT monomer and 0.1 mM non-ionic surfactant, PEG, by 

applying a constant potential of 1.2 V vs. Ag/AgCl/sat’d KCl for 50 s. Afterward, the 

ssteel/C/BZQ-GOD/PEDOT electrode was stored in a pH 7 PBS at 4 oC when not in use. 
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4. Results and discussions of system A 

4.1 The sensing chip 

In each 4-in glass wafer, two pieces of sensing chips (70 mm × 35 mm) were cut by a 
diamond cutter. The microelectrode arrays can be divided into four sections (mentioned in 
section 3.2) and the surface metal layer of the working, reference and counter electrodes are 
platinum, silver and platinum, respectively. The SEM pictures (not shown) indicated that 
the dimension of the interdigitated array was the same as that of the designed pattern. 
Finally, by covering the PDMS with a microfluidic channel of 100 μm height, the sensing 
chip was fabricated. Moreover, for getting a better stability of long-term operation, the 
surface of reference electrode was modified as Ag/AgCl by chemical deposition. The open 
circuit voltage (Voc) of the Ag/AgCl is about 95 mV vs. SCE (commercial model) in the 
electrolyte of 0.3 M KCl and the variation between the two electrodes is less than 5 mV for a 
period of 2,500 s. It was approximately corresponding to the theoretical value of 102.9 mV 
based on the electrochemical theory. 
When the potential of the first working electrode (WE1) was cycled between a potential 
range of 0.2 ~ 1.2 V at a scan rate of 0.1 V/s, the current for the first cycle increased at 
around 0.7 V due to the oxidation of the EDOT monomer. On electrooxidation, a radical 
cation of EDOT is produced which is transformed to a polymeric species via several follow-
up reactions. However, the anodic current at higher potential (0.9-1.2 V) decreased with the 
cycle number, because the high potential may result in the partial degradation (Fabiano et 
al., 2002) or overoxidation of PEDOT film. In the 15th to 20th cycles, the CVs of 
polymerization were almost the same and this implies that the polymer film was not 
growing due to the resistance of polymer film. During the polymerization process, the 
PEDOT possesses positive charges, so the negatively charged glucose oxidase (pI=4.2) 
would migrate to the PEDOT surface at pH=7.4 (PBS) and be grabbed by the growing 
polymer chains. Besides, it is also an advantage of CV method that the enzyme has more 
time to diffuse to the polymer surface when the applied potential was swept to the cathodic 
direction in which the EDOT can’t be polymerized. The immobilized enzyme was quantified 
as about 0.101 U/cm2 by UV spectrophotometer after series chemical reactions in previous 
work (Nien et al., 2008). 

4.2 The sensing performance 

In Fig. 4, the flow injection data were obtained by applying 0.7 V at a flow rate of 10 ml/hr 
and each current pulse was resulted from different concentrations with an injecting volume 
of 30 μl. Besides, both the peak current and the charge capacity of each pulse can be 
collected as the sensing signal. However, the reproducibility in the peak currents was not 
good and hence the charge capacities were used for recording the sensing signal instead of 
current. The relationship obtained between the net charge capacities and the different 
glucose concentrations by applying a voltage of 0.7 V vs. Ag/AgCl on PEDOT modified 
enzyme electrode (WE1) with the same injecting volume of 30 μl at different flow rates is 
shown in Fig. 5. The linear regression falls from 1 to 10 mM, which includes the range of 
normal human blood, with a sensitivity of 157 μC cm-2 mM-1 (4.6 μA cm-2 mM-1 in current 
plot, which is not shown). The sampling time, the time taken from each injection of the 
sample to the pulse current returning approximately to the background level, was within 
180, 100, 70 and 30 s at a flow rate of 5, 10, 20 and 50 ml/hr, respectively. Operating at a high 
flow rate had a faster response, but lost another important parameter, sensitivity. Hence the 
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Fig. 4. The sensing signals of the biosensor in response to various glucose concentrations 
using flow injection analysis. 

