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Chapter

The Intratubular and Intracrine
Renin-Angiotensin System in the
Proximal Tubules of the Kidney
and Its Roles in Angiotensin
II-Induced Hypertension
Xiao C. Li, Ana Paula de Oliveira Leite, Xu Chen,

Chunling Zhao, Xiaowen Zheng, Jianfeng Zhang

and Jia L. Zhuo

Abstract

The kidney plays a fundamental role in the physiological regulation of basal
blood pressure and the development of hypertension. Although the mechanisms
underlying hypertension are very complex, the renin-angiotensin system (RAS)
in the kidney, especially intratubular and intracellular RAS, undoubtedly plays a
critical role in maintaining basal blood pressure homeostasis and the development
of angiotensin II (ANG II)-dependent hypertension. In the proximal tubules,
ANG II activates two G protein-coupled receptors, AT1 and AT2, to exert powerful
effects to regulate proximal tubular sodium and fluid reabsorption by activating
cell surface as well as intracellular AT1 receptors. Increased production and actions
of ANG II in the proximal tubules may cause salt and fluid retention, impair the
pressure-natriuresis response, and consequently increase blood pressure in
hypertension. The objectives of this chapter are to critically review and discuss
our current understanding of intratubular and intracellular RAS in the kidney,
and their contributions to basal blood pressure homeostasis and the development
of ANG II-dependent hypertension. The new knowledge will likely help
uncover novel renal mechanisms of hypertension, and develop kidney- or
proximal tubule-specific strategies or drugs to prevent and treat hypertension
in humans.

Keywords: angiotensin II, blood pressure, hypertension, kidney,
proximal tubule

1. Introduction

According to the most recent American College of Cardiology (ACC)/
American Heart Association (AHA) reports, 46% of U.S. adults now develop
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hypertension and take antihypertensive drugs in their lifetime [1, 2]. Prevention
and treatment of hypertension and its target organ complications cost several
hundreds of billion dollars a year to the U.S. economy [3–6]. Although the
causes of hypertension are multifactorial, the activation of circulating (endocrine),
tissue (paracrine) and intracellular (intracrine) RAS via angiotensin II (ANG II)
remains one of most important contributing mechanisms [1–7]. Indeed,
angiotensin-converting enzyme (ACE) inhibitors, ANG II receptor blockers
(ARBs), and renin inhibitors, which block the RAS at the enzymatic or
receptor levels, are widely used to treat hypertension, reduce cardiovascular and
renal disease risks, and prevent target organ damage [1–7]. However, clinical trials
have shown that not all RAS-targeting drugs have the same efficacy of blocking the
actions of ANG II and afford the same degree of cardiovascular, blood pressure and
renal protection [1–6]. Some patients continue to develop cardiovascular and renal
complications despite being treated with one or more than two of these blockers
[7, 8]. The underlying mechanisms responsible for these clinical observations are
not well understood. One of the possibilities may be that not all ARBs have the same
ability to enter the cells to block intracellular ANG II. Some, but not all, ARB(s)
such as telmisartan and losartan may exert therapeutic effects beyond the classic
ARBs’ properties.

There is accumulating evidence that ANG II acts not only as an endocrine or
paracrine hormone activating cell surface ANG II receptors, but also as
an intracellular or intracrine peptide activating intracellular ANG II receptors,
though the precise roles of the latter remain largely unknown [9–11]. Indeed,
in addition to activating cell surface ANG II receptors, circulating and
paracrine ANG II can readily enter the cells via AT1 receptor-mediated
endocytosis. The ANG II/AT1 receptor complex internalized into endosomes
may continue to transmit signals from endosomes or be translocated to the
nucleus to induce long-lasting genomic effects [12, 13]. Recently, we and
others have used innovative in vitro cell expression system [14–16], in vivo
adenoviral gene transfer of an intracellular ANG II protein selectively in
proximal tubule cells of the rat and mouse kidneys [17, 18], or genetically
modified mouse models to investigate the physiological roles and mechanisms
of actions of intratubular and intracellular ANG II in the proximal tubules
of the kidney, with a focus on basal blood pressure homeostasis and ANG
II-induced hypertension [19, 20]. Specifically, we have determined whether
intracellular ANG II is derived from AT1 (AT1a) receptor-mediated uptake
by the proximal tubule cells, and whether proximal tubule-selective
expression of an intracellular ANG II fusion protein in the rat and mouse
kidney increases the expression and activity of NHE3, promotes proximal
tubular sodium and fluid reabsorption, and therefore elevates arterial
blood pressure [17–23]. These new studies have generated new knowledge to
improve, and provided new insights into our understanding of renal
mechanisms of hypertension involving both endocrine, paracrine and
intracellular ANG II, and perhaps aid the development of new classes of
multifunctional drugs to treat ANG II-induced hypertension and its target
organ damage by blocking not only extracellular but also intracellular and
nuclear actions of ANG II. Accordingly, the objectives of this chapter are to
critically review, analyze, and discuss the recent developments and progresses
in the studies of novel renal mechanisms of hypertension with a focus on the
roles of intratubular and intracellular ANG II in the proximal tubules of
the kidney.
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2. Localization of intratubular and intracellular RAS and its receptors in
the proximal tubules of the kidney

2.1 Angiotensinogen

Angiotensinogen, a �60 kDa α2 globulin in the serpin family, is the primary, if
not the only, substrate for the RAS super family. It is well-recognized that
angiotensinogen is primarily expressed or produced in the liver under physiological
conditions. Human angiotensinogen consists of 452 amino acids, whereas rodent’s
angiotensinogen may vary in its molecular size slightly from human form [24–27].
Angiotensinogen, not active in itself, is released from the liver and cleaved in the
circulation by the rate-limiting enzyme renin to form the still inactive decapeptide
ANG I. This is followed by the conversion of inactive ANG I to the active and potent
peptide ANG II, initiating important biological and physiological actions. A second
enzyme called angiotensin I-converting enzyme (ACE) acts to convert ANG I to
form the biologically active ANG II, initiating an important biochemical and phys-
iological angiotensinogen/renin/ANG I/ACE/ANG II cascade (see below section on
ACE). Accordingly, the recognized and primary role of angiotensinogen is to serve
as a key substrate to the production of ANG II in the circulation and tissues.

