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Chapter

Cylindrical Surface Wave:
Revisiting the Classical Biot’s
Problem
Jeremiah Rushchitsky

Abstract

The problem on a surface harmonic elastic wave propagating along the free
surface of cylindrical cavity in the direction of cavity axis is considered. In the case
of isotropic medium, this is the classical Biot’s problem of 1952. First, the Biot
pioneer work is revisited: the analytical part of Biot’s findings is shown in the main
fragments. The features are using two potentials and representation of solution by
Macdonald functions of different indexes. Then the new direct generalization of
Biot’s problem on the case of transversely isotropic medium within the framework
of linear theory of elasticity is proposed. Transition to the transverse isotropy needs
some novelty—necessity of using the more complex representations of displace-
ments through two potentials. Finally, a generalization of Biot’s problem on the case
of isotropic and transversely isotropic media in the framework of linearized theory
of elasticity with allowance for initial stresses is stated. This part repeats briefly
the results of A.N. Guz with co-authors of 1974. The main features are using the
linearized theory of elasticity and one only potential. All three parts are shown as
analytical study up to the level when the numerical methods have to be used.

Keywords: surface harmonic cylindrical wave, classical Biot’s problem,
generalization to the case of transversely isotropic medium

1. Introduction

Note first that the seismic waves include mainly the primary and secondary
body waves and different kinds of surface waves. This chapter is devoted to one
kind of surface waves. The problem is stated as follows: the infinite medium with
cylindrical circular cavity having the symmetry axis Oz and constant radius is
analyzed. An attenuating in depth of medium surface harmonic wave propagates
along the cavity surface in directionOz. In this case, the problem becomes mathe-
matically the axisymmetric one. This problem is solved by Biot in 1952 [1] with
assumption that the medium is isotropic. The context of this chapter includes four
parts. The subchapter 1 “Introduction” is the standard one. The subchapter 2 is
named: “Main Stages of Solving the Classical Biot’s Problem on Surface Wave along
Cylindrical Cavity.” Here, the analytical part of Biot’s findings is shown in the main
fragments. The features are using two potentials and representation of solution by
Macdonald functions of different indexes. The subchapter 3 “Direct Generalization
of Biot’s Problem on the Case of Transversely Isotropic Media within the
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Framework of Linear Theory of Elasticity” contains the new approach to the classi-
cal Biot’s problem and represents the direct generalization of this problem that uses
the Biot’s scheme of analysis. Transition to the case of transverse isotropy needs
some novelty—necessity of using the more complex representations of displace-
ments through two potentials. The subchapter 4 “Genera-lization of Biot’s Problem
on the case of Isotropic and Transversely Isotropic Media within the framework of
Linearized Theory of Elasticity with Allowance for Initial Stresses” repeats briefly
the results of A.N. Guz with co-authors (1974). They considered a generalization of
the Biot’s problem on the case of elastic media with allowance for the initial stresses.
The main features are using the linearized theory of elasticity, one only potential,
and Macdonald function of one index.

2. Main stages of solving the classical Biot’s problem on surface wave
along a cylindrical cavity

2.1 Statement of problem and main equations in potentials

A cylindrical system of coordinates Orϑz is chosen, and a harmonic wave is
considered that has the phase variable σ ¼ k z� vtð Þ, unknown wave number
k ¼ ω=vð Þ, unknown phase velocity v, and arbitrary (but given) frequency ω and
ampitude A. It is supposed that the wave propagates in an infinite medium with
cylindrical cavity of constant radius ro in the direction of vertical coordinate z and
possibly attenuates in the direction of radial coordinate r. In this linear statement
and in assumption that deformations are small, the problem is axisymmetric, and
deformations are described by two displacements ur r; z; tð Þ; uφ r; z; tð Þ ¼ 0

�

and

uz r; z; tð ÞÞ and two Lame equations of the form

C11 � C12

2
Δrzur �

1

r2
ur

� �

þ C11 þ C12

2
ur, r þ

1

r
ur þ uz,z

� �

, r

¼ ρur, tt, (1)

1

2
C11 � C12ð ÞΔrzuz þ

1

2
C11 þ C12ð Þ ur, r þ

1

r
ur þ uz,z

� �

,z

¼ ρuz, tt, (2)

or

λþ 2μð Þ ur, rr þ
1

r
ur, r �

1

r2
ur þ uz, rz

� �

þ μ ur,zz � uz, rzð Þ ¼ ρur, tt (3)

λþ 2μð Þ ur, rz þ
1

r
ur,z þ uz,zz

� �

� μ
1

r
ur,z � uz, rð Þ þ ur, rz � uz, rrð Þ

� �

¼ ρuz, tt: (4)

Further the potentials Φ r; z; tð Þ,Ψ r; z; tð Þ are introduced

ur ¼ Φ, r � Ψ,z, uz ¼ Φ,z þ Ψ, r þ 1=rð ÞΨ: (5)

When Eq. (5) is substituted into Eqs. (3) and (4), then two uncoupled linear
wave equations are obtained:

ΔrzΦ� 1=vLð Þ2Φ, tt ¼ 0, (6)

ΔrzΨ� 1=r2
� �

Ψ� 1=vTð Þ2Ψ, tt ¼ 0: (7)
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Here the standard notations of Laplace operator Δrz and velocities of longitudi-

nal and transverse waves in isotropic elastic medium vL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λþ 2μð Þ=ρ
p

, vT ¼
ffiffiffiffiffiffiffiffi

μ=ρ
p

are used.

2.2 Solving the wave equations in the form of Macdonald functions

The solution of Eqs. (6) and (7) is found in the form of harmonic waves in the
direction of vertical coordinate:

Φ r; z; tð Þ ¼ Φ
∗ rð Þei kz�ωtð Þ, Ψ r; z; tð Þ ¼ Ψ

∗ rð Þei kz�ωtð Þ, (8)

Φ r; z; tð Þ ¼ Φ
∗ rð Þ cos k z� vtð Þ, Ψ r; z; tð Þ ¼ Ψ

∗ rð Þ sin k z� vtð Þ:
A substitution of representations (8) into the wave Eqs. (6) and (7) gives the

equations relative to the unknown amplitudes Φ ∗ rð Þ,Ψ ∗ rð Þ
Φ

∗
, rr þ 1=rð ÞΦ ∗

, r � k2 � k2L
� �

Φ
∗ ¼ 0:

Φ
∗
, rr þ 1=rð ÞΦ ∗

, r � k2 1� v=vLð Þ2
	 


Φ
∗ ¼ 0

	 


, (9)

Ψ
∗
, rr � 1=rð ÞΨ ∗

, r � k2 � k2T þ 1=r2
� �� �

Ψ
∗ ¼ 0

Ψ
∗
, rr � 1=rð ÞΨ ∗

, r � k2 1� v=vTð Þ2
h i

þ 1=r2
� �

n o

Ψ
∗ ¼ 0

	 
 (10)

These equations correspond to the Bessel equation for Macdonald functions
Kλ xð Þ (modified Bessel functions of the second kind [2–4])

y″ þ 1=xð Þy0 � 1þ λ2=x2
� �� �

y ¼ 0 (11)

More exactly, Eqs. (9) and (10) have the solutions in the form of Macdonald
functions, if the conditions.

k2 � k2L>0, k
2 � k2T>0 k2 1� v=vLð Þ2

	 


>0; k2 1� v=vTð Þ2
	 


>0
	 


(12)

are fulfilled. According to conditions (12), the wave number of cylindrical wave
must be real, and the wave velocity must be less of the velocities of classical
longitudinal and transverse plane waves.

