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Abstract

Cellulase is an enzyme which depolymerizes the cellulose into glucose. 
Cellulases are produced by a diverse array of microbes including fungi, bac-
teria, yeast and actinomycetes. Considerable research for understanding the 
mechanism of cellulases began in early 1950s because of the significant use of 
these enzymes in various industries. This review provides a general account 
structure and availability of lignocellulosic biomass, pretreatment strategies 
for effective digestion, cellulase producing organisms, cellulase activity assay, 
and enzymology of cellulose degradation. Cellulase production, optimization, 
purification and characterization studies in addition to the industrial applica-
tion of cellulase have also been discussed. At last a brief account of present 
market scenario of cellulases and future prospects of the study are also taken 
into account.

Keywords: cellulases, lignocellulosic biomass, fungi, pretreatment

1. Introduction

Cellulases are inducible enzymes which breakdown cellulose (the most widely 
available source of fermentable sugars on earth) into glucose and synthesized 
during the growth of microorganisms on cellulosic substrates [1, 2]. Cellulase is 
biotechnological important enzyme due to various industrial applications including 
biofuel production [3]. Variety of microorganism having cellulose degrading capa-
bility, few of them produce considerable quantity of extracellular enzymes. Fungi 
are the main cellulase producing microorganisms. Trichoderma and Aspergillus are 
found to be most potent cellulase producers, to be used for agricultural and indus-
trial purpose [4, 5].

A large number of industries are based upon the agricultural raw materials 
and it alone accounts for about 10% of the total wages from export. At pres-
ent, in terms of agricultural production, country holds 2nd position in world 
(http://www.agrifest.in/aboutagrifest.php). Availability of lignocellulosic 
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biomass varies from one region to another region in our country because of 
specific patterns of cultivation of crops in different regions. As estimated by the 
Ministry of New and Renewable Energy (MNRE), Report 2009, Government 
of India (GOI) every year about 500 Mt/yr residues are generated in India. Out 
of total residue generated, highest contributor is Utter Pradesh (60 Mt/yr), 
followed by Punjab (55 Mt/yr) and Maharashtra (46 Mt/yr). Among different 
crops, cereals crops contribute for the generation of 352 Mt residue followed by 
fiber crops (66 Mt/yr), oilseed (29 Mt/yr), pulses (13 Mt/yr) and sugarcane (12 
Mt/yr). Among the cereal crops up to 70% is contributed by rice, wheat, maize 
and millets. Rice crop alone accounts for 34% followed by wheat contributing 
22% of total residue generated by cereal crops. As depicted above, out of total 
residues generated from all crops, 13% is contributed by fiber crops. Among 
fibers, cotton holds 1st position by generating 53 Mt/yr (11% of crop residues) 
and coconut ranks 2nd with 12 Mt/yr of residue generation. The sugarcane resi-
due (foliage and tops) generates 12Mt/yr, i.e., 2% of crop residues (Figure 1) 
(www.nicra.iari.res.in/Data/FinalCRM.doc).

The amount of crop residues, which have not any valuable uses is either left 
in the fields to rot or burnt away as such, is termed as surplus biomass. A brief 
idea about the amount of residue generated in different states of India, surplus 
residues left behind after conventional use, residue burned as reported by IPCC 
and [6] is shown in Table 1. Two reports dictated the burnt surplus agricultural 
biomass approximately 83.66 Mt/yr and 92.81 Mt/yr respectively. The data from 
two reports vary by 11% and this difference can be due to the climatic conditions, 
geographic separation, sample size and time of sampling used in above men-
tioned studies. However, in comparison to the total surplus residues, observed 
difference can be considered as insignificant. Besides biomass a massive quantity 
of industrial residues is disposed off as such in environment generating pollution 
and other related problems [7]. This huge amount of lignocellulosic biomass can 
likely be converted into different valuable products including biofuels, cheap 
energy sources for microbial fermentation, enzyme production and useful fine 
chemicals [8].

Figure 1. 
Contribution of various crops in residue generation (www.nicra.iari.res.in/Data/FinalCRM.doc).
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2. Lignocellulosic biomass

Lignocellulosic biomass is consist of cellulose, hemicelluloses, lignin, water, pro-
tein and other compounds (Table 2). Cellulose and hemicelluloses provide strength 
to fiber and lignin act as the concrete which hold the fibers [9].

States Residue generation 

(MNRE, 2009)

Residue surplus 

(MNRE, 2009)

Residue burned 

(IPCC coeff.)

Residue 

burned [6]