In the kidney, angiotensinogen mRNAs and proteins have been localized in the
kidney, primarily in the proximal tubules [28–30]. Immunohistochemistry,
immunoelectron microscopy and non-isotopic hybridization histochemistry have
demonstrated the localization of angiotensinogen mRNAs and proteins in the prox-
imal convoluted and straight tubules of the cortex, with glomerular mesangial cells
and medullary vascular bundles also being immunopositive in neonatal rat kidney
[29, 30]. In the adult rat kidney, however, angiotensinogen mRNA expression was
localized primarily in the proximal convoluted tubules, whereas electron-
microscopic immunohistochemistry localized angiotensinogen immunostaining in
the apical membrane of proximal convoluted tubules [29, 30]. By contrast, few if
any angiotensinogen mRNAs and proteins are localized in the glomeruli, mesangial
cells, or distal nephrons under physiological conditions [29, 30].

Although most of angiotensinogen in the circulation is derived from the liver,
there is evidence showing that angiotensinogen is also expressed and produced in
the kidney [28, 31–33]. Kobori et al. have consistently shown that angiotensinogen
mRNA expression and proteins are increased in the proximal tubules of the kidney
in ANG II-infused rats [28, 31–33]. However, Matsusaka et al. have demonstrated
that there were no significant differences in the levels of angiotensinogen and ANG
II proteins in the kidney between wildtype mice and mice with kidney-specific
angiotensinogen knockout [34]. It was further found that angiotensinogen protein
and ANG II levels in the kidney were nearly abolished in mice with liver-specific
knockout of angiotensinogen [34]. The studies of Kobori et al. and Matsusaka et al.
suggests that liver-derived angiotensinogen is the primary source of renal
angiotensinogen protein and ANG II under physiological conditions, but during the
ANG II-induced hypertension, angiotensinogen mRNAs and proteins are also
expressed in the kidney proximal tubules.

2.2 Renin

Renin, the rate-limiting enzyme first discovered to increase blood pressure in
rabbits by Tigerstedt and Bergman in 1898 [35], is an aspartyl proteinase or
angiotensinogenase. Renin plays the most critical role in the initiation of the
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angiotensinogen/renin/ACE/ANG II/AT1 receptor activation in the cardiovascular,
kidney, and other major target tissues. Human renin precursor consists of 406
amino acids with a pre- and a pro-segment of 20 and 46 amino acids, respectively
[36]. Mature human renin contains 340 amino acids and a molecular wt. of 37 kDa
[36]. Renin, renin activity, and its mRNA have been localized in the kidney, sub-
maxillary glands, blood vessels, heart, adrenal glands, and brain tissues by enzy-
matic assays, immunohistochemistry, in situ hybridization histochemistry etc.
[37–39]. In the kidney, active renin is primarily localized in the juxtaglomerular
apparatus (JGAs) in the afferent arterioles of the kidney under both physiological
and diseased conditions [40–42]. For example, light and electron microscopic
immunocytochemistry with an antibody to purified human renal renin localized
renin in the secretion granules of the epithelioid cells of the afferent arteriole of the
JGAs, in renal artery stenosis, or in Bartter’s syndrome [36, 37]. In the dog kidney,
we have used an in vitro autoradiographic approach to localize active renin using
radiolabeled renin inhibitors [40–42]. High resolution light microscopic autoradi-
ography specifically localized active renin to the vascular pole of the glomeruli,
or the JGAs (Figure 1) [40–42].

In the proximal tubule of the kidney, renin mRNAs have been reported [43, 44].
Renin activity and mRNAs were detectable in cultured rabbit proximal tubule cells
[45], in isolated proximal convoluted and straight tubules, but not in outer medul-
lary collecting ducts [44]. Tang et al. reported that all major components of the
RAS, including angiotensinogen, angiotensin converting enzyme, and renin, were
expressed in an immortalized rat proximal tubule cell line [45]. However, there is
also evidence that renin localized in the proximal tubules may be due to the uptake
of circulating renin after filtration [46, 47]. Taugner et al. demonstrated that the
reabsorptive pinocytosis of the filtered renin was the primary source of tubular
renin in the kidney [46], whereas Iwao et al. used light and electron microscopic
autoradiography to localize 125I-labeled renin accumulated in the apical membranes
of the proximal convoluted tubules [47]. Taken together, these studies strongly
support the concept that in addition to local biosynthesis and expression, circulating
or interstitial renin may be taken up by the proximal convoluted tubules in
the kidney.