Further the wave Eqs. (9) and (10) are considered separately. The first equation
is written in the form

Φ
∗
, rr þ 1=rð ÞΦ ∗

, r �m2
LΦ

∗ ¼ 0 mL ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=vLð Þ2
	 


r

(13)

This equation has the solution in the form of Macdonald function:

Φ
∗ rð Þ ¼ AΦK0 mLrð Þ (14)

of zeroth order and unknown argument x ¼ mLr, which includes the unknown
phase velocity of wave.

The second equation can be written in the form

Ψ
∗
, rr � 1=rð ÞΨ ∗

, r � m2
T þ 1=r2

� � �

Ψ
∗ ¼ 0 mT ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=vTð Þ2
	 


r

: (15)
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The corresponding solution under conditions (12) is expressed by the

Macdonald function K1 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2T

q

� �

Ψ
∗ rð Þ ¼ AΨK1 mTrð Þ (16)

of the first order and unknown argument x ¼ mTr, which includes the unknown
wave velocity. The amplitude coefficient AΨ is assumed to be constant and
arbitrary.

Note that the Macdonald functions have the property of attenuation with
increasing arguments which is shown in Figure 1. Therefore, the propagation along
the vertical coordinate z waves (15) and (16) can be considered as the waves with
amplitudes Φ ∗ rð Þ,Ψ ∗ rð Þ, which attenuate with increasing the radial coordinate r.

This means that amplitudes can decrease essentially with increasing the distance
from the surface of cylindrical cavity. In this sense, the waves (15) and (16) are
the surface ones. This forms also the sense of conditions (12). The same conditions
are used in the analysis of classical Rayleigh surface wave which propagates
along the plane surface of isotropic elastic medium [5–9]. But the Rayleigh wave
attenuates as an exponential function when being moved from the free surface,
whereas the cylindrical surface Biot’s wave attenuates as the Macdonald functions.
At that, the arguments in exponential function and Macdonald functions are
identical and depend on the wave velocity.

2.3 Boundary conditions: equations for unknown wave number

The boundary conditions correspond to the absence of stresses on surface r ¼ ro

σrr r ¼ ro; z; tð Þ ¼ 0, σrz r ¼ ro; z; tð Þ ¼ 0: (17)

The stresses

σrr ¼ 2μur, r þ λ ur=rð Þ þ ur, r þ uz,zð Þ, σrz ¼ μ ur,z þ uz, rð Þ (18)

are written through the potentials

σrr ¼ λþ 2μð Þ Φ, rr � Ψ, rzð Þ þ λ 1=rð Þ Φ, r � Ψ,zð Þ þΦ,zz þ Ψ, rz þ 1=rð ÞΨ,zf g, (19)

σrz ¼ μ Φ, rz �Ψ,zzð Þ þΦ,zr þ Ψ, rr þ 1=rð ÞΨ, r � 1=r2
� �

Ψ
� �

: (20)

Then the boundary conditions (17) can be written in the form.

Figure 1.
Plots of the first five Macdonald functions.
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2μ Φ, rr �Ψ, rzð Þ þ λΔΦ½ �r¼ro
¼ 0, μ 2 Φ, rz � Ψ,zzð Þ þ ΔΨ � 1=r2

� �

Ψ
� �

r¼ro
¼ 0 (21)

In the work [1], Biot has used the expressions.

ΔΦ� 1=vLð Þ2Φ, tt ¼ 0, ΔΨ � 1=r2ð ÞΨ� 1=vTð Þ2Ψ, tt ¼ 0 and rewrite Eq. (21) in

such a way Φ, rr � Ψ, rzð Þ þ λ=2μð Þ 1=vLð Þ2Φ, tt

h i

r¼ro
¼ 0,

2 Φ, rz � Ψ,zzð Þ þ 1=vTð Þ2Ψ, tt

h i

r¼ro
¼ 0.

Then the substitution of solutions (14) and (16) into the boundary conditions
(21) gives two homogeneous algebraic equations relative to the unknown constant
amplitude coefficients

1� v=vLð Þ2 � λ

μ
v=vLð Þ2 K0 mLroð Þ

K0 mLroð Þ þ K2 mLroð Þ

� �

AΦ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=vLð Þ2
	 


r

AΨ ¼ 0,

(22)

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=vLð Þ2
	 


r

AΦ þ 2� v=vTð Þ2
	 
K1 mTroð Þ

K1 mLroð ÞAΨ ¼ 0: (23)

An analysis of these equations that describe the cylindrical surface wave is very
similar to the analysis that has been carried out by Rayleigh for the classical wave
propagating along the plane surface. Some novelty in analysis of systems (22) and
(23) is consideration of the system relative to quantities K1 mLroð ÞAΦ and
K1 mSroð ÞAΨ

1� v=vLð Þ2
	 
 K0 mLroð Þ

K1 mLroð Þ þ
1

mLro

� �

� λ

2μ
v=vLð Þ2 K0 mLroð Þ

K1 mLroð Þ

� �

K1 mLroð ÞAΦ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=vSð Þ2
	 


r

K0 mTroð Þ
K1 mTroð Þ þ

1

mTro

� �

K1 mTroð ÞAΨ ¼ 0,

(24)

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=vLð Þ2
	 


r

K1 mLroð ÞAΦ þ 2� v=vTð Þ2
	 


K1 mTroð ÞAΨ ¼ 0: (25)

Solving of systems (24) and (25) gives two results. First, the solution is found
accurate within one amplitude factor. Second, an equation for determination of
phase velocity of cylindrical surface wave can be obtained in an explicit form.

The work of Biot (1952) has demonstrated some art in handling the Macdonald
functions and has written Eq. (24) through only functions of the zeroth and first
orders. For that, the known formulas

K0
0 xð Þ ¼ �K1 xð Þ, K 0

1 xð Þ ¼ �K″

0 xð Þ,
K″

0 xð Þ þ 1=xð ÞK0
0 xð Þ ¼ K0 xð Þ, K″

0 xð Þ ¼ 1=xð ÞK1 xð Þ þ K0 xð Þ
(26)

have been used [3]. As a result, the equation for determination of phase velocity
of cylindrical wave has the form

2� v=vTð Þ2
	 


2� v=vTð Þ2
h iK0 mLroð Þ

K1 mLroð Þ þ
1� v=vLð Þ2

	 


mLro

8

<

:

9

=

;

� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=vLð Þ2
	 


r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=vTð Þ2
	 


r

K0 mTroð Þ
K1 mTroð Þ þ

1

mTro

� �

¼ 0:

(27)
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Let us write the corresponding equation for the Rayleigh wave [5–9] as

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=vLð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=vSð Þ2
q

� 2� v=vSð Þ2
h i2

¼ 0: (28)

Thus, a presence of Macdonald functions in Eq. (27) complicates essentially an

analysis of this equation because according to relations mL ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=vLð Þ2
	 


r

,

mS ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=vTð Þ2
	 


r

these functions have the unknown velocity in argument.

