We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 185,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



Chapter

Electric Transmission Network
Expansion Planning with the
Metaheuristic Variable
Neighbourhood Search

Silvia Lopes de Sena Taglialenha
and Rubén Augusto Romero Ldzaro

Abstract

This paper presents a new method to solve the static long-term power transmis-
sion network expansion planning (TNEP) problem that uses the metaheuristic
variable neighbourhood search (VNS). The TNEP is a large-scale, complex mixed-
integer nonlinear programming problem that consists of determining the optimum
expansion in the network to meet a forecasted demand. VNS changes structure
neighbourhood within a local algorithm and makes the choices of implementation
that integrate intensification and/or diversification strategies during the search
process. The initial solution is obtained by a heuristic nonlinear mixed integer
which takes two Kirchhoff’s laws (transportation and the DC models have been
used). Several tests are performed on Graver’s 6-bus, IEEE 24-bus and Southern
Brazilian systems displaying the applicability of the proposed method, and results
show that the proposed method has a significant performance in comparison with
some studies addressed in common literature.

Keywords: transmission network expansion planning, variable neighbourhood
search algorithm, metaheuristic algorithm, power system planning,
combinatorial optimization

1. Introduction

Due to consumption growth of electrical power, the need of increasing the
existing transmission network power flow capacity is evident. This expansion can
be a dynamic or static performance. The static long-term power transmission net-
work expansion planning (TNEP) problem consists of determining the minimum
cost planning which specifies the number and the locations of transmission lines to
meet a forecasted demand while satisfying the balance between generation and load
and other operational constraints [1]. Transmission investments are very capital
intensive and have long useful lives, so transmission investment decisions have a
long-standing impact on the power system as a whole; therefore TNEP has become
an important component of power system planning, and its solution is used to guide
future investment in transmission equipment.
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The pioneering work on transmission expansion planning is reported in [2],
and since then TNEP literature has been vast and reports that there are usually
considered various solution methods that depend on the mathematical model
formulation [3]. A state of the art, which was obtained from the review of the most
interesting models found in the international technical literature, is presented in
[4]. In [5] TNEP is reviewed from different aspects such as modelling, solving
methods, reliability, distributed generation, electricity market, uncertainties, line
congestion and reactive power planning. A critical review focusing on its most
recent developments and a taxonomy of modelling decisions and solution to TNEP
are presented in [6].

The convenient mathematical modelling to indicate the appropriate operation
would be the representation of the problem by mathematical relationships of the
AC load flow, typically used for the electric system operation analysis [1]. However,
this modelling is more difficult to be used in an efficient way in transmission
network planning, due to its non-convex and nonlinear nature. Consequently, the
mathematical modelling in its most accurate representation is the direct current
(DC) model, which considers Kirchhoff’s voltage (KVL) and current (KCL) laws
just for balance and active power flow. In this case, the resulting problem is a
nonlinear mixed-integer programming with high complexity for large systems,
presenting combinatorial explosion of the number of alternative solutions, with
extra difficulty of presenting many local optima, which most of the time are of
poor quality [3].

A more simplified modelling is the so-called transportation model (TM) which
just enforces the KLC at all existent nodes [2]. In this case the resulting problem is
an integer linear programming problem which is normally easier to solve than the
DC model although it maintains the combinatorial characteristic of the original
problem [3].

It is still possible to consider hybrid models which combine characteristics of the
DC model and the transportation model. In this model it is assumed that KCL
constraints are satisfied for all nodes of the network, whereas the constraint which
represents Ohm’s law (and indirectly KVL) is satisfied only by the existing circuits
(and not necessarily by the added circuits) [3].

Technical literature related to the TNEP proposes many solution methods that
can be classified into mathematical optimization, heuristic and metaheuristic
approaches [7]. Techniques such as dynamic programming [8], linear programming
[2], nonlinear programming [9], mixed-integer programming [10], branch and
bound [11], hierarchical decomposition [12] and Benders decomposition [13] have
been used and are categorized as mathematical-based approaches. But these tech-
niques demand large computing time due to the dimensionality curse of this kind of
problem. Heuristic methods emerged as an alternative to classical optimization
methods, and their use has been very attractive since they were able to find good
feasible solutions demanding less computational effort.