Mt/yr

Andhra Pradesh 43.89 6.96 5.73 2.73

Arunachal Pradesh 0.4 0.07 0.06 0.04

Assam 11.43 2.34 1.42 0.73

Bihar 25.29 5.08 3.77 3.19

Chhattisgarh 11.25 2.12 1.84 0.83

Goa 0.57 0.14 0.08 0.04

Gujarat 28.73 8.9 6.69 3.81

Haryana 27.83 11.22 5.45 9.06

Himachal Pradesh 2.85 1.03 0.20 0.41

Jammu and 
Kashmir

1.59 0.28 0.35 0.89

Jharkhand 3.61 0.89 1.11 1.10

Karnataka 33.94 8.98 2.85 5.66

Kerala 9.74 5.07 0.40 0.22

Madhya Pradesh 33.18 10.22 3.46 1.91

Maharashtra 46.45 14.67 6.27 7.41

Manipur 0.9 0.11 0.14 0.07

Meghalaya 0.51 0.09 0.10 0.05

Mizoram 0.06 0.01 0.01 0.01

Nagaland 0.49 0.09 0.11 0.08

Orissa 20.07 3.68 2.57 1.34

Punjab 50.75 24.83 8.94 19.62

Rajasthan 29.32 8.52 3.58 1.78

Sikkim 0.15 0.02 0.01 0.01

Tamil Nadu 19.93 7.05 3.55 4.08

Tripura 0.04 0.02 0.22 0.11

Uttarakhand 2.86 0.63 13.34 21.92

Uttar Pradesh 59.97 13.53 0.58 0.78

West Bengal 35.93 4.29 10.82 4.96

India 501.76 140.84 83.66 92.81

Table 1. 
Residue generated, surplus and burned (www.nicra.iari.res.in/Data/FinalCRM.doc).
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About 50% of the CO2 fixed by plants through photosynthesis get stored in 
cell wall in the form of cellulose [19]. It is a homo-polysaccharide of glucose resi-
dues connected by β-1,4 linkages in linear un-branched fashion (Figure 2). Basic 
repeating unit of the cellulose polymer is a cellobiose unit, made up of two glucose 
anhydride [20]. The long-chain cellulose polymers are attached to each other by van 
der Waals and hydrogen bonds which results in packing cellulose chains into micro-
fibrils [21, 22]. Overall structure is found to be consisted of two different types of 
regions: region where the chains are highly ordered is crystalline and the region 
with less ordered chain is amorphous [23]. The crystalline regions of cellulose are 
highly stiff thus these are not easily reachable to endo-cellulases [24]. Amorphous 
region is more readily hydrated and more accessible to enzyme.

Other significant component of lignocellulose is hemicellulose (Figure 3). 
Hemicellulose usually contributes for about 25–35% of the mass in dry wood, 
about 28% of softwoods, and 35% of hardwoods [26]. As compared to cellulose 
these possesses low molecular weight. These are found to consist of comparatively 
shorter chains of about 500–3000 monosaccharide units as compared to 7000–
15,000 glucose residues cellulose [27]. The monosaccharides of hemicelluloses 

Lignocellulosic materials Cellulose (%) Hemicelluloses (%) Lignin (%) Reference

Sugar cane bagasse 42 25 20 [11]

Sweet sorghum 45 27 21 [11]

Hard wood 40–55 24–40 18–25 [12]

Soft wood 45–50 25–35 25–35 [12]

Corn cobs 45 35 15 [13]

Corn stover 38 26 19 [14]

Rice straw 32.1 24 18 [13]

Nut shells 25–30 25–30 30–40 [15]

Newspaper 40–55 25–40 18–30 [16]

Grasses 25–40 25–50 10–30 [12]

Wheat straw 29–35 26–32 16–21 [17]

Bagasse 54.87 16.52 23–33 [18]

Table 2. 
Composition of lignocellulosic materials [10].

Figure 2. 
Structure of cellulose [25].
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include pentoses (arabinose, rhamnose and xylose,), hexoses (glucose, galac-
tose and mannose), and uronic acids (d-glucuronic, d-galacturonic acids and 
4-o-methylglucuronic). The backbone of hemicelluloses can be a homopolymer 
or a heteropolymer having β-1,4 or sometimes β-1,3 glycosidic linkages. In hard-
wood, xylose is the principal pentose sugar but in various agricultural residues 
and other herbaceous, arabinose is the chief pentose sugar of hemicelluloses [28].

Lignocellulosic microfibrils are found to be surrounded by a complex aromatic 
heteropolymer known as lignin which provides a tough protective shield to highly 
energetic cellulose fibers [30]. Lignin comprises of β-aryl ether, biaryl ether, 
phenylcoumaran, pinoresinol, or diaryl propane linked p-coumaryl, coniferyl 

Figure 3. 
Xyloglucan: a component of hemicelluloses [29].

Figure 4. 
Chemical structure of lignin (https://en.wikipedia.org/wiki/Lignin).
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and sinapyl alcohol units (Figure 4). It is categorized as softwood lignin when the 
coniferyl alcohol derivatives predominant, hardwood lignin where both coniferyl 
and synapyl alcohol derivatives exist together and grass lignin where it chiefly 
consisted of p-coumaryl alcohol derivatives [31].

3. Pretreatment

Lignin is a recalcitrant component of the lignocellulosic biomass. Resistance 
to chemical and enzymatic attack increases with increase in lignin content [32]. 
Lignin the natural cement, acts as a ceiling for microbial/enzymatic attack. Hence, 
it is one of the major hurdles in using lingo-cellulosic materials in fermentation. 
Pretreatment is one of the most important steps in the process of converting renew-
able lignocellulosic biomass into useful products. The main target of any pretreat-
ment is to alter or remove structural and compositional resistant to hydrolysis which 
further enhance digestibility of biomass [33]. It exposes cellulose and hemicellulose 
chains by breaking the crystalline matrix (Figure 5). To remove the obstacles for 
enzymatic scarification of lignocellulosic material following pretreatment used.

3.1 Mechanical treatment

Major mechanical treatment includes chiping, grinding and milling to reduce 
the particle size which is responsible to increase surface area and increased surface 
area responsible for better interaction between substrate and enzyme [21, 35]. 
Physical treatment includes un-catalyzed steam explosion, hot water pretreatment 
and high energy radiations. By the process size reduces to 10–30 mm after chipping 
the biomass and finally after milling or grinding 0.2–2 mm size is attained.

3.2 Steam explosion

Mason [36] first time introduced steam explosion in which biomass is pretreated 
at 180–240°C under 1–3.5 MPa pressure for 1–10 min with hot steam, followed by 

Figure 5. 
Effect of pretreatment on lignocellulosic biomass [34].
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an explosive decompression which bursts the rigid biomass fibers [37]. Nature of 
material to be processed and particle size are the determining factor for relationship 
between temperature and time [38]. Quick expansion in steam explosion vaporizes 
the saturated water present in fibril structure linkages between molecules, and 
produces a better lignocellulosic matrix [39]. Recoveries ranged from 46 to 90% 
indicated that significant autohydrolysis and degradation of sugars can occur during 
this pretreatment process [40]. Steam provides an effective mean to rapidly attain 
the required temperature without diluting the resulting sugar syrup. At the end, a 
rapid release of pressure brings temperature down and arrests the reaction [41].