2.3 Angiotensin I-converting enzyme (ACE)

The 2nd key enzyme for the activation of the RAS is ACE, a dipeptidyl
carboxypeptidase I, kininase II and EC 3.4.15.1 [48]. Corvol’s group first molecu-
larly cloned ACE from human vascular endothelial cells [48], whereas Bernstein’s

Figure 1.
Intrarenal localization of renin in the juxtaglomerular apparatus (A: JGA), angiotensin-converting enzyme
(B: ACE), and angiotensin II AT1 receptors in the kidney (C: AT1 or AT1a) using quantitative in vitro
autoradiography. C, renal cortex; G, glomerulus; IM, inner medulla; ISOM, inner stripe of the outer
medulla; PCT, proximal convoluted tubule.
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group cloned ACE from the mouse kidney in 1988, respectively [49]. ACE in
humans consists of 1306 residues with a signal peptide of 29 amino acids [48],
whereas ACE in mice contains 1278 amino acids [49]. Approximately 80% of the
amino acid sequences are similar between human and mouse ACE. There are two
ACE isozymes, one somatic isozyme in the lung, vascular endothelial cells, renal
epithelial cells, and testicular Leydig cells, and the other germinal isoenzyme solely
in sperm [50–52]. The key actions of ACE are to convert the biologically inactive
ANG I to the active peptide ANG II, and to degrade the vasoactive peptide brady-
kinin. Thus, ACE is most critical for the generation of ANG II in the circulation
and tissues.

Abundant ACE is expressed and localized in the kidney, especially in the
proximal tubules and glomerular and vascular endothelial cells of intrarenal
blood vessels [53–57]. We and others have localized ACE proteins and its mRNA
expression in the kidney using quantitative in vitro autoradiography, immuno-
histochemistry, and in situ hybridization histochemistry (Figure 1). For example,
the Mendelsohn’s group first localized ACE in the rat kidney using quantitative
in vitro autoradiography with the radiolabeled ACE inhibitor lisinopril, 125I-351A
[53]. ACE was localized primarily to the inner cortex, corresponding to the
proximal tubules and blood vessels [53]. We found that infusion of ANG II for
2 weeks significantly increased, rather than downregulated, ACE in the proximal
tubules of the rat kidney [54]. At higher resolutions, Brunevaly et al. and others
showed ACE primarily in the microvilli and brush borders of the proximal
tubules in the human kidney [55–57]. In the vasculature, ACE was localized to the
vascular endothelial cells especially in the peritubular capillaries, but not glo-
merular capillaries of the kidney [53–57]. ACE was also localized inside the renal
vascular endothelial and proximal tubular cell in endoplasmic reticulum,
endosomes, and nuclear envelope, suggesting the presence of intracellular and/or
nuclear ACE [53–57]. However, only very low levels of ACE were detected in the
inner medulla.

2.4 Angiotensin II (ANG II)

Angiotensin II (ANG II) is undoubtedly the most powerful peptide in the RAS
super family, playing a key role in regulating renal blood flow, glomerular filtration,
and proximal tubular reabsorption of sodium and fluid, contributing to normal
blood pressure and body salt and fluid homeostasis [58–64]. It is well-recognized
that the levels of ANG II in the kidney, especially in the proximal tubules, are higher
than in the plasma or other tissues. Indeed, local expression and biosynthesis of
angiotensinogen, renin, and ACE in the proximal tubules of the kidney significantly
contribute to high levels of ANG II levels in the kidneys under physiological condi-
tions [64–68]. Furthermore, ANG II levels are further increased in the kidney of
animal models of ANG II-dependent hypertension, even though the circulating and
JGA renin and ACE are suppressed [67–73]. This is likely due to the fact that the
proximal tubules express all major components of the RAS necessary for the for-
mation of ANG II [38, 47, 54, 59, 67, 74, 75], the proximal tubules have a greater
capacity to take up circulating ANG II via AT1 (AT1a) receptor-mediated mecha-
nisms [14, 19, 20, 67], and to augmentation of the expression or generation of
angiotensinogen, ACE and ANG II in ANG II-induced hypertension [54, 67, 70, 73].
Finally, ANG II is not only generated in the intratubular fluid compartment, but
also localized in intracellular organelles, such as endosomes, mitochondria, and
nuclei [15, 67, 71, 74, 75], where it serves as an important intracellular or intracrine
peptide.
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2.5 AT1 and AT2 receptors

It is now well-accepted that ANG II binds to and activates two different classes
of G protein-coupled receptors (GPCRs) to induce well-recognized cardiovascular,
renal and blood pressure responses, following the successful development of
nonpeptide ANG II type 1 and type 2 receptor antagonists [76–78]. Molecular
cloning of AT1 and AT2 receptors and studies of animal models with genetically
knockout of these receptors further confirms their pharmacological characteriza-
tion. Murphy et al. [79] and Sasaki et al. [80] successfully cloned the AT1 receptor in
1991, showing that the AT1 receptor shares the seven-transmembrane-region motif
of the GPCR superfamily. AT1 receptors mediate the well-known actions of ANG
II on vasoconstriction, cardiac hypertrophy, hypertensive, renal salt retention, as
well as aldosterone biosynthesis [76–78, 81]. The AT2 receptor was cloned by
Mukoyama et al. [82], Nakajima et al. [83], and Kambayashi et al. [84], respec-
tively. The AT2 receptor was found to have 34% of the identical sequence to the AT1

receptor, sharing a seven-transmembrane domain topology of GPCRs [82–84].
However, the roles and signal transduction pathways for the AT2 receptor remain
incompletely understood.