 

Fig. 5. The calibration curve based on charge at different flow rates. 

proper flow rate was selected as 10 ml/hr by considering the performance. The response 
time and the recovery time, defined as the time taken for the current reaching of 95% of the 
steady-state level, are about 15 s and 35-75 s, respectively. For different concentrations of the 
samples, the response time is almost the same, but the recovery time varies with the 
concentration. The higher concentration of sample leads to longer recovery time, since the 
larger driving force of mass transport results in a broader concentration profile. 
Additionally, the limit of detection (LOD) based on signal to noise ratio equaling to 3 is 0.15 
mM at 10 ml/hr.  
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Table 2 is a partial list of the amperometric GOD-based glucose sensors, obtained from the 
literatures based on PDMS chips. They used capillary electrophoresis to separate the 
interferences (Liu et al., 2006; Zhang et al., 2006a) and immobilized lactate oxidase to 
catalyst the ascorbic acid on the upstream (Kurita et al., 2002). Besides, the sensing chip 
(Huang et al., 2007) can not only detect glucose concentrations but also inject insulin 
automatically. In the aspect of sensing performance, the linear ranges almost covered the 
normal human range (3.5-8 mM), but system A provided fast response and recovery times. 
However, the limit of the detection was not as low as the others, and hence the applications 
may have some limitations. 
 

References 
Immobilized

method 

Sensitivity
(μA cm-2 

mM-1) 

Linear
range
(mM)

Response
time (s) 

Recovery 
time (s) 

LOD 
(μM) 

(Zhang et al., 2006a) adsorption --- 0-30 10 15 6.5 

(Liu et al., 2006) adsorption 0.0312 0.01-5 --- --- 5 

(Yamaguchi et al., 2002) entrapment 8.67 0-20 50 --- - 

(Kurita et al., 2002) entrapment 0.0025 0.01-1 120 --- 2.3 

(Huang et al., 2007) entrapment 0.0076 2-30 50 --- --- 

System A entrapment 4.6 1-10 15 35-75 150 

Table 2. Partial literatures of the amperometric GOD-based glucose sensors on PDMS chips. 

4.3 The interferences effect and the monitoring of real sample 

One of the most important problems to tackle for any practical application of amperometric 
biosensors is to minimize the effect of interfering substances possibly present in a real 
sample. For oxidase-based systems, reductants are the most severe interferences and among 
these ascorbate and uric acid (Navera et al., 1993; Vasantha & Chen, 2006) are two of the 
most considered. Moreover, well-separated voltammetric peaks were observed for 
dopamine and ascorbate anion at the PEDOT modified electrodes at 0.21 and 0.08 V, 
respectively (Matuszewski et al., 1990). Although the linear range covers the glucose level of 
normal human, the oxidation-favored interferences in blood, such as ascorbic acid (AA) and 
uric acid (UA), still raise the sensing currents at a high voltage of 0.7 V. To solve this, the 
pre-reaction section, “WE2” in Fig. 3, was designed to reduce the interference effect in this 
microsystem. Here, the bi-potential was applied simultaneously to both WE1 and WE2 by 
the bi-potentiostat of CHI 900. In the flow injecting analysis, when the samples were 
injected, the oxidation-favored substances near the boundary layer were oxidized at 0.7 V 
(vs. Ag/AgCl) on WE2. Consequently, the interferences near the boundary layer were 
partially eliminated to some extent before the analyte arriving to WE1. The electrode gap 
between WE1 and WE2 (0.25 mm) is designed to be very close so as to avoid the solution 
diffusing from the outside boundary layer into the inside layer. For a single-potential test on 
WE1, both 0.08 mM AA sample and a blend of 0.08 mM AA plus 10 mM glucose sample 
reached 31.3% and 145.5% of the sensing current obtained for 10 mM glucose, respectively. 
AA contributes a significant current to the total current on the PEDOT enzyme-modified 
electrode. In contrast, the sensing current of the blend sample reached 99.6% that of 10 mM 
glucose response in a bi-potential test. The result shows that the concentration of the 
oxidation-favored species in the sample was reduced appreciably. Therefore, it is concluded 
that the bi-potential configuration can reduce the interferences in a flow injection system 
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and thereby improving the selectivity and specificity of an enzyme modified electrode 
towards glucose oxidation. 
For the real sample test, three different methods were used to monitor the glucose 
concentration of the human blood. One was determined by a hospital, another was obtained 
by a handheld commercial product (EasiCheck blood glucose test strips) and the third was 
detected by this sensing chip. After the oxidation of the interferences on WE2, the reduced 
concentration of the interferences in the boundary layer can enhance the accuracy of glucose 
sensing for WE1. The results obtained from the three methods are shown in Table 3 and the 
percentages of the detecting error were calculated according to the value obtained from 
hospital as a standard. Moreover, the bias of the bi-potential (+13.6%) was much lesser than 
that of single-potential (+141%), and this confirms that the WE2 helps to eliminate the 
interference. For the commercial product, the average concentration of three tests was 4.77 
mM and the bias was about +5% which is within the bias range (±20%) of the product 
prescription. Although the error of the bi-potential was acceptable grudgingly, it may be 
lowered further by increasing the active area of WE2. 
 

