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Chapter

Potential Benefit of 
Mineralocorticoid Receptor 
Antagonists in Kidney Diseases
Jonatan Barrera-Chimal, Lionel Lattenist and Frederic Jaisser

Abstract

Since the last two decades, a major paradigm shift occurred in our understand-
ing of the physiological and pathophysiological roles of the mineralocorticoid 
receptor (MR). Expression of the MR in cells/tissues not involved in sodium/
potassium balance and extracellular volume homeostasis, i.e., the primary role 
of the aldosterone/MR complex, paved the way to the discovery of unsuspected 
implications of MR in a variety of cellular processes and pathological consequences. 
It also opens the possibility for quick translation to the bedside using available MR 
antagonists (MRAs) such as spironolactone, canrenone, or eplerenone or using the 
more recently developed various nonsteroidal MRAs that are not yet marketed. 
Landmark clinical trials like RALES, EPHESUS, or EMPHASIS well established 
that MRAs provide great benefits in patients with heart failure and spironolactone 
or eplerenone have been recommended in these patients. The deep understanding 
provided by preclinical studies in various domains stimulated the possibility to 
extend the use of MRAs to new fields, including renal diseases even if MRAs are 
currently contraindicated or used with great caution in patients with renal function 
impairment due to the higher risk of hyperkalemia associated with MRA therapy 
in this at-risk population. The present review presents preclinical data supporting 
potential indications in renal diseases.

Keywords: aldosterone, renal, hypertension

1.  Pathophysiological basis: MR activation in the kidney—where and 
what are the consequences?

1.1 MR expression in the kidney

Besides the well-known expression of MR in the so-called aldosterone-
sensitive distal nephron (ASDN) encompassing DCT1-2, CNT, and CDD, MR is 
also expressed in a variety of other cell types within the kidney [1–5]. In basal 
condition, MR is expressed in the vasculature in both endothelium [6] and 
smooth muscle cells [1]. MR expression has also been reported in the mesangium 
[7], podocytes [8], fibroblasts [9], and immune cells (macrophages, dendritic 
cells, T lymphocytes) [10–13]. In Figure 1, we summarize the effects reported for 
MR antagonists in different target cells within the kidney that represent potential 
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beneficial mechanisms acting against kidney disease progression, and that will be 
detailed below. It is important to mention that MR expression might be upregu-
lated in some pathological conditions such as diabetes [14], heavy proteinuria 
[15], vascular aging [16], and hypertension [17], leading to potential increased 
MR signaling. The specific physiological role of MR in the cells where its expres-
sion has been reported remains to be elucidated; however, it was recently pro-
posed that MR in endothelial, smooth muscle, and inflammatory cells may be an 
evolutionary mechanism to prevent hemorrhage by promoting vasoconstriction 
and thrombosis and to promote wound healing by the activation of inflammation 
and vascular remodeling [18].

1.2 MR activation: what is the ligand?

The classical ligand of the MR is aldosterone, but glucocorticoids can bind 
with similar affinity with that of MR. Of note ligand-receptor dissociation is 
faster for glucocorticoid than aldosterone, resulting in higher transactivation 
potency for aldosterone as compared to glucocorticoids, especially at low con-
centration. However, a selectivity mechanism allows aldosterone to preferentially 
activate the MR in the presence of glucocorticoids, despite much higher local 
concentration of glucocorticoids than aldosterone. The 11β-hydroxysteroid dehy-
drogenase type 2 (11β-HSD2) converts corticosterone/cortisol to compounds with 
low affinity for the MR [19]. The cellular aldosterone/glucocorticoid selectivity 
therefore depends on the expression level/activity of the HSD2. In the kidney, 
cells from the ASDN and endothelium express HSD2, while this is debated for the 
smooth muscle cells [20]. In podocytes, mesangial cells, and immune cells, for 
example, HSD2 is not expressed, therefore supporting the fact that glucocorti-
coids may be the main ligands of MR in these cells. It should be stressed, however, 
that there may be species differences as well as induction of HSD2 expression in 
some pathological conditions, allowing aldosterone to activate MR. This has not 
been carefully analyzed yet [1].

Figure 1. 
MR antagonists display beneficial effects against kidney diseases by acting in several cell types and by different 
mechanisms.
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1.3 Major pathophysiological mechanisms involved in MR and kidney diseases

1.3.1 MR and renal hemodynamic alterations

Experimental evidence in rodent models of acute kidney injury (AKI) supports 
the concept that MR contributes to vascular tone regulation [1]. The benefit of MRA 
in renal ischemia-reperfusion injury is associated with improved renal hemody-
namics and decreased renal vascular resistance [21, 22]. We recently showed that 
MR expressed in mouse smooth muscle cells contributes to renal injury induced 
by ischemia (through a mechanism involving oxidative stress and Rac1 activation) 
[23], as well as in acute CsA nephrotoxicity (due to increased vascular L-type 
calcium channel activity thereby resulting in decreased renal artery vasoconstric-
tion and overall improvement in renal hemodynamics) [24]. Of note, the endothe-
lial MR was not directly involved since endothelial MR gene inactivation had no 
effect in ischemia-reperfusion or CsA-induced renal injuries [23, 24]. Whether MR 
expressed in the renal vasculature contributes to renal injury in other settings like 
diabetes or chronic kidney diseases remains to be explored.