Some heuristic approaches have been proposed using constructive heuristic
algorithms (CHA) [10, 14-16] and the forward-backward approach [17].
Metaheuristic methods emerged as an alternative to the two previous approaches,
producing high-quality solutions with moderate computing time. Genetic
algorithms [18, 19], greedy randomized adaptive search procedure [13], tabu search
[20, 21], simulated annealing [20, 22], GRASP [23], scatter search [24] and grey
wolf optimization algorithm [25] have been used to solve the TNEP problem,
among other metaheuristic optimization techniques. It is important to point out that
they cannot guarantee the global optimal solution to the TNEP problem.

A varied bibliography regarding the theory and application of metaheuristics can
be found in [26, 27]. Other applications of metaheuristics appear in [28].
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Considering that exact methods of optimization to TNEP are not efficient to big
data problems, this paper presents a novel metaheuristic method that considers the
so-called variable neighbourhood search (VNS) to solve the TNEP problem consid-
ering DC model. The VNS metaheuristic was presented in the middle of the 1990s,
by Mladenovic and Hansen [29], and represents a significantly different proposal
compared to other metaheuristics. The fundamental idea of the VNS algorithm is
based on a basic principle: to explore the space of solutions by systematic changes of
neighbourhood structures during the search process. Thus, the transition through
the search space of the problem is always accomplished with an improvement of the
objective function, and, therefore, the transition is not allowed for a solution of
worse quality as occurs with most of the metaheuristics [29].

The VNS algorithm was used with success in the optimization of several prob-
lems of operational research [26, 27, 29, 30], but it is still insignificant in the
optimization of problems related to the operation and the planning of electric power
systems. The VNS was used to TNEP considering transportation model in [31, 32].

This paper is organized as follows: Initially the mathematical model for TNEP
problem and the VNS metaheuristic are presented. After, the developed VNS algo-
rithm to solve the TNEP problem is described. Later, obtained results are presented
and commented. Finally, conclusions are drawn.

2. Mathematical model of TNEP

The mathematical formulation of the TNEP for the DC model is given by
Egs. (1)-(8) and performs as a nonlinear mixed-integer programming problem [3]:

Minv = ) cjj.n (1)

ijeQ
AF+G=D (2)
Fy = r3(n§ +m3) (6~ ) =0 ©
F3] = (n§ +m5)fy 4)
0<g<g (5)
0 <njy <7 (6)
n;; >0 and integer V(i,j) € Q (7)
fij, 6; unbounded V(i,j) € Q (8)

where v is the total investment value for a predefined horizon; c;; is the cost of a
circuit or facility that can be added in the branch (i, 5); #; is the number of circuits
added during the optimization process; ng- is the number of existing circuits in the
initial topology; 7;; is the susceptance of the branch (i,f); 0; is phase angle at the bus i;
F is the vector of power flow with components f i f j is the transmission capacity ofa
circuit through branch (i,5); A is the transposed incidence branch-node matrix of the
power system; G is a vector with elements g, (power generation at bus k) with
maximum values g ; 7;; is the maximum number of circuits that can be added to the
branch (,7); Q is the set of all branches where it is possible to add new circuits.

Eq. (1) that contains the sum of the investments costs is the objective function.
The KCL is framed in Eq. (2), and the Ohm’s law is expressed in Eq. (3) which
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implicitly takes into consideration Kirchhoff’s voltage law (KVL). Inequalities

Eq. (4) represent capacity constraints for transmission lines, whereas the absolute
value is necessary since power can flow in both directions. Other constraints

Egs. (6)—(8) represent operational limits of the generators, maximum limit for the
addition of circuits per branch and integrality demand of the variables nj,
respectively.

The model Egs. (1)-(8) cannot be solved by using traditional algorithms, and
there is no efficient method for solving these kinds of problems directly. Therefore,
metaheuristics become suitable optimization tools for finding optimal and
suboptimal solutions for the TNEP problem when it is considered complex power
systems (big instances).

A more simplified model called the transport model can be considered, which
contemplates only Kirchhoff’s current law and could be obtained by relaxing the
nonlinear constraint Eq. (3) of the DC model described above [3]. In this case, the
resulting model is an integer linear programming problem. Even though it is linear,
it is still very difficult to find the optimal solution for large and complex systems.
The transport model was the first systematic proposal of mathematical modelling
used with great success in the problem of planning of transmission systems. The
model was proposed by Garver [2] and has represented the beginning of systematic
research in the area of transmission system planning.