3.3 Ultrasonic pretreatment

Scanning electron microscopy images reveal that ultrasonic treatment have the 
capacity to modify structure of lignocellulosic biomass [42]. Ultrasonic waves work 
by creating pressure difference within a solution [43]. The pressure wave travels 
through the liquid medium creating alternate regions of high (compression) and 
low (rarefaction) pressure (Figure 6).

3.4 Acid pretreatment

In this method lignocellulosic material is dipped in an acidic solution (typically 
H2SO4), and subjected to optimum temperature. Dilute sulfuric acid had been used 
at commercial scale for pretreatment of various biomasses such as Switch grass [44] 
Corn Stover [45] and Poplar [46]. By acid catalyzed hydrolysis (Figure 7) most of 
the hemicelluloses are almost removed from the micro fibrils of the biomass but 
delignification is achieved to a lesser extent. Dilute acids are highly effective in 
removing hemicelluloses as dissolved sugars as a result of which glucose yield from 
cellulose increase to almost 100%. The optimal conditions to attain maximum sugar 
yield depends on the target to be achieved [47].

3.5 Alkaline pretreatment

It is responsible for the saponification of inter molecule delignification of the 
hemicelluloses. The biomass is exposed for the enzymatic hydrolysis of cellulose and 
hemicelluloses. As compared to other methods of pretreatment, alkali pretreatment is 
carried out for longer duration at low temperature and pressure [39]. It is supposed to 
act by saponification of inter-molecular ester bonds which are found to present between 
hemicelluloses and other components [48] (Figure 8). It is mainly responsible for 

Figure 6. 
A pressure wave traveling through a solution [36].
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delignification of lignocellulosic biomass. But it also removes some acetyl and uronic acid 
substitutions on hemicelluloses, which expose the biomass for enzymatic hydrolysis of 
cellulose and hemicelluloses [49]. A major limitation of alkaline pretreatments is forma-
tion of some salts which are either irrecoverable or incorporated as salts into the biomass 
[50]. Reactor costs for alkali pretreatment are lower than those for acid pretreatments 
[51]. For a given quantity of biomass, lowest operating cost is for lime pretreatment [39]. 
However the use of more pricey salts at higher concentrations is the major drawback that 
poses environmental threats and may also hinder the recycling process [52].

4. Enzymology of cellulose degradation

Cellulases are classified as hydrolases, i.e., they add water molecules to cleave 
glycosidic bonds. Cellulases purified from different microorganisms found to poses 

Figure 7. 
Cellulose hydrolysis in acidic media [47].

Figure 8. 
Ether bond cleavage in alkaline solution [48].
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different molecular characteristics including molecular weight, amino acid compo-
sition, isoelectric point) absorbability for cellulose, catalytic activity and substrate 
specificity [53]. Three chief classes of cellulases recognized to date are:

1. Endo-β-1,4-glucanases (Cx) attacks soluble cellulose derivative in a random 
fashion forming nonreducing ends, producing new chain ends to be attacked 
by exoglucanases. These enzymes may be processive or nonprocessive. In pro-
cessive enzymes, enzyme-substrate complex formation is followed by several 
successive breaks in a polysaccharide chain [23].

2. Exo-β-1,4-glucanases (C1) (avicelase) attack the reducing or nonreducing end of 
the cellulose polymer. Processive exo-β-1,4-glucanases are named as cellobiohydro-
lases. The end product of exo-glucanase hydrolysis are cellobiose and glucose units,

3. β-Glucosidases finally breaks cellobiose to glucose.

These enzymes act synergistically (Figure 9) [54]. An endo-acting enzyme 
generates new reducing and nonreducing ends. Exo-acting enzyme releases cel-
lobiose from ends produced by endo-enzymes acting which is finally hydrolyzed 
by β-glucosidases to glucose [55]. Mainly four types of synergism have been 
identified [56]:

i. Endo-exo: among exo-glucanases and endo-glucanases.

ii. Exo-exo: among exo-glucanases those processing from different ends (reducing 
and nonreducing ends).

iii. Synergy between exo-glucanases and β-glucosidases that removes cellobiose.

iv. Intramolecular synergy between catalytic domains and CBHs.

In general cellulases comprise of two distinct domains, i.e., Small cellulose-binding 
module (CBM) which is noncatalytic, Large domain having catalytic characteristics 

Figure 9. 
Mechanism of action of cellulases [54].
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(CD). Both the domains are found to be connected by a linker region (Figure 10) [57]. 
Till date, about 300 different CBMs have already been identified. CBMs are categorized 
into 45 families on the basis of their amino acid similarity [58]. This variation in affin-
ity may be due to variation in spatial structure created by the presence of CBMs [60].