In the kidney, the AT1 receptor is widely expressed and localized in different
structures or cell types, most prominent in three anatomical regions, that is, the
glomerulus, proximal tubules, and the inner stripe of the outer medulla,
corresponding the vasa recta blood vessels and renomedullary interstitial cells
(Figure 1) [85–87]. We and others have consistently localized the AT1 receptor in
the rodent and human kidneys using quantitative in vitro and in vivo autoradiogra-
phy, with high levels of these receptors in the glomerulus, proximal tubules, and
renomedullary interstitial cells (Figure 1) [85–87]. Other anatomical regions or
renal structures may express low levels of AT1 receptor expression, detectable with
RT-PCR or immunohistochemistry. AT1 receptors have also been localized in intra-
cellular organelles, for example, endosomes, mitochondria, and nuclei in the prox-
imal tubule cells, suggesting an important intracellular roles [67, 74, 88–90]. By
contrast, the levels of AT2 receptor expression in the kidney are species-related or
closely associated with the kidney development. Indeed, high levels of AT2 recep-
tors are expressed extensively in the developing fetal and neonatal tissues, but most
of them disappear before reaching the adulthood [87]. Nevertheless, the expression
of AT2 receptors appears to persist in the adrenal medulla, proximal tubules, and
the adventitia of human kidney blood vessels, suggesting potential roles for these
receptors in these target tissues [85–87, 91–93].

3. Intratubular and intracellular ANG II: the long-term genomic effects
induced by endocrine, paracrine and intracellular ANG II

In contrast to the classic dogma that ANG II only binds to and activates cell
surface GPCRs to initiate downstream signaling responses, ANG II can also bind
and activate intracellular GPCRs to induce long-term genomic effects. The RAS
includes an extracellular system and an intracellular system. ANG II acts as the
principle effector of both extracellular and intracellular RAS. Extracellular ANG II
includes circulating (endocrine) and paracrine ANG II, which plays the classical
roles of the RAS through activation of cell surface GPCRs [76–78, 81, 94, 95].
Intracellular ANG II includes intracellularly formed ANG II (intracrine) and ANG II
internalized through AT1 (AT1a) receptor-mediated endocytosis [96–101]. The roles
of circulating and paracrine ANG II and its GPCR-mediated signaling mechanisms
via cell surface receptors have been extensively investigated. By contrast, the roles
of intracellular ANG II and its mechanisms of actions remain poorly understood.
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This disparity in our understanding extracellular versus intracellular ANG II has led
many to assume that ANG II only activates cell surface receptors to induce all of its
biological and physiological responses, and that all ARBs would only block cell
surface receptors to produce the same beneficial effects. Thus, an intracellular ANG
II system is thought to be unnecessary in the regulation of cardiovascular, blood
pressure, and renal physiology and diseases.

However, recent studies strongly suggest that these views may be revised for a
number of reasons [96–101]. First, it is well-recognized that extracellular ANG II is
continuously internalized with its receptors after it activates cell surface receptors.
This has long been interpreted only as required for the desensitization of cell surface
receptors to repetitive stimulation by extracellular ANG II by moving the ANG II/
AT1 complex into the lysosomal pathway for degradation. There is evidence, how-
ever, that the activated agonist/receptor complex internalized into the endosomes
may continue to transmit ras/mitogen-activated protein kinase (MAPK) signaling
[12, 13]. Ras and MAPK signaling for AT1a, vasopressin V2, and β2 adrenergic
receptors (β2AR) have been reported in endosomal membranes [12, 13, 15, 16], the
endoplasmic reticulum, the Golgi or the nucleus independent of cell surface
receptor-initiated signaling [81, 88, 89, 102]. Second, ANG II exerts long-lasting
genomic or transcriptional effects, which may be independent from the well-
recognized effects induced by activation of cell surface receptors [97–99, 102, 103].
ANG II induces the expression or transcription of many growth factors and prolif-
erative cytokines including nuclear factor-κB (NF-κB) [104–107], monocyte
chemoattractant protein-1 (MCP-1) [106, 108], TNF-α [107], and TGF-β1
[102, 109, 110]. While hemodynamic responses to ANG II often occur in seconds or
minutes, cellular growth, mitogenic, proliferative and fibrotic responses to ANG II
may last from hours to weeks and months. Since the cell surface AT1 (AT1a) recep-
tors may be desensitized in response to sustained exposure to endocrine and para-
crine ANG II, the long-term genomic effects of ANG II, as observed in
cardiovascular, hypertensive, and renal diseases, are at least in part mediated by
intracellular ANG II system. Third, not all ARBs, ACE or renin inhibitors are created
equal to block both extracellular and intracellular ANG II systems. ARBs may differ
in their lipophilic ability to enter the cells to block intracellular AT1 receptors [111–
113]. Indeed, ARBs show different effects on uric acid metabolism, cell prolifera-
tion, oxidative stress, nitric oxide production and PPAR-γ activity [111–113]. We
and others have shown that losartan internalized with AT1a and AT1b receptors,
albeit at a slower rate than ANG II [19, 20, 67, 103, 114], and to attenuate ANG II-
induced intracellular and nuclear effects [15, 88, 89, 102, 103]. Moreover,
telmisartan not only blocks AT1 receptors, but also acts as a partial activator of liver-
specific peroxisome proliferator-activated receptor γ (PPAR-γ) [111, 115–157].
Finally, some clinical studies have shown that even treated with renin inhibitors,
ACE inhibitors or ARBs, there are some patients who still progress to hypertension
and suffer from cardiovascular and renal complications [111, 115–117]. These data
suggest that additional mechanisms should be involved and studied accordingly.
Thus, the new challenges to the field are to study whether and how intracellular
ANG II may contribute to these mechanisms and design multifunctional drugs to
block both extracellular and intracellular ANG II-induced effects.