Another model that has been considered for the PPEST is the linear hybrid
model (LHM) which combines characteristics of the DC model and the transport
model. This model, in a simpler formulation, preserves the linear properties of the
transport model, considering Kirchhoff’s current law in all nodes of the network and
KVL only in the circuits in the base network (not necessarily in the circuits that will
be added) [3, 10]. The LHM is framed by Egs. (9)-(17):

Minv = ) cj.ny %)
LjeQ
AF+A°F* +G=D (10)
£l —vimj (6 — 6;) = 0, (i,j) € Qo (11)
£ < (ng)f_ij, Y(i,j) € Qo (12)
5 < (nd + my ) F, V(i) €@ (13)
0<g<g (14)
0 <ny <y, ¥(i,j) €Q (15)
fj unbouded, ¥(i, j) € Qo (16)
fi;, 6, unbounded, V(i,j) € Q (17)

where A° is the transposed incidence branch-node matrix of the base topology in
previews iterations of the algorithm system; F° is the vector of base power flow
case; Q is the set of all the circuits added during the iterative process and all of the
prime circuits of the base case.

The LHM was originally proposed in [10] whose authors present a mathematical
modelling Egs. (9)-(17) which specifies that the portion of the electric system
corresponding to the circuits existing in the base configuration must satisfy the two
Kirchhoff’s laws and the other corresponding part from new circuits must satisfy
only Kirchhoff’s current law.

with components f is the circuits added during the iterative process to the base

4
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The LHM Egs. (9)-(17) will be considered as a sensitivity indicator to the
proposed heuristic algorithm.

3. Metaheuristic VNS

A metaheuristic is a search strategy that orchestrates an interaction between
local improvement procedures and higher local strategies to create a process capable
of escaping from local optima and performing a robust optimization method for
complex problems. This search is performed by means of transitions in the search
space from an initial solution or a set of initial solution. In this context, the main
difference among the diverse metaheuristic techniques is the strategy used to carry
out the transitions within the search space. VNS is a metaheuristic that systemati-
cally exploits the idea of neighbourhood change to find local-optimal solutions and
to leave those local optima. In that fundamental aspect, VNS is significantly differ-
ent from other metaheuristics. Most metaheuristics accept the degradation of the
current solution as a strategy to leave a local-optimal solution. The VNS algorithm
does not accept this possibility [26].

The VNS algorithm changes the neighbourhood as a way of leaving local-optimal
solutions. During this process, the current solution is also the incumbent, which
does not happen with other metaheuristics. Thus, it is possible to state that the VNS
algorithm performs a set of transitions in the search space of a problem and at each
step this transition is performed for the new incumbent. If the process finds a local
optimum, then the VNS algorithm changes the neighbourhood in order to leave
from that local optimum and to achieve the new incumbent. As a consequence of
this strategy, if the VNS algorithm finds the global optimum, the search stops at that
point, eliminating any chance of leaving it. This behaviour does not occur with
other metaheuristics.

The strategy of the VNS algorithm is inspired by three important facts [29]:

Fact 1—A minimum with regard to one neighbourhood structure is not neces-
sary for another.

Fact 2—A global minimum is a local minimum with regard to all possible
neighbourhood structures.

Fact 3—For many problems, a local minimum with regard to one or several
neighbourhoods is relatively close to each other.

The latter is particularly important in the formulation of the VNS algorithm.
This empirical fact implies that a local-optimal solution often provides important
information regarding the global one, especially if the local-optimal solution pre-
sents excellent quality. It is also an empirical fact that local-optimal solutions are
generally concentrated in specific regions of the search space. If local-optimal solu-
tions were to be uniformly distributed in the search space, all metaheuristics would
become inefficient. Consequently, if a local optimum is found in the same region
where the global optimum is, then the VNS metaheuristic has better chances of
finding this global optimum. On the other hand, if the global optimum pertains to
another region, then the only possibility to find it is to implement a diversification
process. For this reason, equilibrium between intensification and diversification
during the search process can be important in a metaheuristic.

There is another important aspect related to the quality of the local optimum
that should be part of the implementation logic of a VNS algorithm. A local opti-
mum with a better-quality objective function is not necessarily more suitable for
trying to find the global optimum. Let x, and x;, be two local-optimal solutions with

f(x4) <f(xp) for the minimization problem. Considering the traditional analysis, it
can be concluded that x,, is a local optimum with better quality than x;.