1.3.2 MR and oxidative stress

Multiple in vitro and in vivo studies have shown the significance of oxidative 
stress induced by aldosterone/MR and its detrimental consequences on kidney 
injury. In vivo, the DOCA-salt causes oxidative DNA damage [25], and aldosterone 
infusion produces an MR-dependent increase in NADPH oxidase activity and ROS 
generation in the kidney [26, 27]. MR expressed in the smooth muscle cell may 
have a major role as we recently demonstrated in ischemia-reperfusion injury using 
smooth muscle MR KO mice [23]. In vascular cells, aldosterone increased ROS 
which in turn modifies the cysteinyl thiols in the eNOS-activating region of endo-
thelin-1 B receptor to decrease endothelin-1-stimulated eNOS activity, impairing 
the vasodilatory pathway. These effects have repercussions on renal hemodynamics 
and function in kidney ischemia/reperfusion injury in both rat and mouse [21–23]. 
In rat mesangial cells, aldosterone directly stimulates superoxide anion generation, 
which is accompanied by an increase in NADPH oxidase activity and translocation 
of p47phox and p67phox to the cell membrane [28]. Moreover, recent studies have 
shown that aldosterone induces mesangial cell apoptosis and that the administra-
tion of an antioxidant or MR antagonist attenuates the proapoptotic effects of 
aldosterone [29]. The increase in NADPH oxidase Nox2 plasma levels and urinary 
isoprostanes is also observed in patients with primary aldosteronism as compared to 
essential hypertensive patients [30]. Interestingly, adrenalectomy is associated with 
a reduction in both parameters [30]. Moreover, therapeutic MR antagonism reduced 
oxidative stress in diabetic [31] or kidney transplant patients [32].

1.3.3 MR and inflammation

A role for MR signaling in inflammation has been suggested since early studies 
showing that the treatment of rats with aldosterone and salt causes perivascular 
leukocyte infiltration and increased expression of inflammatory markers [1]. 
More recently, macrophages, dendritic cells, and T lymphocytes have been identi-
fied as MR-expressing cells [1, 11, 33]. The use of genetically modified mouse 
model deficient of MR in myeloid cells revealed that myeloid MR contributes to 
renal injury in a glomerulonephritis mouse model [8]. Moreover, our recent work 
showed that myeloid MR participates to CKD progression induced by AKI [34]. 
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The deletion of MR in myeloid cells favored M2 polarization of renal macrophages 
leading to improved tissue repair and prevention of renal scaring, decreased 
function, and interstitial fibrosis. Interestingly MRA administration using the 
nonsteroidal MRA finerenone has similar effects, blunting CKD development after 
ischemia-reperfusion injury in rodents [22, 34] and in the large white pig [34]. The 
role of myeloid MR in the progression of CKD in other models of kidney disease has 
to be further studied. The role of MR expressed in T cell has not been explored in 
kidney disease. However, T-cell MR knockout mice prevented cardiac hypertrophy, 
fibrosis, and dysfunction compared with littermate control mice after abdominal 
aortic constriction suggesting that MR in T cells may also play a pro-inflammatory 
role [13]. In dendritic cells, MR stimulation with aldosterone induces the secretion 
of IL-6 and TGF-β, two pro-inflammatory cytokines able to polarize the adaptive 
immune response toward a Th17 phenotype [35]. MR antagonism with spironolac-
tone reduced heart and kidney damage in a hypertension rat model due to blockade 
of Th17 polarization and the induction of regulatory T cells [36]. Pharmacological 
MR blockade improves the chronic inflammatory state associated with CV disease 
[1, 33]. Altogether, these data suggest that aldosterone/MR modulates innate and 
adaptive immunity, which may have a critical role in end-organ damage.