Glucose biochip Commercial product NTU Hospital 

Single-potential = 10.99 mM 
(Bias = +141%) 

Bi-potential = 5.18 mM 
(Bias = +13.6%) 

4.77 mM 
(Bias = +4.6%) 

4.56 mM 
(as a standard) 

Table 3. A summary of the detecting errors for a real sample tested against different 
methods. 

5. Results and discussion of system B 

5.1 The enzyme electrode 

For the stable test of BZQ adsorbed inside the electrodes, it was under the sweeping 

potentials between -0.6 and 0.8 V for 100 cycles. With increasing cycle numbers, the peak 

currents of redox reaction were decreased to stable values after about 50 cycles (not shown). 

This implied that the electrodes can reach to a stable situation after the leakage of the 

weakly-adhesive BZQ. It showed that the first layer, carbon, was a good substrate for the 

adsorption of BZQ. For the third layer, the GOD dry-coated on the electrode may dissolve 

into the electrolyte while the step of electropolymerization. As a result, the immobilized 

amount of GOD can be quantified by the absorbance change of the electrolyte before and 

after polymerization. According to the UV spectrum (not shown) of the electrolyte at 280 

nm, which is the maximum absorbent wavenumber for GOD, the leakage of GOD in the 

electrolyte was calculated to be about 132 U and the entrapped efficiency was about 33% for 

the electrode B. The immobilized amount of GOD by this method is about 68 U/cm2 which 

is higher than 0.101 U/cm2 of the GC electrode by entrapping enzyme and polymerizing 

PEDOT at the same time reported in the previous work (Nien et al., 2006). 

5.2 The sensing performance 

For glucose biosensors, the prepared electrode worked in the nitrogen purged glucose 
solutions at a stiring rate of 100 rpm by applying a sensing potential of 0.3 V to record the 
oxidation sensing current of BZQ. The calibration curve of the electrode was shown in Fig. 6 
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and the sensitivity was 2.21 mA M-1 cm-2 with a R2 value of 0.993. Besides, the other 
performances including linear range, response time and limit of detection were 1.1-15 mM 
(human range included), 95-105 s and 1.1 mM, respectively. Comparing to the previous 
works of co-immobilization of GOD and mediators, the sensitivity is better than 0.79 
(Himuro et al., 2009), 0.111 (Crespilho et al., 2008) and 1.86 (Qiu et al., 2007) mA M-1 cm-2 In 
the first work, the GOD was linked on the mediator-based copolymer backbone, 
poly(vinylferrocene-co-2-hydroxyethyl methacrylate), and polyamidoamine particle linked 
by GOD was co-immobilized with the gold nanoparticles modified by cobalt 
hexacyanoferrate (mediator) on conducting glass in the second work. In the last work, the 
GOD and ferrocene monocarboxylic acid-modified Fe3O4 nanoparticles were both entrapped 
on carbon paste electrode. In addition, only the linear range of the first literature (1.4-8.9 
mM) covered the normal human range. 
 

 

Fig. 6. The current response with increasing glucose concentrations and the calibration curve 
(inset) for system B. 