4.1 Source of cellulase

Cellulases are the hydrolytic enzymes which are produced by a diversity of 
microbes like actinomycetes, bacteria and fungi when grown on cellulosic substrates 
[61]. Among these organisms fungi are studied most extensively [62]. Filamentous 
fungi are the chief sources known for producing cellulases and hemicellulases 
[63]. Crude cellulases from Trichoderma and Aspergillus genera production are 
commercially available for agricultural and industrial use [64]. Representatives of 
Trichoderma genus secretes comparatively large quantities of endo-β-glucanase and 
exo-β-glucanase but low level of β-glucosidase, while those of Aspergillus genus 
secretes moderately high level of endo-β-glucanase and β-glucosidase with low 
level of exo-β-glucanase [65]. Cellulases isolated from thermophilic fungi are of 
great interest because of their industrial application on account of thermo stability. 
Thermophilic fungi producing cellulases include Chaetomium thermopile, Humicola 
insolens, Humicola agrisea, Myceliopthora thermophila, Talaromyces emersonii and 
Thermoascus aurantiacus [66]. Unlike thermophiles, cellulase producing alkaliphilic 
fungi are very rare [67]. The alkaline tolerated cellulases producing marine fungi 
Chaetomium sp. (NIOCC36) from mangrove leaves. Surprisingly, no any thermo-
philic archaea showing cellulolytic behavior have been described [68]. Bacterial 
cellulase generally forms complex systems (cellulosomes). Historically fungal 
cellulases have been easier to study than bacterial system, as the bacterial enzyme 
tend to form aggregates. Cellulomonas, Bacillus and Micrococcus spp. isolated from 
coir retting effluents of estuarine environment were also employed to study endo-
glucanase activity [69]. Gaor and Tiwari reported organic solvent thermostable 
cellulases from Bacillus vallismortis RG-07 [70]. Bacillus thuringiensis strains [71], 
Bacillus pumilus EB3 [72] are also reported as good cellulase producers. Wild-type 
and mutants stains of Pseudomonas fluorescens were used by Bakare and co-workers 
to produce cellulases [73]. Interestingly, research findings are reported even for the 
production of cellulases from several species of insects in the orders of dictyoptera, 
orthoptera, and coleoptera by their own in the mid gut or salivary glands. These 
findings challenged the traditional view of cellulose digestion that it is mediated 
by microbial cellulases in the gut of insect [74]. The first endogenous cellulase 

Figure 10. 
Cellulases [59].
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from insect was discovered in 1998 in the termite (Reticulitermes speratus), which 
was found to be capable for feeding wood even after the removal of its gut fauna 
[75]. Acquisition of digestive enzymes has also been explored in other xylophagous 
arthropods, molluscs, including snails, a sea slug, a periwinkle and some bivalves. 
Various possible sources are reported for these endogenous enzymes such as the 
hepatopancreas, gastric teeth, and crystalline styles (needlelike structures made of 
crystalline proteins forming a motor organ in the stomach of bivalves [76].

4.2 Cellulase activity assay

Two fundamental approaches used for measuring cellulase activity are:

1. Measuring individual cellulase (endoglucanases, exoglucanases and 
β-glucosidases) activities.

2. Measuring the total cellulase (FPase) activity [77].

Quantitatively cellulase activity can be assayed in three ways:

1. Accumulation of products after hydrolysis.

2. The reduction in substrate quantity.

3. Change in the physical properties of substrates.

The first one is ideal for measuring individual cellulase activity within a short 
time however the third one is a chosen for measuring total enzyme activity within a 
given time [77].

Total cellulase activity assay is always performed using insoluble substrates 
having pure cellulosic substrates such as Whatman No. 1 filter paper. The filter paper 
activity (FPase activity) is the key method for analysis of total cellulase activity 
which was developed by Mandels, cotton linter, microcrystalline cellulose, bacte-
rial cellulose, algal cellulose and cellulose-containing substrates such as pretreated 
lignocellulose [78]. This standard filter paper method has been revised by Ghose 
which was established and published by the International Union of Pure and Applied 
Chemistry (IUPAC) [79]. He used Whatman No. 1 filter paper (1 × 6 cm strip) as the 
substrate. It is used as the standard substrate because of its readily availability and 
inexpensiveness [80].

Commercial avicel is also used for measuring exoglucanase activity because it 
has a low degree of polymerization (DP) and it is moderately hard to be attacked by 
endoglucanases [81]. Endoglucanase activity can be measured using a soluble cel-
lulose derivative with a high degree of polymerization (DP) such as carboxymethyl 
cellulose (CMC). It can be measured by both methods, i.e., reduction in substrate 
viscosity/increase in reducing sugar. CMCase activity using CMC is measured by 
determining reducing sugars released after 5 min of enzyme reaction with 0.5% CMC 
at pH 4.8 and 50°C [78]. Exoglucanases are known to cleave the easily accessible ends 
of cellulose molecules liberating glucose and cellobiose. β-glucosidases cleaves soluble 
cellobiose and other cellodextrins having DP up to 6 and liberates glucose as end 
product [82]. Various chromogenic and nonchromogenic substrates could be evalu-
ated. In chromogenic method, p-nitrophenol-β-glucoside (P-NPG) can be used as the 
substrate. However, in the case of nonchromogenic substrates different methods used 
are based on nature of substrates. For example, when oligo or disaccharides (such as 
cellobiose) are used, released glucose can be evaluated by the GOD (glucose oxidase) 
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method with a commercial kit but when polysaccharide are used a substrate, reduc-
ing sugars released is measured by the DNS (dinitrosalicylic acid) method [81].

4.3 Production of cellulases

The technique which are mainly used for the enzyme production are Submerged 
fermentation (SmF) and solid state fermentation (SSF) [83].

4.3.1 Submerged fermentation

When fermentation is performed with some free flowing nutrient media; it is 
termed as SmF [84]. In industry, enzymes are produced mostly by SmF, primarily 
due to the much simplified processes associated with scale-up compared to those 
involved for scale-up in SSF [85]. In fact, some other important factors like indul-
gence in controlling process parameters, monitoring and downstream processing 
makes SmF more significant [86]. Only a few designs are available in literature 
for SSF based bioreactors. This is principally due to several problems encountered 
in case of SSF for controlling various parameters like pH, temperature, aeration 
and moisture content. Fungal cellulase production is largely dependent on media 
composition and culture conditions. Thus development of a suitable fermenta-
tion strategy is necessary for full exploitation of potential of microorganism used 
for fermentation [87]. Several reports are available for cellulase production using 
SmF. Karthikeyan et al. [88] reported cellulase production from Penicillium strain 
K-P in liquid medium supplemented with different carbon and nitrogen sources 
at varying pH and temperature, maximum cellulase activity was observed on fifth 
day (pH 3.0 and 30°C) in the presence of fructose and ammonium nitrate as carbon 
and nitrogen source respectively. Narasimha et al. [89] reported maximum cel-
lulase production using A. niger on medium (pH 5) supplemented with 1% CMC or 
sawdust.