5
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If these solutions are to be used for initiating (or reinitiating) the search process,
then it can be affirmed that the solution presenting internal characteristics closer to
those of the global optimum is the most suitable for initiating (or reinitiating) the
search and, consequently, solution should not necessarily be chosen.

Thus, for instance, considering the TNEP problem, the local-optimal solution
with the largest number of 7;; elements equal to the optimal solution is the most
appropriate for initiating (or reinitiating) the search. It is evident that in normal
conditions, the optimal solution is unknown. However, there are some problems
where the optimal solution is known, and there are also various heuristic algorithms
to find local-optimal solutions for this problem.

In this way, the previous observation can be used to identify the heuristic
algorithm that produces best-quality local-optimal solutions for initiating the search
using the VNS algorithm. This type of behaviour occurs in the TNEP problem where
for some instances (power systems) optimal solutions are known and various con-
structive heuristic algorithms used to find excellent local-optimal solutions are
available. Thus, the best constructive heuristic algorithm to be incorporated into the
solution structure of a VNS algorithm can be identified.

Let Ni, k =1, ..., kyax be a finite set of preselected neighbourhood structures,
and let N (x) be a set of solutions or neighbours in the kth neighbourhood of x.

An optimal solution x,y; (or global minimum) is a solution where the minimum
of Egs. (9)-(17) is achieved.

A solution x’ is a local minimum of Egs. (1)-(8) with regard to Ny (x), if there is
no solution x’ € Nj,(x) CX, such thatf(x") <f(x').

Thus, the idea is to define a set of neighbourhood structures that can be used in a
deterministic, random or both deterministic and random manners. These different
forms of using the neighbourhood structure lead to VNS algorithms with different
performances.

There are various proposals of VNS algorithms that can be used independently
or in an integrated manner forming more complex VNS structures. The simplest
form of a VNS algorithm is the variable neighbourhood descent (VND). The VND
algorithm is based on previously mentioned Fact 1, i.e. the local minimum for a
given move is not necessarily the local minimum for another type of move [29].

In this way, the local optimum x’ in the neighbourhood N (x) is not necessarily
equal to the local optimum x" of x’ to the neighbourhood N, (x).

The VND algorithm takes on the form shown in Figure 1.

This algorithm can be integrated into a more complex structure of the VNS
algorithm.

For example, the sept (a) in Figure 1 could be replaced by randomly generating
a solution neighbour x’ of x(x’ € N (x)); and the resulting algorithm is called the
reduced variable neighbourhood search (RVNS). In the RVNS, usually, the

Initialization: Select the set of neighborhood structuresNy, k = 1, ..., kpmax
that will be used in the descent; Find an initial solution x;

Repeat the following sequence until no improvement is obtained:

(1) Set k=1;

(2) Repeat the following steps until = Ky, -

(a) Exploration: Find the best neighbor x'of x(x" € Ni(x) );

(b) Move or not:
If the solution x’ thus obtained is better than x, set x = x’'and k = 1;
Otherwise, set k = k + 1.

Figure 1.
VND algorithm [33].
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Initialization: Select the set of neighborhood structuresN;, = 1, ..., Koy
Find an initial solution x;

Choose a stopping condition;
Repeat the following sequence until no improvement is obtained:

(1)Setk =1;
(2) Repeat the following steps until = k,,,,, :
(a) Randomly generate a solution neighbor x'of (x’ € N, (x));

(b) Local search: Apply a local search method with x’as an initial solution;
Denote with x"the obtained local optimum;
(c) Move or not:

If the solution x'’ thus obtained is better than x, set x = x'and k = 1;
Otherwise, setk = k + 1.

Figure 2.
BVNS framework [33].

neighbourhoods will be nested, i.e. each one contains the previous. Then a point is
chosen at random in the first neighbourhood. If its value is better than that of the
incumbent (i.e. f(x') <f(x)), the search is recentred there (x’ < x). Otherwise, one
proceeds to the next neighbourhood. After all neighbourhoods have been consid-
ered, one begins again with the first, until a stopping condition is met.

The RVNS algorithm chooses neighbours more dynamically by selecting those
from all neighbourhood structures (diversification) and prioritizing the first
neighbourhood structure (intensification) during the initial stages of the search.
Nevertheless, an important component of the RVNS structure is its capacity for
finding new promising regions from a local optimum. The RVNS algorithm can also
be used independently or be integrated into a more complex structure of the VNS
algorithm.