5.3 The interferences effect and monitoring of real sample 

For simulating the real sample, the most common interferences including AA, DA, UA and 
AP were applied in this system, and their formal potentials are about 0.2 V, 0.3 V, 0.5V and 
0.3 V vs. Ag/AgCl/sat’d KCl, respectively. Besides, the normal ranges of those four species 
in blood are 34-80 μM, <1 μM, 178-416 μM and 130-150 μM, respectively. The current 
responses of the interferences were shown in Fig. 7 based on the sensing current of 6 mM 
glucose as 100%. In Fig. 7, there is almost no current response for UA owing to the 
insufficient overpotential. However, the sensing current of DA was higher than that of AA 
which has a lower oxidized potential. It is because some carbons on the polymer backbone 
was over-oxidized and transformed into carboxylic groups at a high potential when 
polymerization (Cosnier, 2003; Vidal et al., 2001). In the literature (Palmisano et al., 1995), 
the carboxylic groups on the over-oxidized conducting polymer, polypyrrole, were proved 
by X-ray photoelectron spectroscopy (XPS). In other words, the charge of PEDOT polymer 
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chain changed to partial negative from positive, so the PEDOT film preferred to attract 
positive DA (pK=8.87) than negative AA (pK=4.1) in the PBS of pH 7. Additionally, the AP 
with positive charge resulted in 3% current response owing to the same way stated above. 
Finally, the whole blood from human beings was also monitored in a batch system and it 
shows an bias of +3.6% according to the standard glucose concentration of 4.94 mM 
obtained from National Taiwan University Hospital. As a result, the modified electrode 
presents a good performance for real samples detections in an oxygen-independent system.  
 

 

Fig. 7. The relative current response of the common interferences in human blood. 

5.4 The application of biofuel cell 

The modified electrode was employed for not only as a glucose biosensor but also as an 
anode for biofuel cell. In the following biofuel cell system proposed, the anode was the 
modified electrode immobilized BZQ and GOD, and the cathode was the platinum electrode 
in the ABTS and Lac solution. Figure 8 shows the I-V curves obtained by sweeping 
potentials from open circuit voltage (Voc) to 0 V and power curves in 0 M and 0.1 M glucose 
solution at room temperature and body temperature, which means 25 oC and 37 oC, 
respectively. In the Fig. 8A, the Voc increased to 0.6 V from 0.52 V and the cell current had an 
obvious enhancement after adding 0.1 M glucose. It implied that the glucose biofuel cell was 
workable and sensitive to glucose concentration. Based on Fig. 8A, the power curves shown 
in Fig. 8B can be calculated from the current multiplied by cell voltage. In Fig. 8B, the cell 
power of the 0 M glucose solution was 7 μW/cm2 and the cell acted as a non-regenerated 
cell by the redox reactions of the mediators in each compartments. Besides, the maximum 
power of 22.5 μW/cm2 (at Vcell=0.235 V and I=95.8 μA) at body temperature was slightly 
higher than that of 18.9 μW/cm2 (at Vcell =0.212 V and I=89.1 μA) at room temperature. It is 
because the power at 37 oC is affected by the higher catalytic activity of enzyme and the 
lower fuel solubility of oxygen in cathode.  
In this system, the anode was assigned as the rate-determining electrode to optimize the 
amount of BZQ and GOD. Thus, the catholyte always contains sufficient ABTS and Lac 
comparing to anodic electrolyte and the maximum reaction rate of cathode was much higher 
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                                            (A)                                                                         (B) 

Fig. 8. (A) The I-V curve and (B) the power curve of the biofuel cell at 25 oC and 37 oC. 

than that of anode. Figure 9 shows the maximum powers of the cell with the anodes 
prepared by different amounts of BZQ and GOD at 25 oC. The maximum powers were only 
varied with the amount of BZQ but GOD in Fig. 9. However, the immobilized content of 
BZQ was much high according to its redox peak current, and the mole ratio of that to the 
quantitative GOD (mole of BZQ/mole of GOD) was much larger than 10. It may be due to 
the poor contact between the BZQ with hydrophobic property and GOD with hydrophilic 
property. In other words, the electron-transfer reaction may be only carried out in the near-
interface of BZQ and GOD layers, so it also resulted in lower sensing current and cell power. 
Besides, the powers of the electrode prepared by 80 μl BZQ were almost the same as that by 
40 μl BZQ, so the optimal condition was 40 μl BZQ and GOD. 
 