4.3.2 Solid state fermentation

When fermentation is performed on nonsoluble materials in the absence of 
free flowing nutrient media, so that the material used can serve as a platform for 
support as well as nutrients; it is termed as solid state fermentation. While com-
pared for their potential it was found SSF offers various opportunities over SmF 
because they are eco-friendly on account of lower energy requirements, produce 
lesser wastewater and they are based on employment of waste solid biomass [90]. 
Further advantages of SSF over SmF include prevalence of nonaseptic conditions, 
a wide variety of substrate are available, low capital cost, inexpensive downstream 
processing [91], higher product concentration, high reproducibility, lesser space 
requirements (compact fermenters), easy contamination management [92]. It is 
observed that production cost was decreased about 10 fold in SSF over SmF.

4.3.3 Fermentation conditions

Fermentation condition play the main role for the standardization of process 
parameters such as incubation period, inoculum size, pH, carbon and Nitrogen 
source, metal ions, etc. Maximum cellulase production may vary from 1 day to 
weeks. It is usually observed that fungal cultures require longer incubation period 
for cellulase production than bacterial cultures. The highest cellulase level was 
achieved 96 hrs of the fermentation while using T. harzianam and P. chrysosporium 
[93]. Maximum cellulase production was observed after 96 h by A. niger [94]. 
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Optimal cellulase secretion from Aspergillus niger was achieved at a time of 72 h in 
maize straw while 96 and 120 h were the growth period in millet and guinea corn 
straws respectively [95].

The age and concentration of inoculum also plays an important role in the pro-
duction of cellulases. An increase in inoculum size up to an optimum limits results 
in rapid proliferation and biomass synthesis which leads to produced higher amount 
of cellulase [96]. On the other hand higher inoculum volume beyond optimum size 
leads to increases in the water content of medium in case of SSF creating aeration 
problems in SSF and it will responsible for reduction in overall yield [97].

Bacterial and fungal cellulase production found to be significantly affected by 
pH. Milala et al. [95] reported maximum cellulase activity at pH 4.0 by A. niger. 
Devi and Kumar [98] optimized condition of cellulase production in fungal strain 
A. niger against the lignocellulosic bio wastes like saw dust, paper cellulose at vary-
ing environmental parameters of pH (4.0–7.0) and maximum activity was observed 
at pH 5. Gao et al. [99] studied the production of extracellular cellulases by a newly 
isolated thermoacidophilic fungus Aspergillus terreus M11 on the lignocellulosic 
materials in solid-state fermentation (SSF) and the high-level cellulase activity was 
observed at pH 3.0. However, the results appeared to contradict previous results 
reported by Solingen et al. [100] of an alkaline novel Streptomyces sp. isolated from 
east African soda lakes that have an optimal pH of 8.0, highlighting the effect of 
alkaline environment on the adaptation of these Streptomyces.

The fermentation temperature plays a very significant role on the growth 
and metabolic activity of microbial cells. Optimum temperature for cellulase 
production under solid-state fermentation by Trichoderma reesei RUT C30 was 
33°C [101]. Fatma et al. [102] studied ethanol production from rice straw using 
cellulase produced by T. reesei F-418 cultivated in alkali treated rice straw under 
SSF and reported 162 U/g substrate cellulase activity when fungus was cultivated 
incubation at 28°C. Maximum enzyme production (3.9 U/ml) was achieved at 45°C 
temperature by Aspergillus niger using paper cellulose [98]. Gao et al. [99] studied 
production of extracellular cellulases by a newly isolated thermoacidophilic fungus 
Aspergillus terreus M11, on the lignocellulosic materials in solid-state fermentation 
(SSF) at 45°C. Jang and Chen [103] described a CMCase produced by a Streptomyces 
T3-1 with optimum temperature 50°C. Schrempf and Walter, [104] described a 
CMCase production by S. reticuli at an optimum temperature 55°C.

Various carbon sources such as metabolizable sugars, commercial cellulose and 
agricultural residues/by-products have been used for cellulase production. Some 
carbon sources resulted good growth with low enzyme production while some 
supported good growth along with high yield of enzyme secretion. Commercially 
available carbon sources used for cellulase production were Powdered cellulose by 
A. niger [105], and CM Lactose by Mucor circinelloides [81]. Several studies focused 
on cellulase use in the bioconversion of agro-industrial waste [106]. Chandra et al. 
[107] studied effect of several carbon sources including groundnut fodder, wheat 
bran, rice bran and sawdust on cellulase production by A. niger. They found that 
highest titers of cellulolytic enzymes in solid state fermentation on wheat bran. 
Azzaz, [108] studied effect of several carbon sources including banana wastes, rice 
straw, wheat straw, corn stalks and pure cellulose powder on cellulase production 
by A. niger and A. flavus NRRL 5521. He observed that wheat straw gave the highest 
cellulase production when fermented with A. niger (0.177 U/mL) while rice straw 
gave the highest (0.046 U/mL) cellulase production when fermented with A. flavus 
NRRL 5521. The lignocellulosic residues offer cheaper substituent of pure cellulose 
available commercially for the production of cellulase. Mixed substrates like wheat 
bran and corn cob are used as best carbon source in case of A. niger NRRL3 for 
cellulase production under SSF [109]. Milala et al. [95] used different agricultural 
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wastes millet, guinea corn straw, rice husks and maize straw as carbon sources for 
cellulase production by Aspergillus niger. According to Mrudula and Murugammal 
[85] lactose was found to be the best inducer in SmF and SSF (Table 3). Prasanna 
et al. [110] also reported lactose as the most excellent carbon source for cellulase 
production by Penicillium sp. followed by carboxymethyl cellulose and galactose.