1.3.4 MR and fibrosis

Fibrosis and extracellular matrix remodeling is a well-documented effect of 
MR activation in various tissues, including the kidney [1]. Aldosterone induces 
pro-fibrotic cytokine production and accumulation of collagen and other extra-
cellular matrix components [9, 37, 38]. Aldosterone administration is associated 
with an increase in renal TGF-β, collagen, and connective tissue growth factor 
expression and medullary and cortical fibrosis [39]. Aldosterone also influences 
the production of plasminogen activator inhibitor-1 leading to glomerulosclerosis 
[40]. MR activation in renal fibroblasts results in rapid activation of growth factor 
receptors and induction of PI3K/MAPK signaling, which stimulates proliferation 
and therefore contributes to fibrosis expansion [41]. Several molecular MR targets 
may be involved in the pro-fibrotic response of Aldo/MR signaling. We recently 
deeply explored the role of neutrophil gelatinase-associated lipocalin (NGAL) that 
we identified as a novel aldosterone/MR target [42]. NGAL induction by the MR 
might be a mechanism for MR-induced fibrosis since mice deficient in NGAL are 
protected from aldosterone-induced kidney fibrosis (Jaisser, unpublished data). 
Galectin-3 also mediates the pro-fibrotic effects of aldosterone-MR, and galectin-3 
KO mice are protected against aldosterone-induced kidney fibrosis [43]. Taken 
together increased MR activation which may promote kidney fibrosis by inducing 
fibroblast proliferation and the production of several pro-fibrotic molecules.

2.  Preclinical data supporting the benefit of MR antagonists (MRA) in 
kidney diseases

2.1  Benefit of MRA on acute kidney injury (AKI) induced by ischemia/
reperfusion (IR)

A reduction of renal blood flow is occurring in several clinical settings, and this 
is a major cause of AKI. A number of studies in rodents and in the Large White Pig 
preclinical model have shown that MR antagonism with steroidal and nonsteroidal 
MRAs prevents and treats AKI induced by IR. In an early study, it was shown that 
spironolactone is a useful strategy to prevent the acute kidney dysfunction and 
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tubular injury induced by bilateral renal IR injury in the rat [44]. The sustained 
reduction in renal blood flow observed after 24 hours in the IR-untreated rats 
was prevented in the spironolactone-treated groups. This was reproduced using 
nonsteroidal MRAs in both rats and mice [21–23] leading to the discovery of a novel 
underlying mechanism related to the limitation of oxidative stress and impaired 
endothelin-B receptor signaling [21, 22]. Importantly MRA also have curative 
effects when administered within the first 3 hours post ischemia-reperfusion [21, 
45, 46]. The benefit of MR antagonists in ischemic AKI was translated into the 
Large White Pig preclinical model in which MR antagonism with soludactone 
(potassium canrenoate, a soluble MRA used in clinics) prevented the effects of AKI 
including kidney dysfunction and structural injuries [23].

2.2 AKI to CKD transition

In recent years, special focus has been given to the chronic consequences of 
an AKI episode. Several clinical and experimental studies have shown that AKI is 
linked with increased risk for CKD development.

In the rat, CKD progression induced by a single event of ischemic AKI (charac-
terized by proteinuria, kidney dysfunction, and severe structural injury including 
interstitial fibrosis, glomerulosclerosis, tubule dilation, and podocyte injury) is 
prevented by spironolactone [45] and finerenone [22, 47]. MR antagonism also 
prevents CKD induced by a mild ischemic period even when administered 3 hours 
after the ischemia episode [48]. The underlying mechanisms rely on the limitation 
of inflammatory events and the promotion of repair mechanisms held by M2-type 
macrophages and interleukin-4 receptor signaling [34]. Importantly, these benefits 
are also observed in the Large White Pig model: short-term soludactone administra-
tion before/after the ischemic event indeed prevents CKD progression at 3 months, 
with a reduction in fibrosis and proteinuria and improved renal function [34]. The 
data indicate that MRA treatment is an encouraging therapeutic option to prevent 
the AKI to CKD transition which identifies the MR expressed in inflammatory cells 
as a specific target in this setting.

2.3 MR antagonism in kidney fibrosis and CKD progression

Kidney fibrosis is a common endpoint of CKD from different origins. 
Accumulating evidences indicate that aldosterone and/or MR signaling plays a 
key role in CKD development in a number of animal models including nephron 
reduction [49, 50], hypertensive models [51, 52], unilateral ureteral obstruction 
[53, 54], and mineralocorticoid/salt models [55]. MR antagonism not only prevents 
glomerulosclerosis in the remnant kidney model but also induces regression of 
glomerulosclerosis as evidenced by Aldigier et al. on kidney biopsy 4 weeks after 
spironolactone treatment initiation in rats already presenting CKD [56]. Eplerenone 
also limited proteinuria in this model [50]. Renal injury observed in the Dahl-
sensitive rat upon salt loading is greatly limited by eplerenone [57, 58] and the 
nonsteroidal MRA CS-3150 [59]. This may be related to a direct effect on podocyte, 
as underlined by Shibata et al., involving activation of Rac1 and possible increased 
Rac1-mediated transactivation of the podocyte MR [60].