 

Fig. 9. The maximum cell powers using different anodes prepared by various amounts of 
BZQ and GOD at 25 oC 
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Table 4 shows a partial list of the literatures for the biofuel cells immobilized GOD and Lac 
by physical immobilized methods, such as adsorption and entrapment. In the first three 
references (Nos. 1-3), the cells with the mediators dissolved in electrolytes were carried out 
in membrane systems. However, the mediators were immobilized on the electrodes for the 
last two references (Nos. 4-5). According to Table 4, this system can provide a largest Voc 
and the maximum power is better than that of some references (Nos. 1, 3, 4). 
 

Power (μW/cm2) 
No. Reference 

Immobilized 
Method 

Voc 
(V) 23 oC 37 oC 

1 (Yan et al., 2007) Lipid based 0.45 3.2 --- 

2 (Liu & Dong, 2007a) Gel 0.4 29 --- 

3 (Liu & Dong, 2007b) Gel 0.25 10 --- 

4 (Habrioux et al., 2007) Adsorption 0.3 --- 16 

5 (Brunel et al., 2007) Adsorption 0.3 --- 29 

6 System B (Nien et al., 2009) Entrapment 0.6 18.9 22.5 

Table 4. A partial list of literatures on the power output of biofuel cells with glucose oxidase 
and laccase which were immobilized by adsorption and entrapment. 

6. Conclusions and future works 

In system A, the PEDOT-modified electrode was used as a matrix to entrap glucose oxidase 
and was integrated in a flow system of sensing chip successfully. The optimal injecting 
volume and flow rate were 30 μl and 10 ml/hr, respectively. The performances of 
sensitivity, linear range, response time, recovery time and limit of detection were  
157 μC cm-2 mM-1, 1-10 mM, 15 s, 35-75 s and 0.15 mM at a flow rate of 10 ml/hr, 
respectively. With an applied potential of 0.7 V on WE2, it can reduce the interference 
current of WE1. Since the interferences in the flow channel near the surface of the first 
electrode (WE2) had been pre-reacted electrochemically, and the interference-free sensor can 
be achieved at the second electrode (WE1). In the real sample test, the bias of bi-potential 
was +13.6%, which is lower than that of single-potential. In system B, the proposed 
electrode fabricated by multilayer structures successfully works as a glucose biosensor in 
the oxygen-independence solution, and the anode of the biofuel cell by adding not only 
glucose solution but also the real blood of human beings. The electrode prepared by 
BZQ/DMF, shows a sensitivity of 2.21 mA M-1 cm-2, a linear concentration range of  
1.1~15 mM (including the human blood range) and a response time of 100 s at a sensing 
potential of 0.3 V. Besides, the current responses of the common interferences in blood were 
much lower than that of 6 mM glucose because of the low sensing potential and the patially 
negative charged polymer film. As the glucose/O2 biofuel cell, the Voc can reach to 0.6 V and 
the maximum power was 22.5 μW/cm2 at 37 oC in 0.1 M glucose solution. For the real blood 
tests, the bias was about +3.6% comparing to the standard value from hospital in glucose 
sensing and the cell power was 25 μW/cm2 in biofuel cell at 25 oC. 
Nowadays, most of diabetes check their glucose level by the commercial glucose test strips 
at home and inject insulin if they need. However, hemoglobin A1c, HbA1c, recommended by 
the American Diabetes Association (ADA) provides an average blood glucose level during 
60-90 days. It is a more accurate biomarker for long-term monitoring without external 
factors. In literatures, fructosyl valine (FV), which exists after protein digestion of HbA1c, was 
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monitored by enzyme-based electrochemical biosensor (Fang et al., 2009) or molecular-
imprinting biosensor (Chuang et al., 2009). The recent challenge in HbA1C part is still how to 
lower the interference signal, especially the effect of heme in our experiment. Heme also 
exists along with FV in sample after protein digestion, so this matter will be an issue for 
future study. 
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