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1. Introduction 

Research on brain-computer interface (BCI) systems began in the 1970s at the University of 
California Los Angeles (UCLA) (Vidal, 1973; 1977). The author gave in his papers the 
expression "Brain Computer Interface" which is the term currently used in literature. 
A BCI system is a direct communication pathway between a brain and an external artificial 
device. BCI systems were aimed at assisting, augmenting or repairing human cognitive or 
sensory-motor functions. 
The BCI systems (BCIs) allow control of an artificial device based on the features extracted 
from voluntary electric, magnetic, or other physical manifestations of brain activity collected 
from epi- or subdurally from the cortex or from the scalp or in invasive electrophysiological 
manner, i.e. brain signals recorded intracortically with single electrode or multi-electrode 
arrays (Dornhege et al., 2007). There is a variety of non-invasive techniques for measuring 
brain activity. These non-invasive techniques include, the electroencephalography (EEG), 
magnetoencephalography (MEG), positron emission tomography (PET), functional magnetic 

resonance imaging (fMRI), and optical imaging. However, for technical, time resolution, real-
time, and price constraints, only EEG monitoring and related techniques are employed in 
the BCI community. For more details refer to (Wolpaw et al., 2002; Mason et al., 2007; 
Dobkin, 2007). The neuronal electrical activity contain a broad band frequency, so the 
monitored brain signals are filtered and denoised to extract the relevant information (see 
section 3) and finally this information is decoded (see section 6) and commuted into device 
commands by synchronous control or more efficiently by self-paced or asynchronous control in 
order to detect whether a user is intending something or not (see chapter 7 in (Dornhege et 
al., 2007) for details), Fig. 1. For some specific BCI tasks, raw brain signal serves as stimulus 
as well as a control interface feedback. 
The direct BCIs can be seen as a new means of communication that may be used to allow 
tetraplegic or individuals with severe motor or neuromuscular diseases (e.g. Amyotrophic 
lateral sclerosis (ALS), brainstem stroke, brain or spinal cord injury, cerebral palsy, muscular 
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Fig. 1. Basic BCI layout. 

dystrophies, multiple sclerosis) to have effective control over artificial devices or external 
environment in order to increase or improve their communication qualities or their 
independence. Recent studies have demonstrated correlations between EEG signals and 
actual or imagined movements and between EEG signals and mental tasks (Keirn & Aunon, 
1990; Lang et al., 1996; Pfurtscheller et al., 1997; Anderson et al., 1998; Altenmüller & Gerloff, 
1999; McFarland et al., 2000; Wessberg et al., 2000; Pfurtscheller et al., 2000b; Nicolelis, 2001; 
Pfurtscheller et al., 2003). The BCIs can be used also in therapeutic applications by 
neurofeedback for rehabilitation or functional recovery (Birbaumer & Cohen, 2007; Dobkin, 
2007; Birbaumer et al., 1999; Dornhege et al., 2007). 
The BCI is a communication system that does not require any peripheral muscular activity. 
It has been shown by (Pfurtscheller & Aranibar, 1977; Pfurtscheller, 1999c; Neuper & 
Pfurtscheller, 1999a) that the imagination of either a left or right hand movement results in 
an amplitude attenuation (event-related desynchronization (ERD) of μ (8-13Hz) and central β  
(13-30Hz) rhythms at the contra-lateral sensori-motor representation area and, in an 
amplitude increase (event-related synchronization (ERS) within the γ band (30-40Hz) at the 
ipsi-lateral hemishpere. The event related (de)synchronisation(ERD, ERS) (Pfurtscheller et 
al., 1999a), see Fig. 2 and Fig. 3. 
 

 
Fig. 2. Grand average ERD curves recorded during motor imagery from the left (C3) and 
right sensorimotor cortex (C4) (the electrodes C3 and C4 are placed according to the 
International 10-20 system). The ERD time courses were calculated for the selected bands in 
the alpha range for 16 subjects. Positive and negative deflections, with respect to baseline 
(second 0.5 to 2.5), represent a band power increase (ERD) and decrease (ERD), respectively. 
The gray bar indicates the time period of cue presentation (i.e. the imagination starts at 
second 3). Figure from (Pfurtscheller et al., 2000a) which is modified from (Neuper & 
Pfurtscheller, 1999a). 
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Fig. 3. ERD maps for a single subject calculated for the cortical surface of a realistic head 
model. Figure from (Pfurtscheller et al., 2000a) which is modified from (Neuper & 
Pfurtscheller, 1999a). 

The direct BCIs can also be seen as a new means to extend communication for healthy 
subjects in many fields such as multimedia communication, control of robots, virtual reality 
and video games (Thomas, 1977; Friedman et al., 2004; Bell et al., 2008; Lécuyer et al., 2008). 
There are in general two types of BCI systems: endogenous tasks and exogenous tasks based 
systems (Dornhege et al., 2007). 
The endogenous tasks BCI systems, which are based on spontaneous activity, use brain signals 
that do not depend on external stimuli and that can be influenced by concentrating on a 
specific mental task. In order to obtain an efficient task recognition system, several 
concentration trials of human are, in general, realized. The concentration constraint is a very 
tiring mental task especially for disabled subjects who might have difficulties in acquiring 
voluntary control over their brain activity and it must be reduced in order to obtain an 
efficient task recognition system. 
The exogenous tasks BCI systems, which are based on evoked activity, use brain signals that 
do depend on external stimuli. Particularly interesting are systems based either on the P300 
or on SSVEPs (see section 2). Advantages of these potentials are that they are relatively well 
understood from a neurophysiologic point of view and that they can be evoked robustly 
across different subjects. Moreover, feedback training is not necessary in these systems, as 
theses potentials appear "automatically" whenever subjects concentrate onto one out of 
several stimuli presented in random order (Hoffman et al., 2008). Note that the material 
presented in this chapter is strongly biased towards sensorimotor (Changes in brain rhythms 
(μ, β, and γ)) and P300 electrophysiological activities using EEG records. 
In order to improve the performance of the BCI system design, it is necessary to use a good 
method of signal processing to allow easier extraction of physiological characteristics and also 
to use a good classifier adapted to the specificities of the BCI system. This chapter presents a 
compact guide to different signal processing techniques that have received more attention in 
BCIs. We introduce then some selected feature extraction and classification approaches in the 
context of BCI systems. A more exhaustive and excellent surveys on signal processing and 

www.intechopen.com



 Intelligent and Biosensors 

 

28 

classification algorithms may be found in the papers (Bashashati et al., 2007; Lotte et al., 
2007). Then this chapter describes the application of two classification approaches, hidden 
Markov models (HMMs) and support vector machines (SVM), in the context of exogenous tasks 
BCI systems based on P300 evoked potential. The chapter ends with a global conclusions and 
perspectives. 
The methods presented in sections 3.3, 4, 5 and 6 are based on the statistical results given in 
the comprehensive survey of 96 BCI designs using electrical signal recordings published 
prior to January 2006 by (Bashashati et al., 2007). Among these methods, we give here only a 
brief descriptions of the most applied methods. They are introduced here without 
referencing all the published papers for the 96 BCI designs. The reader may refer to the 
paper (Bashashati et al., 2007) to find a rich bibliographical work. However, we give only the 
original references corresponding to each proposed method. 