4. Intratubular and intracellular ANG II: AT1a receptor-mediated
uptake of circulating and paracrine ANG II in the proximal tubules

We and others have investigated whether circulating and local paracrine ANG II
is taken up by the proximal tubules of the kidney via AT1 (AT1a) receptor-mediated
endocytosis [19, 20, 118–121], and whether internalized ANG II and AT1a receptors
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are co-localized in the endosomal compartment and nucleus (Figure 2) [67, 74,
88, 89]. Our studies demonstrated that global deletion of AT1a receptors blocked the
uptake of unlabeled Val5-ANG II [19] or [125I]Val5-ANG II in the kidney of AT1a-KO
mice [20]. However, these studies focused only on the entire kidney, and what
nephron segments involved in taking up unlabeled Val5-ANG II or [125I]Val5-ANG
II could not be determined using these approaches [19, 20]. We further used
cultured proximal tubules cells to test whether proximal tubule cells take up extra-
cellular ANG II and the mechanisms involved (Figure 2) [14, 100, 122–126]. The
advantages of using these cells for the proposed studies are that ANG II receptors
are abundantly expressed and localized in both apical (AP) and basolateral (BL)
membranes [127–131]. However, it has not been determined whether ANG II
receptors in AP or BL membranes mediate ANG II uptake in the proximal tubules.
In a previous study using a porcine proximal tubule cell line expressing a rabbit AT1

receptor, AT1-mediated uptake of [125I]-ANG II was found to be significantly dif-
ferent between AP and BL membranes [130]. AT1-mediated uptake of [125I]-ANG II
was more robust and efficient in AP membranes than in BL membranes [130].
Conversely, ANG II-induced AT1 receptor internalization was reportedly much
faster in BL membranes than in AP membranes of OK cells [131]. Thus these
differences inAT1-mediated uptake of [125I]-ANG II or ANG II-induced AT1 recep-
tor endocytosis or internalization may underscore the differences in the cell types
used or experimental conditions.

In addition to AT1 (AT1a) receptors, other factors may also regulate the uptake
of extracellular ANG II by proximal tubule cells. AP membranes of proximal tubule
cells express abundant endocytic receptor megalin, which plays a crucial role in
mediating the uptake of low molecular weight (LMW) proteins in proximal tubule
cells [132–136]. Deletion of megalin in mice led to the development of LMW pro-
teinuria [135]. Interestingly, megalin also binds and internalizes ANG II in immor-
talized yolk sac cells (BN-16 cells) [136]. We have demonstrated that siRNA
knockdown of megalin expression or caveolin 1 in proximal tubule cells signifi-
cantly attenuated ANG II uptake by proximal tubule cells [122, 123]. However, the

Figure 2.
All major components of the circulating RAS, including angiotensinogen (AGT), renin, angiotensin I (ANG I),
and ANG II, may be filtered by the kidney glomerulus and taken up by the proximal tubules. Alternatively, all
major components of the RAS may be expressed and localized in the proximal tubules of the kidney. ACE,
angiotensin-converting enzyme and APA, aminopeptidase A.
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extent to which megalin- and caveolin 1-mediate ANG II uptake in proximal tubule
cells is significantly smaller than that mediated by AT1 (AT1a) receptor-dependent
mechanism [19, 20, 122, 123].

5. Intratubular and intracellular ANG II: canonical versus noncanonical
endocytic pathways in mediating ANG II uptake in the proximal
tubules

We have mechanistically investigated that AT1 (AT1a) receptor-mediate the
uptake of extracellular ANG II by proximal tubule cells in vitro and circulating ANG
II in vivo [19, 20, 122–126]. It has been previously shown that in vascular smooth
muscle cells (VSMCs), cardiomyocytes, and COS-7 cells, β2 adrenergic receptors,
AT1a, epidermal growth factor receptors, and insulin receptors are internalized via
the canonical clathrin-dependent pathway [137–144]. Clathrin-coated pits play an
important role in invaginating and pinching off the plasma membranes to form
coated vesicles and targeted to endosomes [138, 140, 142]. GPCR kinases (GRKs),
small GTP-binding proteins, such as Rab5, and β-arrestins are reportedly
involved in clathrin-dependent AT1a endocytosis [145, 146]. However, dominant-
negatives, siRNAs or knockout targeting dynamin, GRKs or β-arrestins have little
effects on AT1a receptor endocytosis in some studies, suggesting that alternative
(non-canonical) pathways may also be involved in AT1a receptor endocytosis
[137–146].

There is evidence to suggest that tyrosine phosphatases may be involved in ANG
II-induced AT1 receptor endocytosis in AP and BL membranes, since the endocytic
response was inhibited by the tyrosine phosphatases inhibitor, phenylarsine oxide
(PAO), rather than by pertussis toxin [147–151]. Colchicine, an inhibitor of cyto-
skeleton microtubules [148], also appeared to inhibit AT1 receptor-mediated ANG
II uptake and its effects in rat proximal tubule cells [150, 151]. The role of clathrin-
coated pits in mediating AT1 receptor-mediated ANG II uptake was also investi-
gated, but we found that deletion of clathrin-coated pits with sucrose or specific
siRNAs to knock down clathrin light (LC) or high chain subunits (HC) failed to
alter AT1-mediated uptake of Val5-ANG II [151]. However, AT1-mediated uptake of
Val5-ANG II was significantly inhibited by colchicine or siRNA knocking down of
microtubule-associated proteins, MAP-1A or MAP-1B, in proximal tubule cells
[151]. Our studies therefore support the scientific premise that the noncanonical
microtubule-dependent endocytic pathway may be involved in mediating the AT1-
mediated uptake of ANG II in proximal tubule cells.