2.4 Benefit of MR blockade in diabetic nephropathy

The beneficial effects of MRA in different models of type I and type II diabetic 
nephropathy or kidney injury related to metabolic disorders have been reported. 
Spironolactone administration for 3 weeks reduced renal collagen deposition in 
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STZ-induced diabetic rats [61]. This was thereafter reported for other MRAs such 
as eplerenone [62]. MRAs are also efficient in limiting progression of diabetic 
nephropathy in models of type 2 diabetes. Eplerenone reduced albuminuria, glo-
merular hypertrophy, and mesangial expansion in the db/db mouse model [62]. The 
novel nonsteroidal MRA AZ9977 has similar effects [63]. In the Otsuka Long-Evans 
Tokushima Fatty (OLETF) rats or Zucker obese rats, similar benefits have been 
reported after MRA treatment [64, 65].

2.5 Calcineurin inhibitor toxicity and kidney transplantation

Some studies showed a benefit of MR blockade in acute and chronic CsA 
nephrotoxicity, including effects on preventing structural and functional 
alterations [66–68]. The underlying mechanisms leading to this protection rely 
on hemodynamic effects (blunting the sustained vasoconstriction induced by 
CNI) [24, 68] or renal extracellular matrix remodeling [67]. The effect of MRA 
in experimental kidney transplantation has been tested in a model of chronic 
allograft dysfunction in the Dark-Agouti to Wistar-Furth rat with a reduced vas-
culopathy and glomerular macrophage influx and a trend to reduced proteinuria 
and glomerulosclerosis [69].

2.6 Glomerulonephritis and MR blockade

Although few studies have addressed this issue, it has been reported that spi-
ronolactone and the nonsteroidal MRA BR-4628 are beneficial in mouse models 
of glomerulonephritis [70–72]. The myeloid MR seems to play a key role in the 
kidney since genetic deletion of MR in myeloid cells, but not in podocyte, blunted 
glomerulonephritis development [8].

3. Conclusion

Preclinical evidences clearly support the concept of a benefit of MR antagonism 
to treat or delay kidney diseases from different origins including ischemic kidney 
disease, diabetic and hypertensive nephropathy, glomerulonephritis, and calcineurin 
inhibitor toxicity in the context of kidney transplant. The underlying mechanisms 
rely on improving local hemodynamics and reducing extracellular matrix remodeling 
and local inflammation (Figure 1). Whether this translates in clinics is already largely 
supported by several clinical trials, but definitive answers should be provided by well-
designed, large clinical trials based on hard renal outcomes like limitation of CKD pro-
gression and/or cardiovascular outcomes. A recent study showed that in patients with 
heart failure with preserved ejection fraction, spironolactone treatment decreased the 
relative risk for cardiovascular death, heart failure hospitalization, or aborted cardiac 
arrest, despite an increase in the hyperkalemia risk [73]. Novel therapeutics limiting 
the risk of hyperkalemia upon MRA use is also warranted in these at-risk populations.

Acknowledgements

This publication is based upon the work from the EU COST Action ADMIRE 
BM1301 in Aldosterone and Mineralocorticoid Receptor Physiology and 
Pathophysiology (www.admirecosteu.com). The authors’ work was supported 
by grants from the Institut National de la Santé et de la Recherche Médicale, 
the Centre de Recherche Industrielle et Technique, the Agence Nationale de la 



7

Potential Benefit of Mineralocorticoid Receptor Antagonists in Kidney Diseases
DOI: http://dx.doi.org/10.5772/intechopen.87229

© 2019 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative 
Commons Attribution - NonCommercial 4.0 License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits use, distribution and reproduction for  
non-commercial purposes, provided the original is properly cited. 

Recherche (ANR-16-CE14-0021-01), the French Medical Research Foundation 
(DEQ20160334885), and the National Autonomous University of Mexico—
DGAPA—PAPIIT (IA200117 and IN202919 to JBC) and a public grant Fight-HF 
overseen by the French National Research Agency (ANR) as part of the 
“Investissements d’Avenir” program (reference: ANR-15-RHU-0004).

Author details

Jonatan Barrera-Chimal1, Lionel Lattenist2 and Frederic Jaisser2,3*

1 Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Medicina 
Traslacional, Instituto de Investigaciones Biomédicas, Instituto Nacional de 
Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, 
Mexico City, Mexico

2 Clinical Investigation Centre, Lorraine University, Vandoeuvre-lès-Nancy, France

3 Centre de Recherche des Cordeliers, Sorbonne University, Paris Descartes 
University, Paris, France

*Address all correspondence to: frederic.jaisser@inserm.fr



8

Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

[1] Jaisser F, Farman N. Emerging roles 
of the mineralocorticoid receptor in 
pathology: Toward new paradigms in 
clinical pharmacology. Pharmacological 
Reviews. 2016;68(1):49-75

[2] Kolkhof P, Barfacker L. 30 years 
of the mineralocorticoid receptor: 
Mineralocorticoid receptor antagonists: 
60 years of research and development. 
The Journal of Endocrinology. 
2017;234(1):T125-T140