2. Electrophysiological control activities in BCIs 

Current BCI systems fall into seven main categories, based on the neuromechanisms and 
recording technology they use to generate control signals (Bashashati et al., 2007). The 
following list give a short descriptions of these electrophysiological activities used in BCI 
designs. This list is borrowed and adapted (with the authorization of authors) from the 
paper (Bashashati et al., 2007). We omitted the references of the different approaches given 
in this list. Many of these references are given in (Bashashati et al., 2007). 
• Sensorimotor activity BCI designs that use sensorimotor activity as the neural source of 

control can be divided into three sub-categories: 
- Changes in brain rhythms (μ, β, and γ) 

μ rhythms in the range of 8-12 Hz and β rhythms in the range of 13-30 Hz both 
originate in the sensorimotor cortex and are displayed when a person is not 
engaged in processing sensorimotor inputs or in producing motor outputs. They 
are mostly prominent in frontal and parietal locations. A voluntary movement 
results in a circumscribed desynchronization in the μ and lower β bands. This 
desynchronization is called event-related desynchronization (ERD) (Pfurtscheller & 
Aranibar, 1977; Pfurtscheller, 1999c; Neuper & Pfurtscheller, 1999a) and begins in 
the contralateral rolandic region about 2 s prior to the onset of a movement and 
becomes bilaterally symmetrical immediately before execution of movement. After 
a voluntary movement, the power in the brain rhythms increases. This 
phenomenon, called event-related synchronization (ERS), is dominant over the 
contralateral sensorimotor area and reaches a maximum around 600 ms after 
movement offset. γ rhythm is a high-frequency rhythm in the EEG. Upon the 
occurrence of a movement, the amplitude of γ rhythm in the range of 30-40 Hz 
increases. Gamma γ are usually more prominent in the primary sensory area. 

- Movement-related potentials (MRPs) 
MRPs are low-frequency potentials that start about 1-1.5 s before a movement. 
They have bilateral distribution and present maximum amplitude at the vertex. 
Close to the movement, they become contralaterally preponderant. 

- Other sensorimotor activities 
The sensorimotor activities that do not belong to any of the preceding categories 
are categorized as other sensorimotor activities. These activities are usually not 
restricted to a particular frequency band or scalp location and usually cover 
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different frequency ranges. An example would be features extracted from an EEG 
signal filtered to frequencies below 30 Hz. Such a range covers different eventrelated 
potentials (ERPs) but no specific neuromechanism is used. 

• Slow cortical potentials (SCPs) 
Slow cortical potentials (SCPs) are slow voltage shifts in the EEG occurring in the 
frequency range 1-2 Hz. Negative SCPs correspond to a general decrease in cortical 
excitability. Positive SCPs correspond to a general increase in cortical excitability. 
Through feedback training subjects can learn to voluntarily control their SCPs 
(Birbaumer et al., 1999; 2000; Hinterberger et al., 2003; 2004; Bostanov, 2004). 

• P300 Evoked potential 
Infrequent or particularly significant auditory, visual, or somatosensory stimuli, when 
interspersed with frequent or routine stimuli, typically evoke in the EEG over the 
parietal cortex a positive peak at about 300 ms after the stimulus is received. This peak 
is called P300. 

• Visual evoked potentials (VEPs) 
VEPs are small changes in the ongoing brain signal. They are generated in response to a 
visual stimulus such as flashing lights and their properties depend on the type of the 
visual stimulus. These potentials are more prominent in the occipital area. If a visual 
stimulus is presented repetitively at a rate of 5-6 Hz or greater, a continuous oscillatory 
electrical response is elicited in the visual pathways. Such a response is termed steady-
state visual evoked potentials (SSVEP). The distinction between VEP and SSVEP 
depends on the repetition rate of the stimulation. 

• Response to mental tasks 
BCI systems based on non-movement mental tasks assume that different mental tasks 
(e.g., solving a multiplication problem, imagining a 3D object, and mental counting) 
lead to distinct, task-specific distributions of EEG frequency patterns over the scalp. 

• Activity of neural cells (ANC) 
It has been shown that the firing rates of neurons in the motor cortex are increased when 
movements are executed in the preferred direction of neurons. Once the movements are 
away from the preferred direction of neurons, the firing rate is decreased. 

• Multiple neuromechanisms (MNs) 
BCI systems based on multiple neuromechanisms use a combination of two or more of 
the above mentioned neuromechanisms. 

3. Signal pre-processing methods in BCIs 

To extract features (see section 4), it is necessary to pre-process first the data. Three steps are 
necessary to achieve this goal: Referencing, Temporal filtering and signal enhancement. 

3.1 Referencing 
(Hagemann et al., 2001) have stated that the differences between results of different studies 
are partly due to the differences in referencing. In the case of EEG recordings from the cortex 
or from the scalp, these recordings are obtained using, in general, different electrodes on 
different positions. Since the brain activity voltage measured by a given electrode is a 
relative measure, the measurement may be compared to another reference brain voltage 
situated on another site. This results in a combination of brain activity at the given electrode, 
brain activity at the reference site and noise. Because of this, the reference site should be 
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chosen such that the brain activity at that site is almost zero. Typically, the nose, mastoids 
and earlobes are used (Dien, 1998). In general, there are three referencing methods 
• Common reference 

The common reference technique is widely used in BCIs. This method uses one 
common reference for all electrodes. In general, the site of this reference is situated at 
large distance from all electrodes. The activity at the reference site influences all 
measurements equally, and differences between electrode measurements still contain 
all information needed. 