How ANG II and AT1 receptors are internalized into the endosomal
compartments and transported to other organelles or the nucleus in proximal
tubule cells remains incompletely understood. Intravenous infusion of 125I-labeled
ANG II was previously detected in the nuclei of rat vascular smooth muscle cells
(VSMCs) and cardiac myocytes [152] or the Golgi of adrenal cells [153]. Cook et al.
showed that ANG II and its AT1a receptor were translocated to the nuclei of hepa-
tocytes and VSMCs [154]. In AT1a receptor-expressing HEK 293 cells, internalized
AT1a receptors were detected in perinuclear areas as well as in the nuclei [155, 156].
In supporting the above-mentioned studies, we also reported high levels of
internalized FITC-labeled ANG II in perinuclear areas and the nucleus, which
was inhibited by colchicine and siRNA knockdown of MAP-1A [14, 122, 123, 151].
Taken together, our results strongly suggest that the microtubule-dependent
pathway may play an important role in mediating the nuclear translocation of
internalized ANG II/AT1 receptor complex in proximal tubule cells. Indeed, a
nuclear localization sequence (NLS, KKFKKY, aa307-312) has been identified

9

The Intratubular and Intracrine Renin-Angiotensin System in the Proximal…
DOI: http://dx.doi.org/10.5772/intechopen.88054



within the AT1a receptor, which may mediate nuclear trafficking and
activation of AT1a receptors by ANG II [155, 156].

6. Intratubular and intracellular ANG II: intracellular versus
extracellular effects and signaling mechanisms in the proximal
tubules

In the proximal tubules of the kidney, extracellular ANG II has been reported to
stimulate the expression of Na+/H+ exchanger 3 (NHE3) [14, 16, 102, 125], AP
insertion of NHE3 [157], Na+/H+ exchanger activity [158–161], or NHE3-induced
22Na+ uptake in cultured or isolated proximal tubule cells [162, 163]. The signaling
mechanisms by which extracellular ANG II increases the expression and activity of
NHE3 in proximal tubule cells have been well studied and documented [164–169].
The most well-described signal mechanism is that ANG II activates cell surface
receptor-coupled G proteins, with subsequent increases in IP3 and [Ca2+]i, genera-
tion of DG, and activation of PKC [164–169]. The other well-recognized down-
stream signaling pathways for extracellular ANG II to induce biological or
physiological responses also include activation or inhibition of calcium-dependent
calcineurin [170], cAMP-dependent protein kinase A (PKA) [169, 171], Ca2+-inde-
pendent PLA2 [172], PI 3-kinase [157], c-Src/MAP kinases ERK 1/2 [165], or nuclear
factor-κB [173].

According to the principles of the G protein-coupled receptor pharmacology,
ANG II must bind to its cell surface receptors to activate intracellular signaling
mechanisms in order to induce responses [76–78, 138]. Upon internalization, how-
ever, ANG II may act as an intracellular peptide to induce biological or physiological
responses. Indeed, blockade of the endocytosis of AT1 receptors is associated with
inhibition of PKC, IP3 formation, and Na+ flux in proximal tubule cells [14, 16, 122–
126, 149, 150]. Furthermore, ANG II-induced AT1 receptor endocytosis is also
associated with activation of PLA2 [147, 172], inhibition of adenylyl cyclase
[151, 169, 171], and increases in Na+ uptake from AP membranes [149–151]. We
have recently shown that AT1-mediated uptake of extracellular Val5-ANG II was
indeed associated with inhibition of basal and forskolin-stimulated cAMP accumu-
lation [125, 151], ANG II-stimulated NHE3 expression [14, 16, 122, 123], and ANG
II-induced activation of MAP Kinases ERK1/2 and nuclear factor-κB in proximal
tubule cells [14, 16, 124, 126, 151].

Nevertheless, these approaches are unlikely able to distinguish the effects of
ANG II mediated by cell surface or intracellular receptors. Previous studies have
shown that single cell microinjection or microdialysis of ANG II directly into the
cells may distinguish between the effects induced by extracellular ANG II from
those induced by intracellular ANG II [15, 102, 174–177]. Indeed, we have demon-
strated that intracellular microinjection of ANG II directly into single rabbit
proximal tubule cells induced intracellular [Ca2+]i responses (Figure 3)
[10, 15, 16, 81, 177]. We further reported that microinjection of the AT1 blocker
losartan abolished the [Ca2+]i response induced by microinjected ANG II, but it only
partially blocked the effects of extracellular ANG II [15]. In further proof-of-the
concept studies, we showed that ANG II stimulated nuclear AT1a receptors to
increase in vitro transcription of mRNAs for TGF1, MCP-1 and NHE3 in isolated rat
renal cortical nuclei [102]. These studies provide evidence that intracellular ANG II
may activate cytoplasmic and nuclear AT1 receptor to induce important genomic
effects in proximal tubule cells [15, 102, 174–177].