[3] Pitt B, Zannad F, Remme WJ, 
et al. The effect of spironolactone 
on morbidity and mortality in 
patients with severe heart failure. 
Randomized aldactone evaluation study 
investigators. The New England Journal 
of Medicine. 1999;341(10):709-717

[4] Pitt B, Remme W, Zannad F, et al. 
Eplerenone, a selective aldosterone 
blocker, in patients with left ventricular 
dysfunction after myocardial infarction. 
The New England Journal of Medicine. 
2003;348(14):1309-1321

[5] Zannad F, McMurray JJ, Krum H,  
et al. Eplerenone in patients with 
systolic heart failure and mild 
symptoms. The New England Journal of 
Medicine. 2011;364(1):11-21

[6] Caprio M, Newfell BG, la Sala A, 
et al. Functional mineralocorticoid 
receptors in human vascular endothelial 
cells regulate intercellular adhesion 
molecule-1 expression and promote 
leukocyte adhesion. Circulation 
Research. 2008;102(11):1359-1367

[7] Nishiyama A, Yao L, Fan Y, 
et al. Involvement of aldosterone 
and mineralocorticoid receptors 
in rat mesangial cell proliferation 
and deformability. Hypertension. 
2005;45(4):710-716

[8] Huang LL, Nikolic-Paterson DJ, Han 
Y, et al. Myeloid mineralocorticoid 

receptor activation contributes to 
progressive kidney disease. Journal of 
the American Society of Nephrology. 
2014;25(10):2231-2240

[9] Nagai Y, Miyata K, Sun GP, et al. 
Aldosterone stimulates collagen gene 
expression and synthesis via activation 
of ERK1/2 in rat renal fibroblasts. 
Hypertension. 2005;46(4):1039-1045

[10] Belden Z, Deiuliis JA, Dobre M,  
Rajagopalan S. The role of the 
mineralocorticoid receptor in 
inflammation: Focus on kidney and 
vasculature. American Journal of 
Nephrology. 2017;46(4):298-314

[11] Bene NC, Alcaide P, Wortis HH, 
Jaffe IZ. Mineralocorticoid receptors 
in immune cells: Emerging role in 
cardiovascular disease. Steroids. 
2014;91:38-45

[12] Rickard AJ, Morgan J, Tesch G, 
Funder JW, Fuller PJ, Young MJ.  
Deletion of mineralocorticoid 
receptors from macrophages protects 
against deoxycorticosterone/salt-
induced cardiac fibrosis and increased 
blood pressure. Hypertension. 
2009;54(3):537-543

[13] Sun XN, Li C, Liu Y, et al. T-cell 
mineralocorticoid receptor controls 
blood pressure by regulating interferon-
gamma. Circulation Research. 
2017;120(10):1584-1597

[14] Taira M, Toba H, Murakami M,  
et al. Spironolactone exhibits 
direct renoprotective effects and 
inhibits renal renin-angiotensin-
aldosterone system in diabetic rats. 
European Journal of Pharmacology. 
2008;589(1-3):264-271

[15] Quinkler M, Zehnder D, Eardley KS,  
et al. Increased expression of 
mineralocorticoid effector mechanisms 
in kidney biopsies of patients with 

References



9

Potential Benefit of Mineralocorticoid Receptor Antagonists in Kidney Diseases
DOI: http://dx.doi.org/10.5772/intechopen.87229

heavy proteinuria. Circulation. 
2005;112(10):1435-1443

[16] Krug AW, Allenhofer L, Monticone 
R, et al. Elevated mineralocorticoid 
receptor activity in aged rat vascular 
smooth muscle cells promotes a 
proinflammatory phenotype via 
extracellular signal-regulated kinase 
1/2 mitogen-activated protein kinase 
and epidermal growth factor receptor-
dependent pathways. Hypertension. 
2010;55(6):1476-1483

[17] DeLano FA, Schmid-Schonbein GW.  
Enhancement of glucocorticoid 
and mineralocorticoid receptor 
density in the microcirculation of 
the spontaneously hypertensive rat. 
Microcirculation. 2004;11(1):69-78

[18] Biwer LA, Wallingford MC, 
Jaffe IZ. Vascular mineralocorticoid 
receptor: Evolutionary mediator of 
wound healing turned harmful by our 
modern lifestyle. American Journal of 
Hypertension. 2019;32(2):123-134

[19] Farman N, Rafestin-
Oblin ME. Multiple aspects of 
mineralocorticoid selectivity. American 
Journal of Physiology. Renal Physiology. 
2001;280(2):F181-F192

[20] Odermatt A, Kratschmar DV.  
Tissue-specific modulation of 
mineralocorticoid receptor function by 
11beta-hydroxysteroid dehydrogenases: 
An overview. Molecular and Cellular 
Endocrinology. 2012;350(2):168-186