• Average reference 
The average reference subtracts the average of the activity at all electrodes from the 
measurements. This method is based on the principle that the activity at the whole head 
at every moment sums up to zero. Therefore, the average of all activity represents an 
estimate of the activity at the reference site. Subtracting this average produces in 
principle a dereferenced solution. However, the relatively low density of the electrodes 
and the fact that the lower part of the head is not taken into account, bring some 
practical problems along (Dien, 1998). 

• Current source density (CSD) 
The current source density (CSD) is used in many BCIs. It is "the rate of change of 
current flowing into and through the scalp" (Weber, 2001). This quantity can be derived 
from EEG data, and it may be interpreted as the potential difference between an 
electrode and a weighted average of their surrounding electrodes. The CSD can be 
estimated by computing the laplacian. The laplacian computes the sum of the differences 
between an electrode and its neighbours. A problem with this estimation is that it is 
actually only valid when the electrodes are in a two dimensional plane and equally 
distant. 

3.2 Temporal filtering in BCIs 
The brain signals are naturally contaminated by many internal and external noises. They can 
be removed using simple filters. The relevant information in BCIs is found in the frequencies 
below 30Hz. Therefore, all noise with higher frequencies (e.g. noise from the electrical net 
has a fixed frequency of 50Hz or 60 Hz) can be removed using FIR low pass filter. Specific 
frequency bands may also be selected using FIR bandpass filters. 

3.3 Signal enhancement methods in BCI designs 
The choice of a suitable enhancement technique is dependent on several factors such as the 
recording technology, number of electrodes, and neuromechanism of the BCI (Bashashati et 
al., 2007). Among seventeen pre-processing methods given by (Bashashati et al., 2007), we 
describe here briefly only six methods which are the most applied in BCI designs: 
• Spatial filters - Referencing methods 

The proper selection of a spatial filter for any BCI is determined by the location and extent 
of the selected brain control signal and of the various sources of EEG or non-EEG noise. 
- Common average referencing (CAR) 

Common-average or "reference-free" recording has been suggested as a solution to 
the problem of the reference electrode (Offner, 1950; lehmann & Skrandies, 1984; 
Stanny, 1989). Common-average referencing involves recording in bipolar fashion 
from a number of electrodes, all referred to a single site. One then calculates the 
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grand mean EEG waveform, by averaging across electrodes, and subtracts the 
result pointwise from the EEG recorded at each electrode. Activity recorded by the 
reference electrode is theoretically of equal magnitude in the mean and 
individualelectrode waveforms. Consequently, the effect of the reference electrode 
should be eliminated from each recording electrode's output when the common-
average waveform is subtracted (Stanny, 1989). 

- Surface Laplacian (SL) 
The SL is defined as the 2nd order spatial derivative of the surface potential. Due to 
its intrinsic spatial high-pass filtering characteristics, the SL can reduce the volume 
conduction effect by enhancing the high-frequency spatial components, therefore 
can achieve higher spatial resolution than surface potentials. 

• Principal component analysis (PCA) 
The PCA (Pearson, 1901) is a linear mapping that transforms a number of possibly 
correlated variables into a smaller number of uncorrelated variables called principal 
components. The first principal component accounts for as much of the variability in 
the data as possible, and each succeeding component accounts for as much of the 
remaining variability as possible. Depending on the field of application, it is also named 
the discrete Karhunen-Loève transform (KLT), the Hotelling transform or proper orthogonal 
decomposition (POD). The PCA reveals the internal structure of the data in a way which 
best explains the variance in the data. If a multivariate dataset is visualised as a set of 
coordinates in a high-dimensional data space (1 axis per variable), ICA supplies the user 
with a lower-dimensional representation. 

• Independent component analysis (ICA) 
The more important artefacts in BCIs are generated by muscles and eyes blink (Gupta & 
Singh, 1996). Classical automatic methods for removing such artefacts can be classified 
into rejection methods and subtraction methods. 
- Rejection methods consist of discarding contaminated EEG, based on either 

automatic or visual detection can be used in the BCI applications framework. Their 
success crucially depends on the quality of the detection. 

- Subtraction methods are based on the assumption that the contaminated EEG is a 
linear combination of an original EEG and other independent artefact signals 
generated by the muscles and eyes blink. The original EEG is hence recovered by 
either subtracting separately recorded artefact-related signals from the measured 
EEG, using appropriate weights or by applying recent approaches for artefacts 
rejection: such as independent component analysis (ICA) (Common, 1994; Hyvärinen & 
Oja, 2000), peak elimination (Nakamura et al., 1996), neural network (Urszula et al., 
1999) and fixed bandpass FIR filter based approach (Gupta & Singh, 1996). 

The ICA (Common, 1994; Hyvärinen & Oja, 2000) is the more used technique. It is a 
computational method for separating a multivariate signal into additive 
subcomponents supposing the mutual statistical independence of the non-Gaussian 
source signals. It is a special case of blind source separation (BSS). ICA is particularly 
efficient when the EEG and the artefacts have comparable amplitudes. For more details 
about their advantages, their limitations and their applications for the removal of eyes 
activity artefacts, refer to (Jung et al., 1998; 2000). 

• Common spatial patterns (CSP) 
The CSP (Koles, 1991; Müller-Gerking et al., 1999) is a technique used to find the 
common projection matrix that decomposes the different classes of single trial EEG 
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datasets, and more specifically to find spatial structures of event-related 
(de)synchronization (ERD/ERS) in a EEG context. Such matrix maximizes the 
differences between the classes. (Guger et al., 2000) demonstrated the efficiency of the 
CSP method for real-time EEG analysis and concluded that only parameters that must 
be adjusted for the CSP are the time segment for the calculation of the CSP and, during 
on-line processing, the time window for the calculation of the variances. But the 
selection of these parameters is not very crucial. An advantage of the CSP method is 
that it does not require a priori selection of subject-specific frequency bands, as 
necessary for bandpower or frequency estimation methods (Pfurtscheller et al., 1996; 
McFarland et al., 1997b). 
- The CSP method is very sensitive to artefacts. A single trial containing, for 

example, a movement artifact can cause severe changes in the CSP (Müller-Gerking 
et al., 1999). The reason is the sample covariance (nonrobust estimate), which is 
used to estimate the covariance for the calculation of the spatial filters. However, 
during on-line operation of the BCI, the spatial filters perform a weighted spatial 
averaging of the EEG, and this reduces the influence of artefacts (Guger et al., 2000). 