More efficient VNS algorithms can be formulated by integrating those charac-
teristics of the VND algorithm that allow local quality optima to be found and those
of the RVNS algorithm that allow new promising regions from a local optimum to
be found. Thus, by merging those characteristics, two types of VNS algorithms that
generally exhibit excellent performance can be formulated. These algorithms are
called the basic variable neighbourhood search (BVNS) and the general variable
neighbourhood search (GVNS).

The BVNS algorithm combines a local search with systematic changes of
neighbourhood around the local optimum found in [33]. The structure of the BVNS
algorithm is presented in Figure 2.

The logical procedure adopted by the BVNS is very interesting. Firstly,

k neighbourhood structures should be chosen. The optimization process is initiated
from a solution x and the corresponding neighbourhood Nj(x). Then, a neighbour
x' of x in N1(x) is randomly selected. From x’, a local search process to find the local
optimum x” is started.

In this context, three cases may occur:

1. If x” it is equal to x’, one already was the local optimum of the valley and,
consequently, a change of neighbourhood level should be performed (N> (x) in
this case).

2.If x” is worse than x’, then the local optimum with less quality than the incumbent
x was found, and a change of neighbourhood should also be carried out.
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3.If x" is better than x’, it means that a better solution than the incumbent was
found, and, consequently, the incumbent should be updated; the search
should be reinitiated from the new incumbent while remaining in the
neighbourhood N;.

Whenever the local search finds a new incumbent, at any iteration of the
process, the neighbourhood N (x) should be considered again. Also, whenever the
local search finds an equal or worse quality solution than the incumbent, a change
towards a more complex neighbourhood should be performed. This strategy and the
random choice of the incumbent x’ neighbour avoid cycling and allow local optima
which are distant from the current incumbent to be found.

The local search of the BVNS algorithm can be any heuristic strategy. Nonethe-
less, the local search can also use a strategy of the VNS algorithm. Therefore, the
BVNS algorithm can be transformed into a more general algorithm called general
variable neighbourhood search (GVNS). The GVNS algorithm is obtained through
the generalization of the BVNS algorithm by simply using a VND algorithm as a
local search and using a RVNS algorithm to improve the initial solution required to
begin the search.

All observations made for the BVNS algorithm remain valid for the GVNS
algorithm. As mentioned previously, the fundamental change corresponds to the
improvement stage of the initial solution using an RVNS algorithm and a VND
algorithm for the local search stage.

Since the VNS algorithm can be implemented in various ways, a family of VNS
algorithms can also be implemented. In [26, 30, 33] diverse types of VNS
algorithms are analysed. In this work, only one of these algorithms is presented.
There are other more complex algorithms or structures based on the logic of the
VNS algorithm that are out of the scope of this work. Those algorithms can be
found in [30, 33].

4. Modified VNS for TNEP

In this section the application of our proposed VNS to the TNEP will be
described. The GVNS described in Figure 3 will be used considering the following
steps that will be explained in detail in sequence:

Step 1—Initial solution: Considering a heuristic algorithm to determine an
initial solution.

Step 2—Definition of neighbourhoods: Characterization of each neighbourhood
and determination of their elements.

Step 3—Improvement: Improve the initial solution by using a RVNS
algorithm.

Step 4—Local search: Apply some local search to determine the best
configuration for each current solution neighbourhood.

Step 1: Initial solution

To determine a DC initial solution to TNEP, the constructive heuristic algorithm
(CHA) presented by Villasana-Garver-Salon (VGS) [10] is considered. This algo-
rithm iteratively chooses a new circuit to be added to the system considering a step-
by-set procedure that uses a sensitivity index (given in Eq. (18)) that plays a key
role in the CHA. The iteratively process continues until a feasible solution is
achieved; that means that there is no need for new circuit additions:



Electric Transmission Network Expansion Planning with the Metaheuristic Variable...
DOI: http://dx.doi.org/10.5772/intechopen.870 71