If the cavity radius is not small, then the Macdonald functions can be

represented by the simple formula K0 rð Þ ¼ K1 rð Þ ¼ e�r
ffiffiffiffiffiffiffiffiffiffi

π=2r
p

, and Eq. (27) is
reduced to the Rayleigh Eq. (28).

Strictly speaking, the analytical part of analysis is ended by obtaining Eq. (27).
Further analysis can be continued with the aim of the numerical methods. Biot in
[1] has shown some comments and conclusions based on resources of the 1950s.

A possibility of analytical approach is still saved in the problem on existence of
the appropriate wave velocity. First of all, Eq. (27) depends on the elastic constants,
and this dependence can be shown in the form of dependence on the ratio of
known velocities vL=vTð Þ. If the notation v2=v2T

� �

¼ z is used, then Eq. (27) can be
written in the form

2� z vL=vTð Þ2
	 


2� zð Þ
K0 rok

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z vL=vTð Þ2
q

� �

K1 rok
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z vL=vTð Þ2
q

� � þ
1� z vL=vTð Þ2

	 


rok
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z vL=vTð Þ2
q

8

>

>

<

>

>

:

9

>

>

=

>

>

;

� 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� zð Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z vL=vTð Þ2
q

K0 rok
ffiffiffiffiffiffiffiffiffiffiffi

1� z
p� �

K1 rok
ffiffiffiffiffiffiffiffiffiffiffi

1� z
p� � þ 1

rok
ffiffiffiffiffiffiffiffiffiffiffi

1� z
p

" #

¼ 0:

(29)

It seems appropriate to recall here the most known ways of proving the existence
of velocity of the classical Rayleigh wave. An initial equation is always Eq. (28).
Two different notations v2=v2T

� �

¼ z and v ¼ 1=θð Þ are used, which generate
two different representations of Eq. (28)

z z3 � 8 z� 1ð Þ z� 2 1� v2T=v
2
L

� �� �� � �

¼ 0, (30)

2θ2 � 1=v2T
� �� �2 � 4θ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ2 � 1=v2T
� �

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ2 � 1=v2L
� �

q

¼ 0: (31)

Finding the real root of Eq. (30) is the key step in the analysis of the Rayleigh
wave [5–9] . For more than 100 years of analysis of this wave, many methods of
proving the existence of real velocity of wave were elaborated.

First of all, the sufficiently useful and exact empirical Viktorov’s formula [5].

v=vTð Þ ¼
ffiffiffi

z
p

≈
0:87 þ 1:12υ

1þ υ
υ the Poisson ratioð Þ (32)

should be shown.
Let us show further briefly some phenomenological methods. Note that the

restriction on the Rayleigh wave velocity is already obtained from a statement of the
problem—it is less of the velocity of plane transverse wave. This restriction can be
written in the form z < 1 or θ> 1=cTð Þ.

6
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Method 1 (graphical method [10, 11]). Eq. (30) is considered as a sum of two
summands Z1 þ Z2 ¼ 0. The first summand Z1 = z3 describes a cubic parabola; the
lower branch of which lies in the first quadrant of the plane zOZ1. The second

summand describes a quadratic parabola Z2 ¼ �8 z� 1ð Þ z� 2 1� c2T=c
2
L

� �� � �

,
which is concave in the direction of coordinate axis OZ2. Further the ratio
c2T=c

2
L

� �

¼ μ= λþ 2μð Þð Þ can be estimated from below and top 0≤ c2T=c
2
L ≤ 1=2 with

allowance for the shear modulus μ that is positive. These parabolas are intersected
on the interval 0; 1ð Þ. More exactly, one of the roots z ¼ zC of Eq. (30) can be

estimated 0:764≤ z ¼ c=cTð Þ2
	 


≤0:912: Here, the minimal value corresponds to

the case when the parabola is tangent to the abscissa axis, and the maximal value
corresponds to the case when the parabola is moved partially into the fourth quad-
rant. Thus, the velocity of Rayleigh wave is close to the velocity of plane transverse
wave, but always less of its 0.874 ≤ (c/cT) ≤ 0.955.

Method 2 (method of finding the interval, on ends of which the equation pos-
sesses the different by sign values [2, 11]). This method is based on the analysis of
Eq. (30). The value of equation that corresponds to the point cR ¼ cT is positive and
equal to 1. The second point is chosen as cR ¼ εcT, where ε is assumed as the small
quantity (this point is close to 0). When this value is substituted into Eq. (30), then
expression �2ε2 1� c2T=c

2
L

� �� �

is always negative. Hence, at least one root of equa-
tion lies in the interval εcT; cTð Þ.

Method 3 (another method of finding the interval, on ends of which the equation
possesses the different by sign values [5]). This method is based on the analysis of
Eq. (31). The right point is chosen as θ ¼ 1=cTð Þð Þ (similar to method 2). Then
Eq. (31) possesses the positive value. The left point corresponds to θ ! ∞. Further
an expression (31) is expanded into the power series near the point at infinity. This

series starts with the term �2θ2 1=c2T
� �

� 1=c2L
� �� �

, which is always negative. So this

equation possesses in the chosen points the different sign values. Thus, at least one
root of the equation lies in the interval 1=cTð Þ;∞ð Þ.

Method 4 (method based on assumption relative to the Poisson ratio [7]). This
assumption consists in the choice of value of Poisson ratio that is often used in the
analysis of seismic waves in Earth’s crust ν ¼ λ= 2 λþ μð Þ½ � ¼ 1=4ð Þ ! λ ¼ μ. Then
cubic Eq. (31) (the zeroth root θ1 ¼ 0 is ignored from a physical considerations) can

be solved exactly, and the roots possess the values θ2 ¼ 4, θ3 ¼ 2þ 2=
ffiffiffi

3
p� �

,

θ4 ¼ 2� 2=
ffiffiffi

3
p� �

. Since the condition θ < 1 has been fulfilled, then the corresponding
root is equal to θ4 ¼ 0:8453.

The main conclusion from the shown above methods is that they really allow to
establish an existence of real root of Rayleigh equation (the real value of velocity of
harmonic Rayleigh wave). They give the positive answer on the question whether
the Rayleigh wave exists. In the case of other surface waves including the cylindrical
wave under consideration, the experience of the classical Rayleigh wave analysis
can be quite useful.

3. Cylindrical wave propagating along the surface of the cylindrical
cavity in the direction of vertical axis: The case of transversal
isotropy of medium

Let us return to the initial statement of problem and consider an infinite medium
with cylindrical circular cavity that has the symmetry axis Oz and radius ro. The
medium is assumed to be the transversely isotropic elastic one. It is assumed further
that the wave is harmonic in time, and attenuating deep into medium wave

7
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propagates in the direction of axis Oz along the cavity surface. Such a problem can
be considered as some generalization of Biot’s [1] problem that is solved in the
assumption of isotropy of medium on the case of transversal isotropy of medium.
Therefore, it seems expedient to recall some facts from the theory of elasticity of
transversally isotropic medium.