[21] Barrera-Chimal J, Prince S, Fadel F,  
et al. Sulfenic acid modification of 
endothelin B receptor is responsible 
for the benefit of a nonsteroidal 
mineralocorticoid receptor antagonist 
in renal ischemia. Journal of the 
American Society of Nephrology. 
2016;27(2):398-404

[22] Lattenist L, Lechner SM, Messaoudi 
S, et al. Nonsteroidal mineralocorticoid 
receptor antagonist finerenone 

protects against acute kidney injury-
mediated chronic kidney disease: Role 
of oxidative stress. Hypertension. 
2017;69(5):870-878

[23] Barrera-Chimal J, Andre-Gregoire 
G, Nguyen Dinh Cat A, et al. Benefit of 
mineralocorticoid receptor antagonism 
in AKI: Role of vascular smooth muscle 
Rac 1. Journal of the American Society 
of Nephrology. 2017;28(4):1216-1226

[24] Amador CA, Bertocchio JP, 
Andre-Gregoire G, et al. Deletion of 
mineralocorticoid receptors in smooth 
muscle cells blunts renal vascular 
resistance following acute cyclosporine 
administration. Kidney International. 
2016;89(2):354-362

[25] Schupp N, Kolkhof P, Queisser N,  
et al. Mineralocorticoid receptor-
mediated DNA damage in kidneys 
of DOCA-salt hypertensive rats. The 
FASEB Journal. 2011;25(3):968-978

[26] Shibata S, Nagase M, Yoshida S, 
Kawachi H, Fujita T. Podocyte as the 
target for aldosterone: Roles of oxidative 
stress and Sgk 1. Hypertension. 
2007;49(2):355-364

[27] Nishiyama A, Yao L, Nagai Y, et al. 
Possible contributions of reactive 
oxygen species and mitogen-activated 
protein kinase to renal injury in 
aldosterone/salt-induced hypertensive 
rats. Hypertension. 2004;43(4):841-848

[28] Miyata K, Rahman M, Shokoji T, 
et al. Aldosterone stimulates reactive 
oxygen species production through 
activation of NADPH oxidase in 
rat mesangial cells. Journal of the 
American Society of Nephrology. 
2005;16(10):2906-2912

[29] Mathew JT, Patni H, Chaudhary 
AN, et al. Aldosterone induces 
mesangial cell apoptosis both in 
vivo and in vitro. American Journal 
of Physiology. Renal Physiology. 
2008;295(1):F73-F81



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

10

[30] Petramala L, Pignatelli P, 
Carnevale R, et al. Oxidative stress 
in patients affected by primary 
aldosteronism. Journal of Hypertension. 
2014;32(10):2022-2029. discussion 2029

[31] Takebayashi K, Matsumoto S,  
Aso Y, Inukai T. Aldosterone blockade 
attenuates urinary monocyte 
chemoattractant protein-1 and oxidative 
stress in patients with type 2 diabetes 
complicated by diabetic nephropathy. 
The Journal of Clinical Endocrinology 
and Metabolism. 2006;91(6):2214-2217

[32] Ojeda-Cervantes M, Barrera-Chimal 
J, Alberu J, Perez-Villalva R, Morales-
Buenrostro LE, Bobadilla NA.  
Mineralocorticoid receptor blockade 
reduced oxidative stress in renal 
transplant recipients: A double-
blind, randomized pilot study. 
American Journal of Nephrology. 
2013;37(5):481-490

[33] Girerd S, Frimat L, Ducloux D, 
et al. EPURE transplant (eplerenone in 
patients undergoing renal transplant) 
study: Study protocol for a randomized 
controlled trial. Trials. 2018;19(1):595

[34] Barrera-Chimal J, Rocha L, 
Amador-Martinez I, et al. Delayed 
spironolactone administration prevents 
the transition from acute kidney injury 
to chronic kidney disease through 
improving renal inflammation. 
Nephrology, Dialysis, Transplantation. 
2018;33(12):2080-2091

[35] Herrada AA, Contreras FJ, Marini 
NP, et al. Aldosterone promotes 
autoimmune damage by enhancing 
Th17-mediated immunity. Journal of 
Immunology. 2010;184(1):191-202

[36] Amador CA, Barrientos V, Pena J,  
et al. Spironolactone decreases 
DOCA-salt-induced organ damage by 
blocking the activation of T helper 17 
and the downregulation of regulatory 
T lymphocytes. Hypertension. 
2014;63(4):797-803

[37] Martin-Fernandez B, Rubio-
Navarro A, Cortegano I, et al. 
Aldosterone induces renal fibrosis and 
inflammatory M1-macrophage subtype 
via mineralocorticoid receptor in rats. 
PLoS One. 2016;11(1):e0145946

[38] Chen D, Chen Z, Park C, et al. 
Aldosterone stimulates fibronectin 
synthesis in renal fibroblasts through 
mineralocorticoid receptor-dependent 
and independent mechanisms. Gene. 
2013;531(1):23-30