- in some applications, many electrodes are needed, (e.g. more than 18 (Ramoser et 
al., 2000), which necessitates costly hardware. 

- since the CSP method detects spatial patterns in the EEG, any change in the 

electrode positions may render the improvements in the classification accuracy 
gained by this method useless. Therefore, this method requires almost identical 
electrode positions for all trials and sessions which may be difficult to accomplish 
(Ramoser et al., 2000). (Guger et al., 2000) recommended not to apply the electrodes 
anew after setting up a new CSP for the following feedback sessions. For long-term 
implications to analyze the EEG in real time, EEG data of several sessions can be 
used for the calculation of the CSP. This allows the generation of a more robust 
filter in order to overcome the mentioned problems. 

• Common spatial subspace decomposition (CSSD) 
The CSSD can extract signal components specific to one condition from multiple 
MEG/EEG data sets of multiple task conditions. Signal matrices or covariance matrices 
are decomposed using spatial factors common to multiple conditions. The spatial 
factors and corresponding spatial filters are then dissociated into specific and common 
parts, according to the common spatial subspace which exists among the data sets. 
Finally, the specific signal components are extracted using the corresponding spatial 
filters and spatial factors. (Wang et al., 1999). 

• Frequency normalization (Freq-Norm) 
(Bashashati et al., 2005). 

• Other methods are given by (Bashashati et al., 2007). 
The study of (Bashashati et al., 2007) showed that 
• signal pre-processing algorithms have been used for EEG-based BCIs and the ANC-

based BCIs, but no signal enhancement algorithms have been applied on 
electrocorticogram (ECoG)-based BCIs. Only PCA has been used in both groups, and 

• spatial filtering including referencing (CAR and SL) methods and CSP are among the most 
used techniques that have become increasingly popular in EEG-based BCIs. 

Fig.4 shows the statistical results of the study realised by (Bashashati et al., 2007) concerning 
pre-processing methods in BCI designs. (Bashashati et al., 2007) concluded that 96 BCI designs 

www.intechopen.com



Signal Processing and Classification Approaches for Brain-computer Interface  

 

33 

that employ signal enhancement techniques before extracting the features from the signal, 
32% use surface Laplacian (SL), 22% use either principal component analysis (PCA) or 
independent component analysis (ICA), 14% use common spatial patterns (CSP) and 11% 
use common average referencing (CAR) techniques. 
 
 

 
Fig. 4. Signal enhancement methods in BCI designs. Figure modified from (Bashashati et al., 
2007) with authorisation. 

In the following, we give a breif description of the two most used methods: Spatial filters and 
Common spatial patterns. 

3.3.1 Spatial filters: (SL) and (CAR) 
(McFarland et al., 1997a) showed that the variability of the EEG or non-EEG noise sources 
within the different BCI designs and even within individuals make difficult the application 
of the spatial filters. For BCIs that use the μ and β rhythms, the SL and CAR methods are 
superior to the ear reference method. However, it was shown that the reference method 
(CAR, bipolar, large Laplacian, small Laplacian, and referenced to the ear (McFarland et al., 
1997a)) had minor influence on the classification accuracy (Ramoser et al., 2000). Fast and 
continuous feedback can also enhance the performance of the system (Guger et al., 2001; 
Neuper et al., 1999b). In the following, we introduce only the principles of the CSP given in 
(Guger et al., 2000). 

3.3.2 Common spatial patterns (CSP) 
As described by (Guger et al., 2000), the CSP method uses the covariance to design common 

spatial patterns and is based on the simultaneous diagonalisation of two covariance matrices 

(Fukunaga, 1972). The decomposition (or filtering) of the EEG leads to new time series, 
which are optimal for the discrimination of two populations (or classes). The patterns are 

designed such that the signal resulting from the EEG filtering with the CSP has maximum 

variance for population and minimum variance for the second population and vice versa. In 

this way, the difference between the first and second populations is maximized, and the 
only information contained in these patterns is where the variance of the EEG varies most 
when comparing two conditions. 
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Given N channels of EEG for each trial X of population 1 and population 2, the CSP method 
gives an NxN projection matrix according to (Koles, 1991; Müller-Gerking et al., 1999; 
Ramoser et al., 2000; Guger et al., 2000). This matrix is a set of subject-specific spatial 
patterns, which reflect the specific activation of cortical areas during hand movement 
imagination. With the projection matrix W, the decomposition of a trial X is described by 

 Z =WX. (1) 

This mapping projects the variance of X onto the rows of Z and results in new time series. 
The columns of W–1 are a set of CSPs and can be considered as time-invariant EEG source 
distributions. After interpolation, the patterns can be displayed as topographical maps. 
By construction, the variance for population 1 is largest in the first row of Z and decreases 
with the increasing number of the subsequent rows. The opposite is the case for a trial with 
population 2. 

4. Feature extraction methods in BCI designs 

This section describes briefly the common BCI features extraction methods. Concerning the 
design of a BCI system, some critical properties of these features must be considered (Lotte 
et al., 2007): 
• noise and outliers: the brain signals (e.g. EEGs) have a poor signal-to-noise ratio; 
• high dimensionality: in BCI systems, feature vectors are often of high dimensionality. 

Several features are generally extracted from several channels and from several time 
segments before being concatenated into a single feature vector; 

• time information: BCI features should contain time information as brain activity 
patterns are generally related to specific time variations of EEG; 

• the brain signals are non-stationary in nature; 
• the brain signals are non-linear in nature; 
• non sufficient training sets: training process is time consuming and demanding for the 

subjects. 
There are many methods used in BCI, depending of the type of the BCI systems. In the 
following we describe some main and specific methods. More exhaustive details are given 
by (Bashashati et al., 2007). The feature extraction methods described here are: Band powers 
(BP), Cross-correlation between EEG band powers, frequency representation (FR), time-frequency 
representation (TFR), Hjorth parameters, parametric modelling, inverse model and specific 
techniques used for P300 and VEP such as Peak picking (PP) and Slow cortical potentials 
calculation (SCPs). 

4.1 Band powers (BP) 
The features may be extracted from the EEG signals by estimating the power distribution of 
the EEG in predefined frequency bands. (Pfurtscheller et al., 1997) used the band powers (BP) 
and demonstrated that for each subject, different frequency components in the α and β band 
were found which provided best discrimination between left and right hand movement 
imagination. These frequency bands varied between 9 and 14 Hz and between 18 and 26 Hz. 