3.1 Some information on transversally isotropic medium

Let us consider the case when Ox3 is the axis of symmetry and Ox1x2 is the plane
of isotropy. This symmetry corresponds to the hexagonal crystalline system. The
matrix of elastic properties is characterized by 5 independent elastic constants
C11, C12, C13, C33, C44 and 12 non-zero components [11–13]:

CIK ¼

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 1=2ð Þ C11 � C12ð Þ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

: (33)

Then the constitutive relations σ � ε have the form [12, 14].

σ11 ¼ C11klεkl ¼ C11ε11 þ C12ε22 þ C13ε33,

σ22 ¼ C22klεkl ¼ C12ε11 þ C22ε22 þ C13ε33,

σ33 ¼ C33klεkl ¼ C13ε11 þ C13ε22 þ C33ε33,

σ12 ¼ C11 � C12ð Þε12, σ13 ¼ 2C44ε13, σ23 ¼ 2C44ε23,

(34)

or in notations σ � u [12, 14].

σ11 ¼ C11u1,1 þ C12u2,2 þ C13u3,3, σ22 ¼ C12u1,1 þ C11u2,2 þ C13u3,3,

σ33 ¼ C13u1,1 þ C13u2,2 þ C11u3,3, σ12 ¼ 1=2ð Þ C11 � C12ð Þ u1,2 þ u2,1ð Þ,
σ13 ¼ C44 u1,3 þ u3,1ð Þ, σ23 ¼ 1=2ð ÞC44 u2,3 þ u3,2ð Þ:

(35)

Also, five independent elastic technical constants are often used.
Ex ¼ Ey, Ex ¼ Ey, Ez, Gxy, Gxz ¼ Gyz, υxy, υxz ¼ υyz, Gxy ¼ Ex= 1þ 2υxy

� �

. They are
evaluated through CNM by the following formulas:

The longitudinal Young modulus that corresponds to tension along the
symmetry axis Oz

Ez ¼ C33 � 2 C13ð Þ2= C11 þ C12ð Þ
h i

: (36)

The transverse Young modulus that corresponds to tension in the isotropy
plane Oxy

Ex ¼ C11 � C12ð Þ C11 þ C12ð ÞC33 � 2 C13ð Þ2
h i

= C11C33 þ C13ð Þ2
h i

: (37)

The shear modulus that corresponds to the shear along the isotropy plane Oxy

Gxy ¼ C66 ¼ 1=2ð Þ C11 � C12ð Þ: (38)
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The shear modulus that corresponds to the shear along the symmetry axis Oz

Gxz ¼ C44: (39)

The Poisson ratio that corresponds to the shear along the symmetry axis Oz
under tension in the isotropy plane and characterizes the shortening in this plane

υxz ¼ C13= C11 þ C12ð Þ: (40)

Sometimes, the corresponding Lame moduli are used.

λxy þ 2μxy ¼ C11, λxy ¼ C12, μxy ¼ 1=2ð Þ C11 � C12ð Þ
λxz þ 2μxz ¼ C33, λxz ¼ C13, μxz ¼ C44:

(41)

The Poisson ratio (40) is determined by the known formula of isotropic theory

υxz ¼ λxz=2 λxy þ μxy

	 


.

The Poisson ratio υxy that corresponds to the shear along the symmetry axis Oz
under tension along the isotropy plane is determined also by the classical formula

υxy ¼ λxy= λxy þ μxy

	 


.

The constants C11, C12, C13, C33, C44 are represented through the technical con-
stants E, E0, ν, ν0, G0 by the formulas.

C11 ¼
1� ν0ð Þ2 E=E0ð Þ

1� ν2 þ 1þ 2νð Þ ν0ð Þ2 E=E0ð Þ
E,C12 ¼

v� ν0ð Þ2 E=E0ð Þ
1� ν2 þ 1þ 2νð Þ ν0ð Þ2 E=E0ð Þ

E,

C13 ¼
ν0 1� νð Þ

1� ν2 þ 1þ 2νð Þ ν0ð Þ2 E=E0ð Þ
E,

C33 ¼
1� ν2

1� ν2 þ 1þ 2νð Þ ν0ð Þ2 E=E0ð Þ
E0, C44 ¼ G0:

(42)

Let us comment briefly some features of transversally isotropic materials. They
can be divided on the natural and artificial ones. An example of the classical natural
material is the rock. An example of the modern material is a family of fibers
“Kevlar®.” Kevlar® KM2 [15] is characterized by elastic constants
Ex ¼ 1:34GPa, Ez ¼ 84:62GPa, Gxz ¼ 24:40GPa, υxy ¼ 0:24, υxz ¼ 0:60.

An example of composite materials can be four fibrous composites of micro- and
nanolevels, which are described in [15]. The corresponding elastic constants for
some variants of these materials are as follows [15]:

10% of carbon microfibers
Ex ¼ 3:59GPa, Ez ¼ 25:22GPa, Gxz ¼ 1:17GPa, υxy ¼ 0:39, υxz ¼ 0:58.

10% of graphite microwhiskers
Ex ¼ 3:69GPa, Ez ¼ 102:4GPa, Gxz ¼ 1:14GPa, υxy ¼ 0:39, υxz ¼ 0:62.

10% of zig-zag carbon nanotubes
Ex ¼ 3:70GPa, Ez ¼ 67:21GPa, Gxz ¼ 1:14GPa, υxy ¼ 0:39, υxz ¼ 0:62.

10% of chiral carbon nanotubes
Ex ¼ 3:67GPa, Ez ¼ 126:4GPa, Gxz ¼ 1:14GPa, υxy ¼ 0:39, υxz ¼ 0:62.

The shown above values are typical for the transversally isotropic materials, and
therefore they are briefly commented below.

Comment 1. The Young modulus in the direction along the symmetry axis Ez

exceeds essentially the Young modulus in the isotropy plane Ex (from 6 to 34 times
in examples above but can in some cases exceed 100 times).
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Comment 2. The Lame moduli λx and λz repeat the relations between Ex and Ez.
Comment 3. The Poisson ratio υxz along the symmetry axis Oz exceeds the

classical red line in 0.5 for values of this ratio.
Comment 4. The shear moduli Gxy and Gxz are differed quite moderately.

3.2 The basic formulas for elastic transversely isotropic medium with axial
symmetry

Let us write the basic formulas for the case of symmetry axis Oz. Then displace-
ments are characterized by two components ur r; z; tð Þ, uz r; z; tð Þ. The motion equa-
tions in stresses have the form.

σrr, r þ σrz,z þ 1=rð Þ σrr � σφφ
� �

¼ 0, σrz, r þ 1=rð Þσφz,φ þ σzz,z þ 1=rð Þσrz ¼ 0: (43)

The substitution of constitutive equations.