Initialization:
Select the set of neighborhood structuresN,,, k = 1, ..., k4, that will be used
in the shaking phase;
Select the set of neighborhood structuresN;, [ = 1, ..., L4, that will be used
in the local search;
Find an initial solution x and improve it by RVNS.
Choose a stopping condition.
Repeat the following sequence until no improvement is obtained:
(1)Setk =1;
(2) Repeat the following steps until = k4, :
(a) Randomly generate a solution neighbor x'of (x" € N (x));
(b) Local search by VND:
(b1) Setl = 1;
(b2) Repeat the following steps until = 1,4, :
e  Exploration: Find the best neighbor x” of x" in N;(x"));
e Moveornot: If f(x"") < f(x)), setx’' =x"andl = 1;
Otherwise, setl =1 + 1.
(c) Move or not: If this optimum 1s better than the incumbent, set x =
x"" and continue the search with N;(k = 1) ; Otherwise, set k = k + 1.

Figure 3.
GVNS framework [33].

IS = Max{s; = nyfy :ny 0} (18)

Generally, for large and complex systems, the derived solutions are local-optimal
[10]. The VGS can be summarized by the following steps:

* VGS1: Take a base topology as a current solution, and resolve the HML
Egs. (10)-(17) considering that all of the circuits of the current solution must
follow both Kirchhoff’s laws.

* VGS2: Solve LP for the HML using the current solution. If the LP solution
indicates that the system is adequately operating with the new additions and
v = 0, then stop. A new solution for the DC model was found. Go to step 4.

* VGS3: Identify the most attractive circuit considering the sensitivity in
Eq. (18). Update the current solution with the chosen circuit, update nf]). and

Qo, and go to step 2.

All of the added circuits represent the solution of the CHA. It can be noted that
although the VGS uses a hybrid linear model to identify the best circuit for addition
in an iterative process, it complies with both of Kirchhoff’s laws after adding a new
circuit; thus, the final solution is also feasible in DC.

Example 1: considering Graver’ system [34] that includes six transmission lines
and six buses with a 760-MW demand for base topology, which is shown in
Figure 4a, after has applied the VGS it gave the topology in Figure 4b, with
v =130.000 m.u.

Step 2: Definition of neighbourhoods
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6— =4 6_l'.'l___.':.':.':.'__.'__.'__.':.'2_4
Figure 4.

Base topology and VGS solution for Graver’s system. (a) Base topology and (b) Initial solution by VGS.

Given solution x, the structures of neighbourhood within the solution space can

be defined by Eq. (19):
Ni(x) ={x"€S :d(x,x) =k.k =1, ... kmax} (19)

where d(x,x") = k is the quantity of branches with a different number of added
circuits in the solutions x and x’.

For example, given solutions x, x’ and x” from Figure 5a-c, respectively, which
are coded in Figure 6, d(x,x’) =1, and d (x, x”) = 2. So, solution x’ is a neighbour of
x in N1(x), and solution x”’ is a neighbour of x in N (x).

Neighbour x'is obtained from x by adding a circuit in branch 8 (buses 3-6),
whereas the neighbour x” was obtained from x by adding one circuit in branch 7
(buses 3-5) and removing one circuit in branch 9 (buses 4-6). In the same way, the
neighbours in the other k neighbourhoods can be obtained.

Step 3: Improvement of the initial solution

(b) (©)

_I_ Generator
i Load

Figure 5.
Neighbourhood characterization.

Base topology
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Figure 6.

x, x" and x'' neighbours codification.

Considering k,,,x = 5 and the initial solution obtained in step 1, a local improve-
ment search using a GVNS described in Figure 3 is applied considering the HLM
Egs. (9)-(17).

In N1(x), sort all added circuits in cost-decreasing order, remove the circuit
having the maximum cost, and verify the operation using the HLM model. If such
removal keeps a feasible solution which indicates that the system is in adequate
operation condition (i.e. v = 0 after HML solution), remove that circuit; otherwise,
keep the circuit. Repeat the process of simulating circuit removal until all of the
added circuits have been tested.

At the end of the process, all the added circuits that were not removed represent
the improved solution.

As for the remaining neighbourhoods, the cost variations due to changes (cost
difference between entering and leaving circuits) are calculated, and only the
changes that exhibit negative variation are simulated (the HLM is solved). If the
simulation points out a feasible configuration, then it is a candidate to be used by
updating the current configuration. If the new configuration is unfeasible, then the
simulation is cancelled.

It is important to elucidate that the movement only be carried out if the new
configuration is better than the incumbent and that in this step the procedure only
accepts movements that lead to feasible solutions.