4.2 Cross-correlation between EEG band powers 
In the case of EEG measurements the cross-correlation coefficients between the EEG activity 
may be calculated to obtain some information from comparing different locations and 
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different frequency bands (Farwell & Donchin, 1988; Musha et al., 1997; Bayliss & Ballard, 
1999; 2000a;b; Wang et al., 2004a;b). 

4.3 Frequency representation (FR) 
Frequency representation (FR) features have been widely used in signal processing because of 
their ease of application, computational speed and direct interpretation of the results 
(Wolpaw et al., 2000; Blankertz et al., 2006). Specifically, about one-third of BCI designs have 
used power-spectral density (PSD) features (Bashashati et al., 2007). 

4.4 Time-frequency representation (TFR) 
Due to the non-linearity and non-stationarity nature of the EEG signal, the classical methods 
based on Fourier transform (FT) are, in general, not efficient for feature extraction because the 
obtained features do not provide any time domain information, i.e. these features do not 
analyze the time-varying spectral content of the signals. 
Time-frequency methods decompose the EEGs into a series of frequency bands, and the 
instantaneous power is represented by the envelop of oscillatory activity, which forms the 
spatial patterns for a given electrode montage at a time-frequency grid (Millán & Mouriño, 
2003; Wang et al., 2004a). 
Wavelet-based feature extraction algorithms (Qin & He, 2005; Xu & Song, 2008; Haibin et al., 
2008) necessitate the choice of a particular wavelet called mother wavelet in order to extract 
useful information. This choice of an appropriate mother wavelet may be simplified by the 
prior knowledge of the physiological activity in the brain. 
(Huang et al., 1998) proposed a more fairly recent technique called the Empirical Mode 
Decomposition (EMD) was proposed for nonlinear and non-stationary time series data. The 
(EMD) is a data driven approach (i.e. one does not need to define a mother wavelet 
beforehand) that can be used to decompose adaptively a signal into a finite well-defined 
high frequency and low frequency components, which are known as intrinsic mode 
functions (IMFs) or modes. They consider signals at their local oscillations, but they are not 
necessarily considered in the sense of Fourier harmonics. Their extraction is non-linear, but 
their recombination for exact reconstruction of the signal is linear. We think that this 
approach might be useful in BCI design. 

4.5 Hjorth parameters 
(Hjorth, 1970) has described three parameters that characterize the temporal dynamics of 
EEG signal, (X(t)), of length N in terms of amplitude, time scale and complexity. The 
parameters are measured in the time domain, as opposed to the other features, which are 
measured in the frequency domain. It has been shown that these parameters are capable of 
discriminating between different mental states (Vourkas et al., 2000). The parameters are: 
• Activity: a measure of the mean power of the signal (variance of X (VAR(X))). It is 

measured as the standard deviation. 

 
(2) 

where X  denotes the mean of X. 
• Mobility: represents the mean frequency in the signal. The mobility can be computed as 

the ratio of the standard deviation of the slope and the standard deviation of the 
amplitude. 
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(3) 

• Complexity: tries to capture the deviation from the sine wave. It is expressed as the 
number of standard slopes actually seen in the signal during the average time required 
for one standard amplitude, as given by the mobility. 

 
(4) 

These parameters are mainly used as features for the classification of motor imagery 
(Obermeier et al., 2001; Boostani & Moradi, 2004; Lee & Choi, 2003; Pfurtscheller & Neuper, 
2001). 

4.6 Parametric modelling 
In statistics, a parametric model or parametric family or finite-dimensional model refers to a family 
of distributions which can be described using a finite number of parameters. These 
parameters are usually collected together to form a single k-dimensional parameter vector 
Θ = (θ1, θ2, ..., θk). In system theory, parametric model assume that the time series under analysis 
to be the output of a given linear mathematical model. They require an a priori choice of the 
structure and order of the signal generation mechanism model. 
Among the more used parametric modelling in BCIs are the autoregressive parameters (AR) 
and their variants such as multivariate AR parameters (MVAR), AR parameters with exogenous 
input (ARMAX) and Adaptive AR parameters (AAR) (Anderson & Sijercic, 1996; Schlogl et al., 
1997; Anderson et al., 1998; Roberts & Penny, 2000; Burke et al., 2005; Vidaurre et al., 2007). 
AR methods assume that a signal X(t), measured at time t, can be modeled as a weighted 
sum of the values of this signal at previous time steps, to which we can add a noise term Et 

(generally a Gaussian white noise): 

 (5) 

where the weights ai are the autoregressive parameters which are generally used as features for 
BCI. AAR assume that the weights ai can vary over time. It seems that (AAR) parameters 
would give better results than (AR) parameters for motor imagery classification (Schlögl et 
al., 1997; Pfurtscheller et al., 1998), whereas they would give worse results for the 
classification of cognitive tasks such as mental computations, mental rotation of a geometric 
figure, etc. (Huan & Palaniappan, 2004a; Huan & Palaniappan, 2004b). It should be noted 
that it is possible to derive a frequential information from the ai coefficients (McFarland & 
Wolpaw, 2005). 

4.7 Inverse model 
Inverse models have shown to be promising feature extraction algorithms (Qin et al., 2004; 
Grave et al., 2005; Wentrup et al., 2005; Congedo et al., 2006). Such models are able to 
compute the activity in the whole brain volume, only using EEG and a head model that 
generally represents the brain as a set of volume elements (voxels). The activity thus calculated 
in some relevant brain regions or voxels may be used as efficient features for BCI systems. 
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4.8 specific techniques 
4.8.1 Peak picking (PP) 
Peak picking (PP) method detects a specific pattern based on its peak value in a region 
associated with a specific cognitive component. It is used specifically for the evoked 
potential P300 (or P3)-based BCI system (Meinicke et al., 2003; Garrett et al., 2003; Bayliss et 
al., 2004; Bayliss & Inverso, 2005; Salimi Khorshidi et al., 2007; Hoffman et al., 2008), Fig.5. 
 

 
Fig. 5. Typical P300 wave. From (Hoffman et al., 2008). 

PP is a simple algorithm to recognize a P300 component using the difference between the 
minimum and maximum amplitude in a trial. A trial with a prototypical evoked potential 
P300 component contains a large peak from 300-400 ms and PP recognizes the P300 signal 
when the amplitude difference is greater than or equal to a specified voltage difference 
between the minimum, min(x), and maximum, max(x), voltage points within a specified time 
window, where x is a vector which represents the data for a single P300 response. For 
recognition, the time window with the best results may be between three and six hundred 
milliseconds citepbayliss04. 