Different researchers studied the effect of various nitrogen sources for cel-
lulase production by employing different microbes. Peptone was reported as most 
effective nitrogen source for Penicillium sp. [110], Penicillium waksmanii F10-2 
[111], urea for A. niger [89] and NH4NO3 for Trichoderma reesei NRRL 11460 [112]. 
Although the addition of beef extract and peptone (as organic nitrogen source) 
leads to enhanced growth and enzyme production but they were not economically 
fit because of their higher cost.

Cellulase production by some microorganisms has been found to be influenced by 
metal ions, chelators, detergents and surfactants. It was reported that usually metal 
ions such as Ag+, Cu2+, Hg2+, Fe3+, K+, Mn2+, Mg2+, and Zn2+ are slightly or completely 
inhibitory of cellulase, whereas metal ions such as Ca2+, Co2+ and Na+ either stimulate 
or does not affect the cellulase activity [113]. Addition of Tween20 leads to a signifi-
cant increase in endoglucanase and xylanase production by Melanocarpus sp. MTCC 
3922 [114]. Cellulase activity increased with Tween80 and reduced with SDS [115]. 
Enhancement in enzyme production by Tween80 may be due to increase in permea-
bility of cell membrane allowing rapid secretion and synthesis of the enzymes [116].

5. Purification of cellulase

It is an important step to remove any contaminants that are found to be pres-
ent in the mixture. Hence, it is a vital step required for improving performance/
functioning of an enzyme. Enzymes in the culture supernatant could be purified 
by the conventional methods which include ammonium sulfate precipitation and 
dialysis followed by column chromatography [117]. The most common matrix for 
gel exclusion chromatography is the Sephadex with different pore sizes which is 
employed in the purification of cellulase [118]. The purification folds and % yield 
are the two most important factors which are used to evaluate the efficiency of 
purification. First step (ammonium salt precipitation) is based upon difference in 
protein solubility. The solubility of protein firstly increase and then starts decreas-
ing with increase in salt concentration and finally protein gets precipitate. This 

Supplement SmF (U/mL) SSF (U/gDMB)

CMCase FPase CMCase FPase

Carbon sources (5% w/v in 
SmF and 4% w/w in SSF)

Control 0.7 0.4 3.7 2

Glucose 1.52 0.54 11.1 6.5

Xylose 1.2 1.42 15.7 6.6

Lactose 3 1.71 18 10.9

Maltose 1.51 1.5 17.5 6.3

Sucrose 1.54 1.51 13.7 6.2

Table 3. 
Effect of supplementation of various carbon sources [106].
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process is called Salting out [119]. Ammonium sulfate ((NH4)2SO4) is often used 
for this purpose because of its high solubility in water. Devi et al. [120] reported 
protein precipitation by addition of solid ammonium sulfate up to 80% saturation. 
Chen et al. [121] reported precipitation with (NH4)2SO4 at 40–60% saturation. 
Precipitation is followed by a concentrating step that separates proteins from salts 
called dialysis. For next step chromatographic technique is most widely used for the 
direct recovery of protein and other charged molecules. Various types of chro-
matography methods (gel filtration: Sephadex G-100 [73], ion exchange: DEAE-
Cellulose [122] and affinity: swollen avicel [123] have been used for purification of 
cellulase from various fungal strains.

6. Characterization of cellulase

Different researchers reported different temperatures for maximum cellulase 
production. It is reported that the optimal temperature for cellulase production 
varies from strain to strain of microorganisms [69]. The optimum temperature 
of fungal cellulases ranges from 40 to 60°C and pH found to be 4.8. A battery of 
thermophilic fungal strains are known to produce thermostable enzymes which are 
stable and active at such high temperature which are not optimum for the growth 
of the microorganism. Filamentous fungi, e.g., Talaromyces emersonii, Thermoascus 
aurantiacus and Chaetomium thermophilum are reported to produce cellulases having 
high-cellulase activity at elevated temperature [124]. The Km value is used for the 
measurement of enzyme affinity towards the substrate. An increase in substrate 
concentration made more binding sites available for the enzymes to adhere and the 
rate at which product formation would be achieved therefore would be faster [125]. 
In literature, different ranges of Km and Vmax for different fungal species have been 
reported. Genetic variability may be a factor for the above reported variation [126]. 
Taha et al. [127] reported cellulase showing optimum activity at pH 6 and 50°C with 
(Vmax) of 75 g l−1 min−1 mg−1 with its corresponding Km value of 2.5 × 10−5 g/l.

7. Applications of cellulases

According to Sajith et al. [87] on the global enzyme market cellulases occupy 
the third place (i.e., ≈15%) after amylase (≈25%) and protease (≈18%). Cellulases 
are currently being produced on commercial scale by several industries all over the 
world and widely used in various industrial applications [128].

7.1 Paper and pulp industries

Today, 90% of paper pulp is made of wood. Recycling one ton of newsprint and 
printing or copier paper saves about 1 ton and more than 2 tons of wood respec-
tively [129]. Usually, the industrial process for eradicating wastepaper pollutants 
involves re-pulping, screening, cleaning, washing and flotation [130]. According 
to Shrinath et al. [131] the conventional recycling of waste papers is costly and 
hazardous to the environment due to the use of chemicals (hydrogen peroxide, 
sodium hydroxide and sodium silicate). Cellulases are mainly used for the pulping 
and deinking of waste papers. Enzymatic deinking as whole is an environmental 
friendly process [132]. Cellulase based pulping process is not only energy efficient, 
environment-friendly but also improve mechanical strength of the final paper 
product by improving the inter-fiber bonding [133]. When used with hemicel-
lulases, cellulases improve the brightness and quality of the recycled paper [134]. 
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Besides deinking and pulping, cellulases are also used in paper mills for drainage of 
clogged pipes by dissolving fiber residues [61] and for manufacturing easily biode-
gradable cardboards, sanitary papers [135].