Whether intracellular ANG II may alter biological responses in a cell culture
model has been determined by directly expressing an intracellular ANG II fusion
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protein [9, 11, 15, 88–90, 102]. Cook et al. overexpressed a cyan fluorescent,
intracellular ANG II construct (ECFP/ANG II) with or without a rat yellow fluores-
cent AT1a receptor (AT1R/EYFP) in rat VSMCs or hepatocytes [9, 97, 98]. They
demonstrated that intracellular ANG II induced the proliferation of VSMC via
activation of cAMP response element-binding protein (CREB), p38 MAP kinase,
and MAP kinases ERK 1/2 [9, 97, 98]. In another study, an intracellular ANG II
(pcDNA/TO-iAng II) was expressed in CHO cells to induce cell proliferation, but
none of ARBs was found to attenuate the effect of intracellular ANG II on cell
proliferation [178, 179]. Nevertheless, these early proof of concept studies suggest
that in vitro or in vivo expression of a cyan fluorescent intracellular ANG II fusion
protein (ECFP/ANG II) in the proximal tubule cells of wild-type and AT1a-KO
mice may be an innovative approach to distinguish the effects of intracellular
versus extracellular ANG II.

7. Intratubular and intracellular ANG II: physiological effects of
intracellular versus extracellular ANG II on proximal tubule Na+

reabsorption and blood pressure

The physiological roles of intracellular ANG II in the regulation of proximal
tubule Na+ reabsorption and normal blood pressure homeostasis remain to be
determined. Whether intracellular and/or internalized ANG II may physiologically
regulate proximal tubule Na+ transport and blood pressure has not been studied
until recently. Indeed, this line of research has been long stymied due to the lack of
suitable animal models that express an intracellular ANG II protein, which is not

Figure 3.
Intracellular microinjection of angiotensin II induces intracellular calcium mobilization in cultured rabbit
proximal tubule cells. Adapted from Zhuo et al. with permission [15].
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secreted outside the cells and only acts intracellularly. Dr. Reudelhuber’s group was
the first to generate genetically modified mouse model that expresses an ANG II-
producing fusion protein in the cardiomyocytes of the rat heart [180, 181]. They
used the α myosin heavy chain promoter to control the expression of ANG II-
releasing fusion protein in the cardiomyocytes. Cardiac specific expression of this
ANG II fusion protein led to 10-fold increases in ANG II levels in the heart of
these transgenic mice, but it did not elevate ANG II levels in the plasma [180, 181].
This approach is very unique to construct this cardiac-specific ANG II fusion
protein with a signal peptide sequence derived from human prorenin and a furin
cleavage site. Thus, the expressed ANG II fusion protein will be cleaved by furin,
and released into the secretory pathway and the cardiac interstitium [180, 181]. It is
expected that this cardiac-specific ANG II fusion protein activates cell surface,
but not intracellular receptors. In a different study, Baker et al. expressed an intra-
cellular ANG II peptide in the mouse cardiomyocytes using an adenoviral vector
[178]. Cardiac-specific expression of this intracellular ANG II peptide in mice
induced cardiac hypertrophy, but not altered blood pressure and plasma ANG II
[99, 178]. Furthermore, the AT1 receptor blocker failed to block the cardiac
hypertrophic effect of this peptide, suggesting that AT1 receptor may not be
involved [99, 178].

In the kidney, a proximal tubule cell-specific promoter may be an ideal approach
to express an intracellular ANG II protein selectively in the proximal tubules. For
example, the kidney androgen-regulated protein gene (KAP) has been used to drive
“proximal tubule-specific” expression of human angiotensinogen and renin in the
kidney [182, 183]. It has been shown that the KAP gene is widely expressed in the
kidney, with its expression reportedly confined to the proximal tubules and regu-
lated by androgen and estrogen [184, 185]. The advantages of this approach are its
usefulness for studying the sexual dimorphic regulation of angiotensinogen expres-
sion in the proximal tubules of the kidney [182, 183].

We have collaborated with Dr. Julie Cook of Ochsner Clinic and Dr. Isabelle
Rubera of University of Nice-Sophia, France to develop an adenoviral construct

Figure 4.
Overexpression of an intracellular ECFP/ANG II fusion protein selectively in the proximal tubule of the kidney
in C57BL/6J or AT1a-KO mice. ECFP/ANG II increased systolic blood pressure and had a significant
antinatriuretic response in C57BL/6J but not in AT1a-KO mice. Green blue represents ECFP/ANG II
expression in the proximal tubules, whereas Red represents DAPI-stained nuclei in the cortex after conversion
from blue color. G, glomerulus. PT, proximal tubule. **p < 0.01 versus control, whereas ++p < 0.01 versus
C57BL/6J mice. Reproduced from Zhuo et al. with permission [15].
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(Ad-sglt2-ECFP/ANG II), which encodes a cyan fluorescent intracellular ANG II
fusion protein (ECFP/ANG II) [17, 18]. The sodium and glucose cotransporter 2
promoter, sglt2, was used to drive the expression of ECFP/ANG II selectively in the
proximal tubule cells of the rat and mouse kidneys. Sglt2 is expressed almost
exclusively in S1 and S2 segments of the kidney proximal tubules [186]. Using this
approach, we have determined whether intrarenal adenovirus-mediated expression
of intracellular ECFP/ANG II selectively in the proximal tubules of the rat and
mouse kidneys increases the expression and activity of NHE3, stimulate proximal
tubule sodium reabsorption, and increase blood pressure in rats and mice. We
demonstrated that expression of intracellular ECFP/ANG II selectively in the prox-
imal tubules of rats and mice significantly increased NHE3 expression, proximal
tubule sodium reabsorption, and blood pressure (Figure 4) [17, 18]. We further
showed that AT1 receptor blocker losartan and deletion of AT1a receptors in mice
significantly attenuated intracellular ANG II-induced NHE3 expression, proximal
tubule sodium reabsorption, and blood pressure responses, suggesting an AT1

(AT1a) receptor-mediated mechanisms.