σrr ¼ C11ur, r þ C12 1=rð Þur þ C13uz,z, σzz ¼ C13ur, r þ C13 1=rð Þur þ C33uz,z,

σrz ¼ 1=2ð ÞC44 uz, r þ ur,zð Þ, σφz ¼ σrφ ¼ 0
(44)

into the motion Eqs. (43) gives the motion equations in displacements

C11 ur, rr þ 1=rð Þur, r � 1=r2
� �

ur
� �

þ C44ur,zz þ C13 þ C44½ �uz, rz ¼ ρur, tt, (45)

C44 uz, rr þ 1=rð Þuz, rð Þ þ C33uz,zz þ C13 þ C44½ � ur, rz þ 1=rð Þur,zð Þ ¼ ρuz, tt: (46)

Note that Eqs. (45) and (46) include only four constants (the constant C12 is not
represented in these equations). This means that displacements and strains are described
by only four constants. But the stress state is already described by all five constants.

3.3 Three classical ways of introducing the potentials in transversely isotropic
elasticity

The basic equations of the theory of transversely isotropic elasticity are fre-
quently analyzed by the use of potentials. The potentials are introduced in theory of
elasticity mainly for static problems. Transition to the dynamic problems is associ-
ated with complications that are sometimes impassable. Because the problem on
waves is related to the dynamic ones, let us show further the possible complications
with introducing the potentials.

Way 1 [12]. It is proposed for the axisymmetric problems of equilibrium (not
motion) and is based on introducing one only potential φ r; zð Þ as the function of
stresses. The formulas for stresses include four unknown parameters a, b, c, d,
which is characteristic for representations in the transversely isotropic elasticity.

σrr ¼ � φ, rr þ b 1=rð Þφ, r þ aφ,zz

 �

,z, σθθ ¼ � bφ, rr þ 1=rð Þφ, r þ aφ,zz

 �

,z, (47)

σzz ¼ � cφ, rr þ c 1=rð Þφ, r þ dφ,zz

 �

,z
, σrz ¼ � φ, rr þ 1=rð Þφ, r þ aφ,zz

 �

, r
: (48)

The next step consists in substitution of formulas (47) and (48) into the first
equation of equilibrium and the equations that are obtained from the Cauchy
relations and formulas for the strain tensor. This permits to determine the unknown
parameters through the elastic constants represented in the equilibrium equations.
Further, the second equation of equilibrium gives the biharmonic equation for
finding the potentials
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Δs1Δs2φ ¼ 0, (49)

where ΔsNφ ¼ φ, rr þ 1=rð Þφ, r þ 1= sNð Þ2
	 


φ,zz N ¼ 1; 2 are some “complicated”

copies of classical expressions Δφ ¼ φ, rr þ 1=rð Þφ, r þ φ,zz associated with the
Laplace operator. Two constants sN are determined from the algebraic equations

s4 � aþ cð Þ=d½ �s2 þ 1=dð Þ ¼ 0,

s1,3 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ cð Þ2 � 4d
q

2d

v

u

u

t

, s2,4 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ cð Þ2 � 4d
q

2d

v

u

u

t

:

(50)

Thus, a transition from the isotropic case to the transversally isotropic one
complicates the procedure of solving the static problems. Here a necessity of solving
the classical biharmonic equation is changed on necessity of solving some generali-
zation of this equation in the form (49).

Way 2 [12, 16]. This way is also proposed for the static problems. Here, two
potentials are introduced which are linked immediately with displacements

ur ¼ ϕ1, r þ ϕ2, r, uz ¼ k1ϕ1,z þ k2ϕ2,z: (51)

A substitution of representations (51) into equations of equilibrium (45), (46)

C11 ur, rr þ 1=rð Þur, r � 1=r2
� �

ur
� �

þ C44ur,zz þ C13 þ C44½ �uz, rz ¼ 0,

C44 uz, rr þ 1=rð Þuz, rð Þ þ C33uz,zz þ C13 þ C44½ � ur, rz þ 1=rð Þur,zð Þ ¼ 0

allows to determine the unknown constants k1, k2. An idea consists in that both
equations must be transformed in identical equations relative to the potentials by
comparing some coefficients

k1 2ð Þ C13 þ C44ð Þ þ C44

C11
¼ kC33

k1 2ð ÞC44 þ C13 þ C44ð Þ ¼ V:

This expression gives the quadratic equation for k1 2ð Þ and V

V2 þ C13 2C44 þ C33ð Þ � C11C33

C11C44
V þ C33

C11
¼ 0: (52)

Note that the simple link VN ¼ 1=sNð Þ exists between constants VN and sN,
which makes the ways 1 and 2 very similar. Then the potentials fulfill the equations

ΔrzNφN ¼ φN, rr þ 1=rð ÞφN, r þ 1= VNð Þ2
	 


φN,zz: (53)

The stresses are expressed through new potentials in such a way

σrr ¼ � C11 � C12ð Þ 1=rð Þ ϕ1, rr þ ϕ2, rr

� �

� C44 1þ k1ð Þϕ1,zz þ 1þ k2ð Þϕ2,zz

� �

,

σθθ ¼ � C11 � C12ð Þ 1=rð Þ ϕ1, rr þ ϕ2, rr

� �

� C13k1 � C12V1ð Þϕ1,zz þ C13k2 � C12V2ð Þϕ2,zz

� �

,

σzz ¼ C33k1 � C13V1ð Þϕ1,zz þ C33k2 � C13V2ð Þϕ2,zz

� �

,

σrz ¼ C44 1þ k1ð Þϕ1, rz þ 1þ k2ð Þϕ2, rz

� �

:

(54)

Way 3 [1, 16]. This way is proposed for equations of motion, but only for the
isotropic theory of elasticity. It can be used for the static problems of transversely
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isotropic theory of elasticity. The initial equations here are the equations of motion
(43) without inertial summands

C11 ur, rr þ 1=rð Þur, r � 1=r2
� �

ur
� �

þ C44ur,zz þ C13 þ C44½ �uz, rz ¼ 0, (55)

C44 uz, rr þ 1=rð Þuz, rð Þ þ C33uz,zz þ C13 þ C44½ � ur, rz þ 1=rð Þur,zð Þ ¼ 0: (56)

The potentials are introduced like (51), but the representations are complicated
by necessity of introducing two new unknown parameters:

ur ¼ Φ, r � Ψ,z, uz ¼ nΦ,z þmΨ, r þm 1=rð ÞΨ, (57)

A substitution of representations (57) into equations of motion (45) and (46)
gives equations relative to the potentials. Eq. (45) gives two equations:

Φ, rr þ 1=rð ÞΦ, r þ
C44 þ n C13 þ C44ð Þ

C11
Φ,zz ¼ 0, (58)

Ψ, rr þ 1=rð ÞΨ, r � 1=r2
� �

Ψþ C44

C11 �m C13 þ C44ð ÞΨ,zz ¼ 0, (59)

whereas Eq. (46) gives three equations:

Φ, rr þ 1=rð ÞΦ, r þ
nC33

nC44 þ C13 þ C44ð ÞΦ,zz ¼ 0, (60)

Ψ, rrz þ 1=rð ÞΨ, rz � 1=rð Þ2Ψ,z þ
C33m� C13 þ C44ð Þ

C44m
Ψ,zzz ¼ 0, (61)

Ψ, rr þ 1=rð ÞΨ, r � 1=rð Þ2Ψþ C33m� C13 þ C44ð Þ
C44m

Ψ,zz ¼ 0: (62)

The last two equations are identical. Eqs. (58) and (60) and (59) and (62) have
to be identical. This means that the coefficients in these equations have to be
identical. As a result, two equations can be obtained for the determination of
unknown constants n,m.