4.8.2 Slow cortical potentials (SCPs) calculation methods 
The SCPs amplitudes are extracted on-line from the regular electroencephalogram, filtered, 
corrected for eye movement artefacts and fed back to the patient with visual, auditory or 
tactile feedback (Birbaumer et al., 1999; 2000; Hinterberger et al., 2004). The TFR methods are 
also used to extract the features of the SCPs (Hinterberger et al., 2003; Bostanov, 2004). Fig.6 
shows the statistical results of the study realised by (Bashashati et al., 2007) concerning 
feature extraction methods in BCI designs. (Bashashati et al., 2007) concluded that 41% of the 
BCIs are based on the sensorimotor activity use PSD features, 16% rely on parametric 
modelling of the data, 13% use TFR methods and 6% do not employ any feature extraction 
methods. 74% of the SCP-based BCI designs calculate SCP signals using low-pass filtering 
methods, and 64% of the VEP-based BCIs use power-spectral features at specific frequencies. 
26% of the BCIs based on P300 calculate the PP; 22% use TFR-based methods, 22% use no 
feature extraction method, and 15% use cross-correlation with a specific template. 41% of the 
BCI designs that use mental tasks to control a BCI use power spectral features and 37% use 
parametric modelling of the input signal. As most of the BCI designs that are based on neural  
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Fig. 6. Feature extraction methods in BCI designs based on sensorimotor activity, VEP, P300, 
SCP, response to mental tasks, activity of neural cells, and multiple neuromechanisms. 
Taken from (Bashashati et al., 2007). 

cortical recordings mainly try to model the direct relationship between the neural cortical 
recordings and movements, they do not use a feature-extraction algorithm. 45% of the BCI 
designs that are based on multiple neuromechanisms rely on power-spectral features, 17% 
use parametric modelling, and 17% use TFR methods. 

5. Feature selection and dimensionality reduction methods in BCI designs 

In BCI applications, several features are generally extracted from several brain activity 
channels (several electrodes in the case of EEG measurements) and from several time 
segments (or sessions), before being concatenated into a single feature vector. Hence, the 
BCIs are often affected by a problem known as curse of dimensionality (Bellman, 1961). It was 
demonstrated that the amount of data needed to properly describe the different classes 
increases exponentially with the dimensionality of the feature vectors (Friedman, 1997; Jain, 
2000). 
(Flotzinger et al., 1994) and (Pfurtscheller & Guger, 1999b) have shown that when feature 
selection is used, the classification accuracy is better than when all the features are used. If 
the number of training data is small relatively to the number of features, the classification 
algorithm which will use these features and data will very likely give bad results. It is 
recommended to use at least 5 to 10 times more training data per class than the number of 
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features (Jain & Chandrasekaran, 1982; Raudys & Jain, 1991). Unfortunately this cannot be 
applied in all BCI systems as generally the dimensionality is high and the training set small. 
Among fourteen feature selection and dimensionality reduction methods in BCI designs 
given by (Bashashati et al., 2007), we give here briefly the definitions of only three methods 
which are the most applied in BCI designs: 
• Genetic algorithm (GA) 

A Genetic algorithm (GA) (Goldberg, 1989; Flotzinger et al., 1994) is a search technique 
used in computing to find exact or approximate solutions to optimization and search 
problems. Genetic algorithms are categorized as global search heuristics. They are a 
particular class of evolutionary algorithms (EA) that use techniques inspired by 
evolutionary biology such as inheritance, mutation, selection, and crossover. These 
algorithms are based on a sequence of generations whereby the population in each 
generation produces the next while trying to optimize some fitness criterion (Brill, 1992), 
such as maximum ability to classify the training set in the classification stage. Each 
member of the current population is assigned a binay-valued chromosome of length n 
(for an n-dimensional classification problem), whereby the value of each bit within the 
chromosome defines whether this feature is to be used for classification or not. A 
chromosome 11 11 1 ...1 , therefore, means that all parameters are to be used for 
evaluation of the member's fitness and a chromosome 10100 ... 0 means that only the 
first and third parameters are to be used. The accuracy which can be achieved using a 
specific chromosome is calculated using a clustering algorithm such as k-nearest-neighbour 
classifier (K-NN) or any other clustering algorithm. For k-nearest-neighbour classification the 
k nearest data vectors are found for a new input vector which is then classified to the 
label to which the majority of these k data vectors belong. For more details, refer to 
(Flotzinger et al., 1994; Brill, 1992). 

• Principal component analysis (PCA) 
Principal component analysis (PCA) may be used in pre-processing stage of BCI designs 
(see section 3.3). PCA may also be used as a dimensionality reduction technique in 
terms of capturing the variance of the data, and it accounts for correlation among 
variable. It gives lower-dimensional representations of the data which better generalize 
to data independent of the training set than using the entire dimensionality of the 
observation space (Scholkopf, 1999). The PCA transforms a set of m variables into 
another set of k ≤ m uncorrelated variables, maintaining as many of the variance of 
original data as possible (Moghaddam, 2002). 

• Distinctive sensitive learning vector quantization (DSLVQ) 
The influence of distinctive features on the distance function in the standard learning 

vector quantisation (LVQ) (Kohonen, 1990) is equal. The Distinction Sensitive (DS) 
algorithm (DSLVQ) (Flotzinger et al., 1994) employs an adaptive weighted distance 

function where the influence of features which frequently contribute to 
misclassifications is reduced while the influence of features which are shown to be very 
significant for proper classification is increased. For the weighted distance function of 
DSLVQ a global weights vector w is used which stores the distinctiveness, i.e. the 
relevance, of every single feature. This weights vector is adapted interactively along with 
the codebook. The distance function used may be the Euclidean distance, or any other 
weighted distance functions. (Flotzinger et al., 1994) proposed the following Euclidean 

distance between two feature vectors x and y: 
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(6) 

The weights vector w can be seen as a scaling transformation from the original feature 
space into a DS-feature space. This transformation increases distances for very distinctive 
features and decreases distances for common features. Despite the usage of a weighted 
distance function, the codebook learning for DSLVQ is the same as for the LVQ3 algorithm. 
Additionally, the weights vector w must be updated with every learning iteration. 
Learning weights and codebook settings in parallel facilitate a quick approximation of 
these related parameters. For more details, refer to (Flotzinger et al., 1994). 