[39] Sun Y, Zhang J, Zhang JQ , 
Ramires FJ. Local angiotensin II and 
transforming growth factor-beta 1 in 
renal fibrosis of rats. Hypertension. 
2000;35(5):1078-1084

[40] Brown NJ, Nakamura S, Ma L,  
et al. Aldosterone modulates 
plasminogen activator inhibitor-1 and 
glomerulosclerosis in vivo. Kidney 
International. 2000;58(3):1219-1227

[41] Huang LL, Nikolic-Paterson DJ,  
Ma FY, Tesch GH. Aldosterone 
induces kidney fibroblast proliferation 
via activation of growth factor 
receptors and PI3K/MAPK signalling. 
Nephron. Experimental Nephrology. 
2012;120(4):e115-e122

[42] Latouche C, El Moghrabi S, 
Messaoudi S, et al. Neutrophil 
gelatinase-associated lipocalin is a 
novel mineralocorticoid target in the 
cardiovascular system. Hypertension. 
2012;59(5):966-972

[43] Calvier L, Martinez-Martinez E, 
Miana M, et al. The impact of galectin-3 
inhibition on aldosterone-induced 
cardiac and renal injuries. JACC: Heart 
Failure. 2015;3(1):59-67

[44] Mejia-Vilet JM, Ramirez V, Cruz 
C, Uribe N, Gamba G, Bobadilla 
NA. Renal ischemia-reperfusion injury 
is prevented by the mineralocorticoid 
receptor blocker spironolactone. 



11

Potential Benefit of Mineralocorticoid Receptor Antagonists in Kidney Diseases
DOI: http://dx.doi.org/10.5772/intechopen.87229

American Journal of Physiology. Renal 
Physiology. 2007;293(1):F78-F86

[45] Barrera-Chimal J, Perez-Villalva 
R, Rodriguez-Romo R, et al. 
Spironolactone prevents chronic kidney 
disease caused by ischemic acute 
kidney injury. Kidney International. 
2013;83(1):93-103

[46] Sanchez-Pozos K, Barrera-Chimal J,  
Garzon-Muvdi J, et al. Recovery 
from ischemic acute kidney injury 
by spironolactone administration. 
Nephrology, Dialysis, Transplantation. 
2012;27(8):3160-3169

[47] Barrera-Chimal J, Estrela GR, 
Lechner SM, et al. The myeloid 
mineralocorticoid receptor controls 
inflammatory and fibrotic responses 
after renal injury via macrophage 
interleukin-4 receptor signaling. Kidney 
International. 2018;93(6):1344-1355

[48] Barrera-Chimal J, Perez-Villalva R, 
Ortega JA, et al. Mild ischemic injury 
leads to long-term alterations in the 
kidney: Amelioration by spironolactone 
administration. International Journal of 
Biological Sciences. 2015;11(8):892-900

[49] Greene EL, Kren S, Hostetter 
TH. Role of aldosterone in the 
remnant kidney model in the rat. 
The Journal of Clinical Investigation. 
1996;98(4):1063-1068

[50] Fujihara CK, Kowala MC, Breyer 
MD, et al. A novel aldosterone 
antagonist limits renal injury in 5/6 
nephrectomy. Scientific Reports. 
2017;7(1):7899

[51] Rocha R, Chander PN, Zuckerman 
A, Stier CT Jr. Role of aldosterone in 
renal vascular injury in stroke-prone 
hypertensive rats. Hypertension. 
1999;33(1 Pt 2):232-237

[52] Zhou X, Ono H, Ono Y, Frohlich 
ED. Aldosterone antagonism ameliorates 
proteinuria and nephrosclerosis 

independent of glomerular dynamics in 
L-NAME/SHR model. American Journal 
of Nephrology. 2004;24(2):242-249

[53] Trachtman H, Weiser AC, 
Valderrama E, Morgado M, Palmer LS.  
Prevention of renal fibrosis by 
spironolactone in mice with complete 
unilateral ureteral obstruction. The 
Journal of Urology. 2004;172(4 Pt 2): 
1590-1594

[54] Chen H, Sun F, Zhong X, Shao Y,  
Yoshimura A, Liu Y. Eplerenone-
mediated aldosterone blockade 
prevents renal fibrosis by reducing 
renal inflammation, interstitial cell 
proliferation and oxidative stress. 
Kidney & Blood Pressure Research. 
2013;37(6):557-566

[55] Lother A, Furst D, Bergemann S, 
et al. Deoxycorticosterone acetate/
salt-induced cardiac but not renal 
injury is mediated by endothelial 
mineralocorticoid receptors 
independently from blood pressure. 
Hypertension. 2016;67(1):130-138

[56] Aldigier JC, Kanjanbuch T, Ma 
LJ, Brown NJ, Fogo AB. Regression 
of existing glomerulosclerosis by 
inhibition of aldosterone. Journal of 
the American Society of Nephrology. 
2005;16(11):3306-3314