8. Intratubular and intracellular ANG II: role of NHE3 in maintaining
normal blood pressure homeostasis and ANG II-induced
hypertension

The Na+/H+ exchanger 3 (NHE3) is the most important Na+ transporter in AP
membranes of the proximal tubules of the kidney [187–190]. NHE3 is directly and
indirectly responsible for reabsorbing approximately 50–60% of filtered load of
NaCl and 70–80% of filtered load of bicarbonate (HCO3

�) [187–190]. Indeed,
nearly all of the measured Na+/H+ exchanger activity in AP membrane vesicles of
proximal tubules are mediated by NHE3 [187–190]. The importance of proximal
tubule NHE3 in maintaining body salt and fluid balance and blood pressure
homeostasis has not been well studied until recently. Overall, global deletion of the
NHE3 gene in all tissues of mice (Nhe3�/�) leads to �50% decreases in fluid, Na+

and HCO3
� absorption in proximal convoluted tubules, causes salt wasting from the

digestive system, and significantly decreases basal blood pressure [191–194]. One of
striking phenotypes is absorptive defects in the small intestines due to intestinal
NHE3 deletion [191–194]. Moreover, the transgenic rescue of the NHE3 transgene
in small intestines in Nhe3�/�mice, tgNhe3�/�, failed to rescue the structural and
absorptive defects of global NHE3 deletion, with basal blood pressure being similar
to those of Nhe3�/� mice [195, 196]. These abnormal phenotypes have been con-
firmed by us recently [21–23].

However, these studies using either Nhe3�/� or tgNhe3�/�mice are unable to
determine the roles of NHE3 in the proximal tubules of the kidney, since NHE3 is
abundantly expressed not only in the proximal tubules of the kidney, but also in
small intestines of the gut. To overcome this limitation, we have generated mutant
mice with deletion of NHE3 selectively in the proximal tubules of the kidney, PT-
Nhe3�/�, using the state of the art Sglt2-Cre/LoxP approach [23]. We directly tested
the hypothesis that deletion of NHE3 selectively in the proximal tubules of the
kidney would lower basal blood pressure by inhibiting proximal tubule Na+

reabsorption and increasing the pressure natriuresis response in mice [23]. We
demonstrated that under basal conditions, PT-Nhe3�/�mice had significantly lower
systolic, diastolic, and mean arterial blood pressure than WT mice, accompanied by
significantly greater diuretic and natriuretic responses than WT mice, without
altering 24 h fecal Na+ excretion, plasma pH, Na+, and bicarbonate levels. Further-
more, we demonstrated that the pressure-natriuresis response, as well natriuretic
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responses to acute volume expansion and a high salt diet, were significantly aug-
mented in PT-Nhe3�/�mice [23]. Thus, our data support the scientific premise and
physiological relevance that NHE3 in the proximal tubules plays an important role
in maintaining basal blood pressure homeostasis, and genetic deletion of NHE3
selectively in the proximal tubules of the kidney lowers blood pressure by increas-
ing the pressure-natriuretic response.

Recently, we further investigated whether NHE3 in small intestines and proxi-
mal tubules of the kidney plays a key role in ANG II-induced hypertension using
Nhe3�/�, tgNhe3�/�, and PT-Nhe3�/�mice [21, 22]. As expected, infusion of a
pressor dose of ANG II, 1.5 mg/kg/day, i.p., via an osmotic minipump for 2 weeks
markedly increased blood pressure and caused hypertension in C57BL/6J mice
(Figure 5) [21, 22]. These hypertensive responses were significantly attenuated in
conscious and anesthetized Nhe3�/�, tgNhe3�/�, and PT-Nhe3�/�mice [21, 22, 197].
These results strongly support an important role of NHE3 not only in small intes-
tines, but also in the proximal tubules of the kidney in maintaining basal blood
pressure homeostasis and in the development of ANG II-induced hypertension.

9. Future perspectives and conclusions

Taken together, there is accumulating evidence to support the existence of the
circulating (endocrine), local intratubular (paracrine), and intracellular RAS sys-
tem in the kidney, especially in the proximal tubules. All major components of the
RAS, including the substrate angiotensinogen, renin, ACE, ANG II, AT1 and AT2

receptors, have been localized in the circulation, the kidney, and in the proximal
tubule. The roles of the circulating and intratubular RAS in the cardiovascular and
kidney, and blood pressure regulation have been extensively studied using molec-
ular, cellular, genetic and pharmacological approaches. It is now well-understood
that AGT, prorenin, renin, ACE, ANG II and AT1 and AT2 receptors are not only
expressed and localized in the proximal tubules under physiological conditions,
but the levels of intratubular angiotensinogen, renin, ACE, and ANG II proteins
are also significantly increased in the kidney in response to ANG II infusion in
spite of suppression of the circulating RAS. Furthermore, there is also increasing
evidence supporting the genomic roles of intracellular and nuclear ANG II in the
regulation of proximal tubule reabsorption, blood pressure and the development
of hypertension. Future studies should focus more on the long-term genomic and
hypertensive roles of intracellular, mitochondrial and nuclear ANG II and the
underlying signaling mechanisms in ANG II-dependent hypertension and target
organ injury.

Figure 5.
Global (Nhe3�/�) or “kidney-selective” deletion of the Na+/H+ exchanger 3 (NHE3) (tgNhe3�/�) in mice
significantly attenuates systolic blood pressure response to angiotensin II infusion for 2 weeks (ANG II), 1.5 mg/kg/day,
i.p. **p < 0.01 versus their control or basal; ++p < 0.01 versus wildtype; ##p < 0.01 versus ANG II.
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