Fig. 7 shows the statistical results of the study realised by (Bashashati et al., 2007) 
concerning feature selection and dimensionality reduction methods in BCI designs. (Bashashati 
et al., 2007) concluded that thirty-eight of the reported BCI designs employ feature selection 
and dimensionality reduction algorithms; 26% of these 38 designs use genetic algorithms 
(GA), 24% use distinctive sensitive learning vector quantization (DSLVQ), and 13% use PCA. 
 

  
Fig. 7. Feature selection and dimensionality reduction methods in BCI designs. Figure 
modified from (Bashashati et al., 2007) with authorisation. 

6. Classification in BCIs 

Brain activity patterns are considered as dynamic stochastic processes due both to biological 
and to technical factors. Biologically, they change due to user fatigue and attention, due to 
disease progression, and with the process of training. Technically, they change due to 
amplifier noises, ambient noises, and the variation of electrode impedances (Wolpaw et al., 
2002). Therefore, the time course of the generated time series signals (e.g. EEG) should be 
taken into account during feature extraction (Wolpaw et al., 2002). To use this temporal 
information, three main approaches have been proposed (Lotte et al., 2007): 
• concatenation of features from different time segments: extracting features from several 

time segments and concatenating them into a single feature vector (Pfurtscheller et al., 
1997; Haselsteiner & Pfurtscheller, 2000); 

• combination of classifications at different time segments: it consists in performing the 
feature extraction and classification steps on several time segments and then combining 
the results of the different classifiers (Penny & Roberts, 1999; Lemm et al., 2004); 

• dynamic classification: it consists in extracting features from several time segments to 
build a temporal sequence of feature vectors. This sequence can be classified using a 
dynamic classifier (Haselsteiner & Pfurtscheller, 2000; Obermeier et al., 2001). 
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The first approach is the most widely used despite that the obtained feature vectors are 
often of high dimensionality. 

6.1 Classifier selection criteria 
In order to choose the most appropriate classifier for a given set of features, the properties of 
the available classifiers must be chosen according to the following four classifier taxonomy 
and two main problems in BCI design as described by (Lotte et al., 2007): 

6.1.1 Classifier taxonomy 

• Generative or Informative classifier - Discriminative classifier 
Generative classifiers, e.g., Bayes quadratic, learn the class models. To classify a feature 
vector, generative classifiers compute the likelihood of each class and choose the most 
likely. Discriminative ones, e.g., support vector machines (SVM), only learn the way of 
discriminating the classes or the class membership in order to classify a feature vector 
directly (Ng & Jordan, 2002; Rubinstein & Hastie, 1997); 

• Static classifier - Dynamic classifier 
static classifiers, e.g., multilayer perceptrons (MP), cannot take into account temporal 
information during classification as they classify a single feature vector. In contrast, 
dynamic classifiers such as hidden Markov model (HMM) (Rabiner, 1989), FIR filters-
multilayer perceptrons (FIR-MLP) (Haselsteiner & Pfurtscheller, 2000) and Tree-based 
neural network (TBNN) (Ivanova et al., 1995), can classify a sequence of feature vectors 
and thus catch temporal dynamics. 

• Stable classifier - Unstable classifier 
Stable classifiers, e.g., linear discriminant analysis (LDA), have a low complexity (or 
capacity (Vapnik, 1995; 1999)). They are said to be stable as small variations in the 
training set do not considerably affect their performance. In contrast, unstable classifiers, 
e.g., multilayer perceptron, have a high complexity. As for them, small variations of the 
training set may lead to important changes in performance (Breiman, 1998). 

• Regularized classifier 
Regularization consists in carefully controlling the complexity of a classifier in order to 
prevent overtraining. Regularization helps limit (a) the influence of outliers and strong 
noise, (b) the complexity of the classifier and (c) the raggedness of the decision surface 
(Müller et al., 2003). A regularized classifier has good generalization performances and is 
more robust with respect to outliers (Duda, 2001; Jain, 2000) (see section 6.1.2). 

6.1.2 Main classification problems in BCI research 
While performing a pattern recognition task, classifiers may be facing two main problems 
related to the feature properties. These problems are: the curse-of-dimensionality and the bias-

variance tradeoff. The first problem is discussed in section 5. The second problem is a general 
one where three inherent errors may occur. 
Independently of the applications of the classification, this stage consists in association of the 
true class label c* corresponding to a feature vector x using a mapping (or a model f that may 
be learnt from a training set T. Let f * the optimal unknown theoretical mapping that has 
generated the labels. If the mean square error (MSE) is considered to evaluate the inherent 
classification errors, then these errors can be decomposed into three terms (Breiman, 1998; 
Friedman, 1997): 
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(7) 

where the expectation is with respect to the distribution over c* and the introduced term  
E[ f (x)] is the mean value of the estimated class label. These three terms describe three 
possible sources of inherent classification error: 
• noise: represents the irreducible noise within the system; 
• bias: represents a systematic error which is the divergence between the estimated 

mapping (i.e. the estimated class label) and the best mapping (i.e. the true class label). 
This term depends strongly on the classification method that has been chosen to obtain f 
(linear, quadratic, . . . ); 

• variance: reflects the sensitivity to the used training set T. 
The only terms that may be minimised are the bias and the variance terms. Simple classifiers 
(e.g. linear classifiers) have a high bias but low variance whereas more complex classifiers (e.g. 
polynomial classifiers) have a low bias but a high variance. To select the optimal model 
complexity, we must solve this bias-variance dilemma (Geman et al., 1992). 
Actually, stable classifiers tend to have a high bias and a low variance, whereas the inverse is 
true for unstable classifiers. This can explain why simple classifiers sometimes outperform 
more complex ones. A low variance can be a solution to cope with the stochastic nature of 
brain signals. In the presence of strong noise and outliers, even linear systems can fail. One 
way of overcoming this problem is to use techniques, known as stabilization techniques. These 
techniques can be used to reduce the variance, e.g. combination of classifiers (Breiman, 1998) 
and regularisation techniques (Duda, 2001; Jain, 2000). 
The nonlinear classifiers have more number of parameters than those in the linear classifiers. In 
addition, these parameters must be chosen appropriately. However, when there are large 
amounts and limited knowledge of data, nonlinear classifiers are better suited in finding the 
potentially more complex structure in the data. In particular, when the source of the data to 
be classified is not well known, using methods that are good at finding nonlinear 
transformation of the data is suggested. In these cases, kernel-based and neural-networks 
based methods can be used to determine the transformations. Kernel-based classifiers are 
classification methods that apply a linear classification in some appropriate (kernel) feature 
space. Thus, all the beneficial properties of linear classification are maintained, but at the 
same time, the overall classification is nonlinear. Examples of such kernel-based classification 
methods are support vector machines (SVMs) (Vapnik, 1999) and kernel Fisher discriminant 
(KFD) (Müller et al., 2003). 
Better performances might also be achieved by using group (committee) of classifiers rather 
than using a single classifier but only a few BCI designs have employed such an approach in 
classifying features and achieved performance improvements (Millan et al., 2000; Peters et 
al., 2001; Varsta et al., 2000; Millan et al., 2002). 