C44 þ n C13 þ C44ð Þ
C11

¼ nC33

nC44 þ C13 þ C44ð Þ !

n2 � n
C11C33 � C44ð Þ2 � C13 þ C44ð Þ2

C44 C13 þ C44ð Þ þ 1 ¼ 0,

(63)

n1,2 ¼
C11C33 � C44ð Þ2 � C13 þ C44ð Þ2

2C44 C13 þ C44ð Þ

� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4
C44 C13 þ C44ð Þ

C11C33 � C44ð Þ2 � C13 þ C44ð Þ2

" #2
v

u

u

t

0

B

@

1

C

A
,

(64)

C44

C11 �m C13 þ C44ð Þ ¼
C33m� C13 þ C44ð Þ

C44m
! m2

þm
C44ð Þ2 þ C11C33 þ C13 þ C44ð Þ2

C33 C13 þ C44ð Þ

" #

þ C11

C33
¼ 0:

(65)
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m1,2 ¼ � C44ð Þ2 þ C11C33 þ C13 þ C44ð Þ2
2C33 C13 þ C44ð Þ

� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4
C11

C33

C33 C13 þ C44ð Þ
C44ð Þ2 þ C11C33 þ C13 þ C44ð Þ2

" #2
v

u

u

t

8

<

:

9

=

;

:

(66)

The unknown potentials Φ r; zð Þ and Ψ r; zð Þ have to be determined from the
simple Eqs. (63) and (65) which are the classical Bessel equations of orders 0 and 1
and arguments depending on some rational combination of elastic constants.

Thus, three ways of introduction of potentials in the static problems of trans-
versely isotropic theory of elasticity are shown. The different attempts to transfer
these ways into the dynamic problems meet some troubles—the presence of inertial
summands generates new additional conditions for the unknown constants in rep-
resentations of potentials. Introducing the new constants does not help—the num-
ber of conditions is still more than the number of all constants.

3.4 Solving the problem on the propagation in the direction of vertical axis
surface cylindrical wave for the case of transversal isotropy of medium

Consider now equations of motion (45) and (46) and introduce the potentials by
the formula (57). A substitution of formula (57) into equations of motion gives five
equations relative to the potentials. Eq. (57) gives two equations:

Φ, rr þ 1=rð ÞΦ, r þ
C44 þ n C13 þ C44ð Þ

C11
Φ,zz ¼

ρ

C11
Φ, tt, (67)

Ψ, rr þ 1=rð ÞΨ, r � 1=r2
� �

Ψþ C44

C11 �m C13 þ C44ð ÞΨ,zz ¼
ρ

C11 �m C13 þ C44ð ÞΨ, tt:

(68)

Eq. (46) gives three equations:

Φ, rr þ 1=rð ÞΦ, r þ
nC33

nC44 þ C13 þ C44ð ÞΦ,zz ¼
nρ

nC44 þ C13 þ C44ð ÞΦ, tt, (69)

Ψ, rrz þ 1=rð ÞΨ, rz � 1=rð Þ2Ψ,z þ
C33m� C13 þ C44ð Þ

C44m
Ψ,zzz ¼

ρ

C44
Ψ,ztt, (70)

Ψ, rr þ 1=rð ÞΨ, r � 1=rð Þ2Ψþ C33m� C13 þ C44ð Þ
C44m

Ψ,zz ¼
ρ

C44
Ψ, tt: (71)

Two last equations are identical. Also the equations for potential Φ must be
identical as well as the equations for potential Ψ must be identical. Let us assume
additionally that the problem in hand considering the solution in the form of
harmonic in time cylindrical wave with unknown wave number k and known
frequency ω:

Φ r; z; tð Þ ¼Φ
_

rð Þei kz�ωtð Þ, Ψ r; z; tð Þ ¼Ψ
_

rð Þei kz�ωtð Þ: (72)

Note that characterization of an attenuation of wave depth down functions

Φ
_

rð Þ, Ψ
_

rð Þ is unknown. They must be found from equations, which are obtained
by substitution of representations (72) into Eqs. (67) and (71):
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Φ
_

, rr þ 1=rð ÞΦ
_

, r �
C44 þ n C13 þ C44ð Þ

C11
k2 � k2L 11ð Þ

� �

Φ
_
¼ 0, (73)

kL 11ð Þ ¼ ω=vL 11ð Þ
� �

, vL 11ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

C11=ρ
p

,

Φ
_

, rr þ 1=rð ÞΦ
_

, r �
n

nC44 þ C13 þ C44ð Þ C33k
2 � C11k

2
L 11ð Þ

	 


Φ
_
¼ 0, (74)

Ψ
_

, rr þ 1=rð ÞΨ
_

, r � 1=r2
� �

Ψ
_

� C44

C11 �m C13 þ C44ð Þ k2 � k2T 44ð Þ

	 


Ψ
_
¼ 0, (75)

kT 44ð Þ ¼ ω=vL 44ð Þ
� �

, vL 44ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

C44=ρ
p

,

Ψ
_

, rr þ 1=rð ÞΨ
_

, r � 1=rð Þ2 Ψ
_

� C33m� C13 þ C44ð Þ
C44m

k2 � k2T 44ð Þ

� �

Ψ
_
¼ 0: (76)

As a result, two equations can be obtained that permit to determine the
constants n,m

n2 � 2N1nþN2 ¼ 0, m2 þ 2M1mþM2 ¼ 0, (77)

N� M�ð Þ ¼ N1 M1ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N1 M1ð Þ½ �2 �N2 M2ð Þ
q

, (78)

2N1 ¼
C11C33 � C13 þ C44ð Þ2
h i

k2 � C11 C11 � C44½ �k2L 11ð Þ � C44ð Þ2

C44 C13 þ C44ð Þk2
,

N2 ¼
C44 � C11k

2
L 11ð Þ

C44k
2 ¼ 0

(79)

2M1 ¼
C44ð Þ2 � C11C33 � C13 þ C44ð Þ2

h i

k2 � C44ð Þ2 � C11C44

h i

k2T 44ð Þ

C13 þ C44ð Þ C33k
2 � C44k

2
T 44ð Þ

	 
 ,

M2 ¼
C11

C33k
2 � C44k

2
T 44ð Þ

	 
 k2:

(80)

Note that restriction on the kind of solution (it has to be a wave) allows to unite
two different conditions into one—conditions for equaling coefficients in sum-
mands with the second derivative by time t and vertical coordinate z. In this case,
the number of unknown constants coincides with the number of conditions which
are necessary for the determination of potentials. As a result, the wave attenuation-
transformed potentials can be determined from the equations of Bessel type:

Φ
_

, rr þ 1=rð ÞΦ
_

, r �M2
L 11ð Þ Φ

_
¼ 0, ML 11ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C44 þ n C13 þ C44ð Þ
C11

k2 � k2L 11ð Þ

s

,

(81)

Ψ
_

, rr þ 1=rð ÞΨ
_

, r � 1=r2ð Þ þM2
T 44ð Þ

h i

Ψ
_
¼ 0,

MT 44ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C44

C11 �m C13 þ C44ð Þ k2 � k2T 44ð Þ

	 


r

,

(82)
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A success in the determination of transformed potentials is accompanied by
a complication of conditions which provide the wave attenuation. They have the
form.