7.2 Textile industry

Among the application textile industry dominated in the market in 2017. 
Cellulase application in textile play main role in the growth of textile industry. In 
textile industry worn-out look is given to the denim using stone washing. But stone 
washing have some disadvantages. It causes wear and tear of the fabric, huge loss 
of water due to extensive washing step and high labor cost, etc. Cellulases used for 
bio-polishing of cotton cloths and enzyme based stoning of jeans to impart stone-
washed look for denims. Cellulase treatment gives a smooth and glossy appearance 
to fabric by removing short fibers, surface fuzziness and improves color brightness, 
hydrophilicity and moisture absorbance [136]. Most of the cotton and cotton mixed 
garments tend to become fluffy and dull during repeated washing due to detach-
ment of microfibrils on the surface of garments. Cellulase treatment can restore a 
smooth surface and original color to the garments by removing these microfibrils 
[137]. According to a statistics of India Brand Equity Foundation (IBEF), Indian 
textile market has increased from US$ 99 Billion in 2014 to US$137 Billion in 2016 
and exhibited a CAGR of 17.6% during the period 2014–2016.

7.3 Food and feed processing

Cellulases are found to be highly valuable for feed and food Recently BIO-
CAT introduced a cellulase (Cellulase C500) at IPPE 2016. The enzyme have 
been derived from a non-GMO, AAFCO approved microbial strain. Addition 
of Cellulase to animal feed increases its digestibility (http://www.bio-cat.com/
introducing-cellulase-c500-animal-feed-enzyme/).

Use of cellulases in feed processing leads to improvement in feed digestibility 
and animal performance. As a component of macerating enzyme complex (cellu-
lase, xylanase and pectinase) these are used for extraction and clarification of fruits 
and vegetable juices, nectars and oils [138]. Along with others, cell wall degrading 
enzymes cellulases can be used to reduce bitterness and increase the taste and 
aroma of citrus fruits [61].

7.4 Detergents

Nowadays liquid laundry detergent containing anionic or nonionic surfactant, 
citric acid or a water-soluble salt, protease, cellulose and a mixture of propanediol 
and boric acid or its derivatives are employed to improve the stability of cellulases 
[61]. Cellulases are added to detergents for the breakdown of hydrogen bonding 
under harsh environmental conditions such as alkaline or thermophilic conditions 
[139]. Cellulases are mixed with detergents to enhance brightness and hand feel, 
dirt removal from cotton and cotton blended garments because they are capable of 
modifying the structure of cellulose fibrils [62].

7.5 Biofuel production

With the fast exhaustion of fossil fuels the need to find a substitute source for 
renewable energy and fuels is intensifying day by day. Thus interest in the sac-
charification of lignocellulosic biomass using cellulases and other related enzymes 
is also increasing [14, 16]. In other words, the cellulase market could be expanded 
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considerably by using cellulases for saccharification of pretreated cellulosic mate-
rial to sugars which can be fermented further to bioethanol and other bio-based 
products on large scale [77]. By 2020 biofuels, especially bioethanol from renew-
able resources is expected to replace 20% of the fossil fuel consumption [140]. 
Cellulases produced by various filamentous fungi mainly Aspergillus, Trichoderma 
and Penicillium have a potentially to be used successfully for bioethanol production 
using sugarcane bagasse, corn straw, rice straw, wheat straw and wheat bran as raw 
materials [141–143].

7.6 Wine and brewery industry

Microbial glucanases and related polysaccharides are usually used to produce 
alcoholic beverages including beers and wines by fermentation [144]. In wine 
production various enzymes such as pectinases, glucanases and hemicellulases 
plays an important role in improving wine quality and stability by improving color 
extraction, skin maceration, must clarification and filtration [145]. According 
to the precedent literature about 10–35% increase in the wine must extraction, 
a 70–80% increase in the rate of must filtration, 50–120 min decreased pressing 
time, and 30–70% decreased must viscosity, 20–40% energy saving while cooling 
thus a considerably improved wine stability. Thus supplementation of enzymes like 
cellulase and pectinase to the process are expected to enhance the productivity of 
brewing production [143]. β-Glucosidases can enhance the aroma of wines by modi-
fying glycosylated precursors. Macerating enzymes also improve the juice, press 
ability and settling of grapes used for wine fermentation. A number of commercial 
enzyme preparations are now available to the wine industry.

7.7 Medical industry

Cellulolytic bacteria like Bacteroides cellulosilyticus and Ruminococcus cham-
panellensis can be employed for the treatment of phytobezoars disease, which causes 
concretion of indigestible vegetable and fruit fibers in the gastrointestinal tract 
that may leads to surgical intrusion [128]. Moreover, cellulases have been utilized as 
excellent antibiofilm agents against pathogenic biofilms [146]. Further research is 
required to unravel yet unknown applications of cellulases in medical field.