The stop criterion corresponds to the maximum number of solved HLM.

Step 4: Local search

The local search is based in VND described in Figure 1.

5. Results

To illustrate the effectiveness of the proposed method, three problems are con-
sidered: the Garver 6-bus, the IEEE 24-bus and the Brazilian Southern 46-bus
systems.

Full data can be found in [34-36], respectively. Planning could be done with (r)
or without (w) generation rescheduling, resulting in these following cases that have
been widely used to validate results of new methods [2, 10, 15, 16, 20, 34]; Da
[21-24, 31, 32, 35, 36]:

* Case 1w: Garver 6-bus system without rescheduling
* Case 1r: Garver 6-bus system with rescheduling

* Case 2w: IEEE 24-bus system without rescheduling

11
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Cases Initial solution GVNS solution
Added circuits Total cost PLs Added circuits Total cost PLs Ry
(x1.000) required (x1.000) required
1w X1-3 = 3, X1-5 = 1, X2 3 = 1, X4-6 = 3 244 9 X6 = 4, X35 = 1, X4-6 = 2 200 27 3
1r X3 = 1, X6 = 1, X35 = 1, X46 — 2 130 6 X35 = 1, X46 = 3 110 19 2
2w X324 =Lx10-12=2%610=1Lx78=2, 476 12 x3 24 =Lxs 10=1x78=2 392 1776 3
x10-2 =Lxnp 3=Lxiy1=1 X911 =Lxwo12=1 X416 =2 x16-17=1
X15-24 = Lx16-17 = 1
2r X1-5 = 1, X324 = 1, X6—7 — 2, X6-10 — 1, 618 16 X324 — 1, X6-10 — 1, X7-8 = 2, X911 = 1, 342 361 2
x78=L x1011=1L x1416 =2 X516 =1, x1012=1 X1416 =2, x16-17 =1
X151 =1 x15-04 =1, x16-17 = 2, x17-18 = 1
3W X5-6 = 2, X20-21 = 2, X425 = 2, X25-32 = 1, 166.041 17 X5-6 = 2, X19-25 = 1, X20-21 = 1, X24-25 = 2, 154.420 5
X331 =1, X31-41 =1, X40-41 =1, X043 = 1, X26-29 = 3, X28-30 = 1, X29-30 =2, x31- = 1,
X466 =1 X2 3=2 X466 =1
3r X5_6 — 2, X19-21 — 1, X20-21 = 2, X20-23 — 1, 95.795 8 Xy_5 = 1, X5_6 — 2, X13-20 — 1, X20-21 = 2, 72.870 497 3
X46-6 =1 X20-3 =1 x42-43 =1, X466 =2

Table 1.
Obtained results.
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* Case 2r: IEEE 24-bus system with rescheduling
* Case 3w: Brazilian Southern 46-bus system without rescheduling
* Case 3r: Brazilian Southern 46-bus system with rescheduling

The Brazilian Southern is a real referred system originally formed by 46 buses
and 66 circuits in the base topology, 79 candidate paths and 6.880 MW as expected
demand [35].

For reducing the size of the considered neighbourhoods, only those added cir-
cuits operating below 70% of their capacity were considered to be candidate circuits
for removal.

Table 1 shows the results. The proposed method was more efficient than the
methods shown in [15, 20], since it requires less number of linear programing
resolutions.

6. Conclusions

In this paper an efficient new method based on variable neighbourhood search
has been proposed for transmission networking problem planning considering the
DC model whose mathematical formulation is nonlinear and mixed integer. The
TNEP is a multimodal problem of high complexity for medium and large systems
and cannot be solved by exact algorithms in reasonable computational times.

The proposed method systematically exploits the idea of neighbourhood change
to find local-optimal solutions and to leave those local optima. It was observed that
the definition of neighbourhood structures plays an important role to the conver-
gence of the VNS algorithm applied to TNEP.

The proposed method was tested in the Garver 6-bus, in the IEEE 24-bus and in
the Brazilian Southern 46-bus systems, and the results got more chance of finding
better solutions than mathematical optimization techniques and find local-optimal
solution requiring fewer solved linear problems.

As further research directions, new strategies for reducing the size of the
neighbourhood such as using adjacency lists to avoid adding new lines in isolated
circuits and different kinds of structure neighbourhoods could be developed.
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