C44 þ n C13 þ C44ð Þ
C11

k2 � k2L 11ð Þ>0,
C33m� C13 þ C44ð Þ

C44m
k2 � k2T 44ð Þ>0: (83)

Let us recall that the similar conditions for the case of isotropic medium

k2 � k2L>0, k
2 � k2T>0 are slightly simpler and coincide with the corresponding

conditions of classical Rayleigh surface wave [5–9, 17]. A complexity of conditions
(83) is increased by the complex form of dependence of constants n,m on the
wave number k.

If the conditions (83) are fulfilled, then the solution of wave equations for
potentials can be written in the form.

Φ
_

rð Þ ¼ A
_

ΦK0 ML 11ð Þr
� �

, Ψ
_

rð Þ ¼ A
_

ΨK1 MT 44ð Þr
� �

: (84)

With allowance for formulas (84), the representations of potentials becomes
more definite

Φ r; z; tð Þ ¼ A
_

ΦK0 ML 11ð Þr
� �

ei kz�ωtð Þ, Ψ r; z; tð Þ ¼ A
_

ΨK1 MT 44ð Þr
� �

ei kz�ωtð Þ: (85)

The formula (85) completes the first analytical part of solving the problem on
cylindrical surface wave.

3.5 Boundary conditions: equations for the unknown wave number

This part of analysis can be treated as the second analytical part. The
boundary conditions have the form identical for all kinds of symmetry of proper-
ties. That is, they have the form (17) or (21). The formulas for stresses depend
already on the symmetry of medium. The expressions for stresses through the
potential reflect the features of introducing the potentials. In this case, they have
the form

σrr ¼ λþ 2μð Þ Φ, rr �Ψ, rzð Þ þ λ
1=rð Þ Φ, r �Ψ,zð Þþ
þnΦ,zz þmΨ, rz þm 1=rð ÞΨ,z

� �

, (86)

σrz ¼ μ Φ, rz �Ψ,zzð Þ þ nΦ,zr þmΨ, rr þm 1=rð ÞΨ, r �m 1=r2
� �

Ψ
� �

: (87)

Further, the representations (86) and (87) should be substituted into the
boundary conditions, and the formulas on differentiation of Macdonald functions
[3] should be taken into account:

dK0 ML 11ð Þrx
� �

=dr
� �

¼ �ML 11ð ÞK1 ML 11ð Þrx
� �

,

d2K0 ML 11ð Þr
� �

=dr2
� �

¼ ML 11ð Þ 1=rð ÞK1 ML 11ð Þr
� �

þ ML 11ð Þ
� �2

K0 ML 11ð Þr
� �

,

dK1 MT 44ð Þr
� �

=dr
� �

¼ � 1=rð ÞK1 MT 44ð Þr
� �

�MT 44ð ÞK0 MT 44ð Þr
� �

:

Then the boundary conditions are transformed into the algebraic equations

relative to quantities K1 ML 11ð Þro
� �

A
_

Φ, K1 MT 44ð Þro
� �

A
_

Ψ
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ML 11ð Þ
1

ro
þ v2L
v2T

ML 11ð Þ
� �2�

� v2L � v2T
v2L

nk2

0

B

B

@

1

C

C

A

K0 ML 11ð Þro
� �

K1 ML 11ð Þro
� �

2

6

6

4

3

7

7

5

A
_

ΦK1 ML 11ð Þro
� �

� ik
v2L � v2T

v2T

�
2 1�mð Þ þ v2T

v2L � v2T

� �

1

ro
þ

þ 1�mð Þ þ v2T
v2L � v2T

� �

MT 44ð Þ
K0 MT 44ð Þro

� �

K1 MT 44ð Þro
� �

2

6

6

6

6

4

3

7

7

7

7

5

A
_

ΨK1 MT 44ð Þro
� �

¼ 0,

(88)

1þ nð Þik K0 ML 11ð Þro
� �

K1 ML 11ð Þr0
� �K1 ML 11ð Þro

� �

A
_

Φ þ m MT 44ð Þ
� �2 þ k2

h i

K1 MT 44ð Þr
� �

A
_

Ψ ¼ 0:

(89)

When the determinant of linear homogeneous system of Eqs. (88) and (89) is
equaled to zero, then the equations for the unknown wave number can be obtained:

1þ nð Þk2 v
2
L � v2T
v2T

K0 ML 11ð Þro
� �

K1 ML 11ð Þr0
� �

2 1�mð Þ þ v2T
v2L � v2T

� �

1=roð Þ

þ 1�mð Þ þ v2T
v2L � v2T

� �

MT 44ð Þ
K0 MT 44ð Þro

� �

K1 MT 44ð Þro
� �

2

6

6

6

6

4

3

7

7

7

7

5

� m MT 44ð Þ
� �2 þ k2

h i

ML 11ð Þ
1

ro
þ

v2L
v2T

ML 11ð Þ
� �2 � v2L � v2T

v2L
nk2

� �

K0 ML 11ð Þro
� �

K1 ML 11ð Þro
� �

2

6

6

6

4

3

7

7

7

5

¼ 0:

(90)

Note that the sufficiently complex expression relative to the wave number is

hidden coefficients ML 11ð Þ,MT 44ð Þ of Macdonald’s functions
K0 ML 11ð Þroð Þ
K1 ML 11ð Þr0ð Þ,

K0 MT 44ð Þroð Þ
K1 MT 44ð Þroð Þ.

Therefore, the analytical part of analysis is finished on these formulas. Further, the
numerical approaches have to be utilized.

Note also that the simple and convenient condition from analysis of classical
surface Rayleigh wave [6–10, 17], when the wave number depends only on ratio
v2L=v

2
T

� �

, does not exist in the analysis of cylindrical surface wave. Here, the param-

eters ML 11ð Þ,MT 44ð Þ depend on the complicated form on all elastic constants. Of

course, the Macdonald functions can be represented approximately through their
arguments. But only the numerical methods can give the final result—the value of
wave number or phase velocity.