8. Cellulase market demand

Demand for industrial enzymes in developed countries such as the US, Western 
Europe, Japan and Canada was relatively stable during the recent times while 
in developing economies of Asia-Pacific, Eastern Europe, Africa and Middle 
East regions, demand is increasing day by day [147]. Currently, by dollar vol-
ume cellulases are the third largest industrial enzyme globally, because of their 
extensive applications in animal feed additives, as detergent enzymes, cotton 
processing, juice extraction and paper recycling. However, cellulases may become 
the largest quantity industrial enzyme, if ethanol produced from lignocellulosic 
biomass through these enzymes becomes the major transportation fuel [112, 
148]. They contribute to 8% of the worldwide industrial enzyme demand [149]. 
The international market for biofuel enzymes is expected to reach $9.0 billion by 
2017 [150]. Global demand for industrial enzyme’s projected to grow 4.0% per 
year to $5.0 billion in 2021. Key players in the global cellulose market are Amano 
enzyme U.S.A, Worthington Biochemical Corporation, MP Biomedical LLC, 
Sigma-Aldrich Co. LLC, Prozmix LLC, Creative Enzymes, bio-WORLD, Amano 
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Enzyme Inc., Zhongbei Bio-Chem Industry Co., Ltd., Hunan Hong Ying Biotech 
Co., Ltd., Genencor and Novozyme are major producers they are known world-
wide for cellulase production. All above companies played a noteworthy role for 
reducing production cost of cellulase several folds by their active research and 
are still continuing to bring down the cost by assuming novel technologies [112]. 
A few suppliers and source of enzyme samples are list below (Table 4). North 
America accounted for largest market share in global cellulose production in 2017. 
Production is depended on the increasing production of biofuel. According to 
a report by United States Energy information Administration in July 2018, the 
production of biofuel has increased in the U.S. from 1891 trillion butane to 2332 
trillion, increasing at a CAGR of 5.4 during 2013 to 2017.

9. Future prospects

The demand for cellulases is increasing day by day due to its volatile and the rise 
in oil prices which induced a shift in interest towards the application of cellulases 
in producing biofuel using lignocellulosic biomass [151]. Enhancing the cellulase 
activity and reducing the cost of production of enzyme are two key issues regarding 
the enzymatic hydrolysis of cellulosic biomass. Genetic techniques can be used to 
clone the cellulase coding sequences into bacteria, yeasts, fungi, plants and animals 
to create new cellulase producing systems with improved production and activity of 
enzyme [152]. One of the major drawbacks of SSF is the low thermal conductivity 
of the solid medium used in SSF which restricts the removal of excess heat gener-
ated by microbial metabolism. The elevated temperature in bioreactors may lead 

Enzyme samples Supplier Source

Cellubrix Novozymes, Denmark Trichoderma longibrachiatum and Aspergillus niger

Novozymes 188 Novozymes Aspergillus niger

Viscostar 150L Dyadic (Jupiter, USA) Trichoderma longibrachiatum/Trichoderma reesei

Multifect CL 
Genencor

Intl. (S.San Francisco, 
CA)

Trichoderma reesei

Energex L Novozymes Trichoderma longibrachiatum/Trichoderma reesei

Ultraflo L Novozymes Trichoderma longibrachiatum/ Trichoderma reesei

Viscozyme L Novozymes Trichoderma longibrachiatum/Trichoderma reesei

GC 440 Genencor-Danisco 
(Rochester, USA)

Trichoderma longibrachiatum/Trichoderma reesei

GC 880 Genencor Trichoderma longibrachiatum/Trichoderma reesei

Spezyme CP Genencor Trichoderma longibrachiatum/Trichoderma reesei

Accelerase® 1500 Genencor Trichoderma reesei

Cellulase AP30K Amano Enzyme Aspeergillus niger

Cellulase TRL Solvay Enzymes (Elkhart, 
IN)

Trichoderma longibrachiatum/Trichoderma reesei

Econase CE Alko-EDC (New York, 
NY)

Trichoderma longibrachiatum/Trichoderma reesei

Cellulase TAP106 Amano Enzyme (Troy, 
VA)

Trichoderma viride

Table 4. 
Suppliers and sources of enzyme samples [122].
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to denaturation of thermo labile proteins [153]. Thus the thermo stable, modified 
fungal and bacterial strains are also good future prospects for cellulase production 
[62]. Interchangeably more advanced strategy is to engineer microbes for produc-
ing all major enzymes involved in cellulose hydrolysis in optimum ratio which may 
decrease the expenditure greatly [154]. Although the cellulase enzyme cost has 
dropped due to improvements in expression vectors and on-site production still 
there is a necessity of engineering a new generation cellulase cocktails that would 
further reduce cellulase cost. Efforts have to be made via hunting both diversity 
rich environments and extremophilic niches for identification of novel cellulase 
producers [150]. It can be made possible through following four approaches:

i. Mining novel cellulase genes via culturable/nonculturable strategies.

ii. Improving production technologies by using novel bioreactors.

iii. Designing novel cellulases through protein and metabolic engineering by 
understanding molecular mechanism and mode of interaction of cellulases 
with substrates.

iv. Using mathematical, biophysical and enzymological approaches for cel-
lulase production through consolidated bioprocessing in a cost-effective 
manner.

10. Conclusion

Lignocellulosic biomass is the most abundant biomass on the earth. They are 
the potential source of biofuels, and other useful chemicals. But one of the most 
severe hindrances in this process is the structure of biomass itself. This problem can 
be resolved up to a greater extent by various types of pretreatments and enzymatic 
hydrolysis, engineered cellulases and by consolidated bioprocessing.

Consolidated bioprocessing includes cellulose production, hydrolysis of 
cellulose and fermentation of Pentose and Hexose sugars in a single step which 
will reduce production cost and increase production/conversion efficiency as 
compared to the processes performing dedicated cellulase production. A good 
pretreatment should result in increased cellulose content and decreased hemicel-
luloses/lignin content of biomass. Another problem is the yield and efficiency of 
enzyme. Yield of enzyme can be increased by optimization of different param-
eters involved in enzyme production using one variable or statistical approach 
(RSM). Alternatively novel proteins with enhanced production can be synthe-
sized by protein and metabolic engineering. Enzyme engineering must be focused 
on (1) to increase cellulase specific activity on pretreated biomass through 
enzyme cocktail (2) to increase cellulase stability for cellulase recycling, and (3) 
to reduce enzyme production costs. Consolidated bioprocessing microorganisms 
or consortium would simplify the whole process and increase productivity. The 
above three approaches would be integrated together for maximizing the process 
for lignocellulosic biomass management/conversion in to value added products.
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