[57] Miura R, Nakamura K, Miura D, 
et al. Anti-inflammatory effect of 
spironolactone on human peripheral 
blood mononuclear cells. Journal 
of Pharmacological Sciences. 
2006;101(3):256-259

[58] Kobayashi N, Hara K, Tojo A, et al. 
Eplerenone shows renoprotective effect 
by reducing LOX-1-mediated adhesion 
molecule, PKCepsilon-MAPK-p90RSK, 
and Rho-kinase pathway. Hypertension. 
2005;45(4):538-544

[59] Arai K, Tsuruoka H, Homma T.  
CS-3150, a novel non-steroidal 
mineralocorticoid receptor antagonist, 



Aldosterone-Mineralocorticoid Receptor - Cell Biology to Translational Medicine

12

prevents hypertension and cardiorenal 
injury in Dahl salt-sensitive 
hypertensive rats. European Journal of 
Pharmacology. 2015;769:266-273

[60] Shibata S, Nagase M, Yoshida S, 
et al. Modification of mineralocorticoid 
receptor function by Rac 1 
GTPase: Implication in proteinuric 
kidney disease. Nature Medicine. 
2008;14(12):1370-1376

[61] Fujisawa G, Okada K, Muto S, 
et al. Spironolactone prevents early 
renal injury in streptozotocin-induced 
diabetic rats. Kidney International. 
2004;66(4):1493-1502

[62] Guo C, Martinez-Vasquez D, 
Mendez GP, et al. Mineralocorticoid 
receptor antagonist reduces renal 
injury in rodent models of types 1 and 
2 diabetes mellitus. Endocrinology. 
2006;147(11):5363-5373

[63] Bamberg K, Johansson U, Edman 
K, et al. Preclinical pharmacology of 
AZD 9977: A novel mineralocorticoid 
receptor modulator separating 
organ protection from effects on 
electrolyte excretion. PLoS One. 
2018;13(2):e0193380

[64] Han SY, Kim CH, Kim HS, 
et al. Spironolactone prevents 
diabetic nephropathy through an 
anti-inflammatory mechanism in 
type 2 diabetic rats. Journal of the 
American Society of Nephrology. 
2006;17(5):1362-1372

[65] Lachaux M, Barrera-Chimal J, 
Nicol L, et al. Short- and long-term 
administration of the non-steroidal 
mineralocorticoid receptor antagonist 
finerenone opposes metabolic 
syndrome-related cardio-renal 
dysfunction. Diabetes, Obesity & 
Metabolism. 2018;20(10):2399-2407

[66] Nielsen FT, Jensen BL, Marcussen 
N, Skott O, Bie P. Inhibition of 
mineralocorticoid receptors with 
eplerenone alleviates short-term 

cyclosporin A nephrotoxicity in 
conscious rats. Nephrology, Dialysis, 
Transplantation. 2008;23(9):2777-2783

[67] Feria I, Pichardo I, Juarez P, et al. 
Therapeutic benefit of spironolactone 
in experimental chronic cyclosporine A 
nephrotoxicity. Kidney International. 
2003;63(1):43-52

[68] Perez-Rojas JM, Derive S, Blanco JA, 
et al. Renocortical mRNA expression of 
vasoactive factors during spironolactone 
protective effect in chronic cyclosporine 
nephrotoxicity. American Journal 
of Physiology. Renal Physiology. 
2005;289(5):F1020-F1030

[69] Waanders F, Rienstra H, Boer 
MW, et al. Spironolactone ameliorates 
transplant vasculopathy in renal 
chronic transplant dysfunction in rats. 
American Journal of Physiology. Renal 
Physiology. 2009;296(5):F1072-F1079

[70] Ma FY, Han Y, Nikolic-Paterson DJ,  
Kolkhof P, Tesch GH. Suppression 
of rapidly progressive mouse 
glomerulonephritis with the non-
steroidal mineralocorticoid receptor 
antagonist BR-4628. PLoS One. 
2015;10(12):e0145666

[71] Gullulu M, Akdag I, Kahvecioglu S, 
Filiz G, Savci V. Aldosterone blockage 
in proliferative glomerulonephritis 
prevents not only fibrosis, but 
proliferation as well. Renal Failure. 
2006;28(6):509-514

[72] Asai M, Monkawa T, Marumo T, 
et al. Spironolactone in combination 
with cilazapril ameliorates proteinuria 
and renal interstitial fibrosis in 
rats with anti-Thy-1 irreversible 
nephritis. Hypertension Research. 
2004;27(12):971-978

[73] Beldhuis IE, Myhre PL, Claggett B,  
et al. Efficacy and safety of 
spironolactone in patients with HFpEF 
and chronic kidney disease. JACC: Heart 
Failure. 2019;7(1):25-32