4. Solving the problem on propagating in the direction of symmetry axis
surface wave within the framework of linearized theory of elasticity
with allowance for initial stresses

Note that analysis of cylindrical surface wave in isotropic medium was first
carried out by Biot [1] in 1952 and the transversally isotropic medium with initial
stresses was first carried out by Guz et al. in 1974 [18].
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Let us show below an analysis of the problem in hand that is carried out in
Subchapter “Longitudinal Waves” of Chapter 4 “Waves in Cylindrical Media” of
volume 2 of edition [19]. Here, the cylinder of circular cross-section is considered,
and the longitudinal wave is defined as the wave propagating in the direction of
cylinder axis Oy3. The problem is assumed to be axisymmetric and is described
within the framework of linearized theory of elasticity for bodies with initial
stresses. The cylindrical coordinates r0; θ; y3

� �

are introduced, and displacements are

taken in the form

ur0 ¼ ur0 r
0; y3; t

� �

, uθ ¼ 0, uy3 ¼ uy3 r0; y3; t
� �

(91)

The medium is assumed isotropic or transversally isotropic. The main relations
for transversal isotropy are described by independent constant

ω1111,ω1122,ω1133,ω1221,ω1313,ω1331,ω3113,ω3333: (92)

Note that as shown in (92), eight constants are necessary in the linearized
theory, but in the framework of linear theory, they have the form (33), and their
number is five.

Further, the general solutions of basic equations in displacements are utilized.
These equations have the form (3.174) [19]

ωlmαβ ∂
2uα=∂xk∂xβ

� �

¼ ρδmα ∂
2uα=∂τ

2
� �

(93)

where only eight independent constants (92) must be taken into account.
The corresponding equations of linear theory of elasticity for the case of

transversally isotropic medium without of initial stresses are written above as
Eqs. (45) and (46).

The general solutions for the case of axial symmetry are expressed through one
potential in the form (4.13) [19]

ur0 ¼ � ∂
2=∂r0∂y3

� �

X0, (94)

u3 ¼ ω0
1111 þ ω0

1313

� ��1
ω0
1111Δ

0
1 þ ω0

3113 ∂
2=∂y23

� �

� ρ0 ∂
2=∂τ2

� �� �

X0,

Δ
0 ¼ ∂

2=∂r02
� �

þ 1=r0ð Þ ∂=∂r0ð Þ:

Note that in Section 3 of this chapter, two potentials Φ,Ψ are introduced by
formula (57), which corresponds and generalizes the procedure used in Biot’s
analysis [1].

The longitudinal harmonic wave is described analytically through the potential
in the form (101) [19]

X0 r0; y3; τ
� �

¼ X0
1ð Þ r

0ð Þei ky3�ωτð Þ, (95)

where the unknown amplitude X0
1ð Þ r

0ð Þ has to be determined by substitution of

solution (4.13) [19] into the second Eq. (3.362) [19] (for potential X0). This gives
Eq. (4.16) [19]:

ω0
1111ω

0
1331

� �

Δ
0
1 � k2ξ022

� �

Δ
0
1 � k2ξ032

� �

�k2ρ0C2
cp ω0

1111 þ ω0
1331

� �

Δ
0
1 � k2 ω0

1111 þ ω0
3113

� �� �

þ ρ02C2
cp

o

X0
1ð Þ ¼ 0,

(96)
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Ccp ¼ ω=k, ξ
02
2,3 ¼ c0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c02 � ω0
3333ω

0
3113=ω

0
1111ω

0
1331

� �

q

,

c0 ¼ 1=2ð Þ
ω0
3333=ω

0
1331

� �

þ ω0
3113=ω

0
1111

� �

� ω0
1111 þ ω0

1331

� �2
=ω0

1111ω
0
1331

	 


2

4

3

5,

which further is written in the form

Δ
0
1 � ζ

02
2

	 


Δ
0
1 � ζ

02
3

	 


¼ 0 (97)

The unknown quantities ζ02,3 must be found from the linear algebraic equation of

the fourth degree (4.20) [19].

ω0
1111ω

0
1331 ζ0ð Þ4 þ k4 ρ0C2

cp � ω0
3333

	 


ρ0C2
cp � ω0

3113

	 


þ k2
ω0
1111 ρ0C2

cp � ω0
3333

	 


þ ω0
1331 ρ0C2

cp � ω0
3113

	 


þ ω0
1111 þ ω0

3113

� �2

2

4

3

5 ζ0ð Þ2 ¼ 0,
(98)

The solution (95) describes the surface wave, if amplitude X0
1ð Þ r

0ð Þ attenuates
with increasing the radius. This is provided by the condition that quantities ζ02,3 is

unequal and pure imaginary. Then the potential gains the form (4.22) [19].

X0
1ð Þ r

0ð Þ ¼ B10J0 ζ02
�

�

�

�r0
� �

þ B20K0 ζ02
�

�

�

�r0
� �

þ B30J0 ζ03
�

�

�

�r0
� �

þ B40K0 ζ03
�

�

�

�r0
� �

, (99)

The shown part of analysis from introducing the potential by formula (94) to
representation of solution by formula (99) inclusive can be compared with analo-
gous part of analysis from Section 3 of this chapter (from introducing the potentials
by formula (57) to the solution in the form of (85)). It is easy to see a difference in
representations (99) and (85): formula (99) uses the Bessel functions and in partic-
ular the Macdonald function of zero index, whereas formula (85) uses (like the
Biot’s solution (14)) the Macdonald functions (16) of the zero and first indexes.

The next part of analysis of cylindrical wave consists in substitution of solution
into boundary conditions of the form (99) [19]

Q 0
r0r0 ¼ 0, Q 0

r03 ¼ 0 when r0 ¼ R0
1, R

0
2: (100)

The case of oscillatory behavior of wave in the direction of radius is considered
with pointing that the case of surface wave is the same type. A substitution of
solution (99) into conditions (4.79) [19] gives the dependence of velocity of surface
wave or its wave number on frequency—a dispersion equation in the form of
determinant of the fourth order in the form (4.26) [19].

det αij
�

�

�

� � Δ ω; kð Þ ¼ 0; i, j ¼ 1, 2, 3,4: (101)

This finishes the analytical part of analysis shown in [19]. It corresponds to the
part of Section 3.5 of this chapter, where the explicit form of dispersive equations is
proposed in the form (90) that includes the Macdonald functions of the zero and first
orders which represent some generalization of dispersion Eq. (27) obtained by Biot.

5. Conclusions

This chapter proposes three fragments of analytical analysis of the cylindrical
surface wave propagating in the vertical direction of circular cylindrical cavity. The
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first fragment shows the analytical part of pioneer work of Biot. It represents the
classicism of mathematical procedures and physical comments of Biot. Properly
speaking, the clear and understandable Rayleigh’s scheme is saved, but it is
complemented by some findings reflecting the features of cylindrical waves. Two
next fragments show the more late development of the Biot’s problem. They are
different by influence of the Biot’s procedure. The approach shown in Section 3 is
more close to the Biot’s analytical scheme, whereas Section 4 proposes as an inde-
pendent scheme that is more close to the Rayleigh scheme. Nevertheless, all frag-
ments testify the mathematical complexity in solving the problem on the cylindrical
surface waves. Thus, revisiting the old Biot’s problem shows that it still generates
new scientific and practical problems.
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