6.2 Classifiers used in BCI research 
There are many categories of classification algorithms used to design BCIs. Among the more 
used Classifiers in the BCI community are: linear discriminant classifiers (LDC), neural networks 
(NN), nonlinear Bayesian classifiers (NBC), nearest neighbours classifiers (NNC) and combinations 
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of classifiers. As a linear discriminant classifiers (LDC), we introduce in this section only the 
linear discriminant analysis (LDA) and support vector machines (SVMs), and as nonlinear 
Bayesian classifiers (NBC), we introduce in this section only the hidden Markov models (HMMs). 
For an extensive description and tutorials on these and other approaches, refer to (Lotte et 
al., 2007; Bashashati et al., 2007; Hung et al., 2005). 

6.2.1 linear discriminant classifiers (LDC) 
LDC are the most popular in BCI design. Two main kinds of LDC have been used for BCI 
design, namely, linear discriminant analysis (LDA) and support vector machine (SVM). 

6.2.1.1 Linear discriminant analysis (LDA) 

LDA or Fisher's LDA has been used with success in many of BCIs such as motor imagery 
based BCI (Pfurtscheller, 1999c), P300 applications (Bostanov, 2004; Hoffman et al., 2008), 
multiclass (Garrett et al., 2003) or asynchronous (Scherer et al., 2004) BCI. It has a very low 
computational requirement and it is simple to use and generally provides good results. 
The idea of LDA (Fukunaga, 1990; Duda, 2001) is to find a weight vector w so that two projected 
clusters c1 and c2 of N1 and N2 training feature vectors  on 
w can be well separated from each other by hyperplanes while keeping small variance of each 
cluster. This can be done by maximizing the so-called Fisher's criterion. LDA assumes normal 
distribution of the data, with equal covariance matrix for both classes. The separating 
hyperplane is obtained by seeking the projection that maximizes the distance between the 
two classes' means and minimizes the between variance (Fukunaga, 1990). 

 
(8) 

with respect to w, where Sb is the between-class variance matrix: 

 (9) 

and Sw is the within-class variance matrix: 

 
(10) 

where mc1 and mc2 are the cluster mean of classes c1 and c2 respectively. 
The optimal weight vector w is the eigenverctor corresponding to the largest eigenvalue of 

. Once this vector is obtained using the training data xi is obtained by means of the 
training data, the classification then may be done by projecting the test feature vectors on it, 
and then the projected test feature vectors may be classified by employing a clustering rule 
such as k-nearest-neighbor decision rule. 
In the case of multiclass separation problem (ci, i > 2), several hyperplanes are used. The 
strategy generally used in this case is the one versus the rest (OVR) (Schlögl et al., 2005) which 
separate each class from all the others. This technique is suitable for the on-line BCIs because 
it has a very low computational requirement. It is simple to use and generally provides good 
results. The main drawback of LDA is its linearity that can provide poor results on complex 
nonlinear EEG data (Garcia et al., 2003). A regularized Fisher's LDA (RFLDA) has also been 
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used in the field of BCI (Blankertz et al., 2002; Müller et al., 2004) and give better results for 
BCI than the non-regularized version (Blankertz et al., 2002; Müller et al., 2004). 

6.2.1.2 Support vector machine (SVM) 

The generalization of the pattern recognition or regression results obtained from a limited 
sample constitutes the essential stake of the artificial training (machine learning). It is known 
that the only minimization of the empirical risk (the error of training) does not guarantee a 
weak error on a corpus of test. Thus the techniques of regularization, used since the years 
1960, allow to carrying out a compromise between the capacity of the model to be learned 
(related to its complexity) and its aptitude to be generalized. From the point of view 
conceptual, the concept of structural risk introduced by Vladimir Vapnik into the years 1990 
(Vapnik, 1995; Cortes & Vapnik, 1995; Vapnik, 1999) gives a bound of the error of test 
according to the error of training and of the complexity of the model. Support vector machine 
(SVM) have been applied in various domains for classification and regression. 
In the following, we will outline briefly the idea of SVM for binary classification and then 
how this method can be applied to solve multi-class classification problems. 
• Binary classification SVM 

Support vector machines were originally designed for binary classification (Cortes & 
Vapnik, 1995). The main idea of this approach is to construct a hyperplane in order to 
separate two classes (ci ∈ {–1, 1} or ci ∈ {0, 1}) so that the margin (Friedman, 1996) (the 
distance between the hyperplane and the nearest point(s) of each classes) is maximal and 
with minimal error. The theoretical principle of the SVM comprises two fundamental 
steps: 
1. Make a nonlinear mapping Φ of the feature vectors from input space towards 

another space (redescription space) of higher dimension provided with a scalar 
product (Hilbert space), Fig. 8. 

 

 
Fig. 8. The idea of the SVM: transform a nonlinear problem of separation in the representation 
space into a linear problem of separation in a redescription space of higher dimension. 

2. Construct an optimal hyperplane allowing an optimal linear separation in this 
redescription space. 

The interest of this mapping is that in the redescription space the pattern recognition can 
prove easy task: intuitively, more the dimension of the redescription space is hight; more 
the probability of being able to find a hyperplane separating between the feature vectors is 
high, Fig. 9. 
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Fig. 9. Linear mapping: the optimal separating hyperplane is that which maximizes the 
margin in the redescription space. 

From the mathematical point of view, the nonlinear mapping (Φ : R2 →Rn) is realized 
via a Kernel function (Hilbert-Schmidt Kernel) easy to calculate. In practice, some families 
of Kernel functions are known and it is allocated to the user of SVM to carry out test to 
determine that which is appropriate for its application (it is a question of translating the 
maximum a priori knowledge of which one lays out on the studied problem and the 
data). Fig. 10 shows a non-linear separation example. 

 

 
Fig. 10. Non-linear mapping: a complex shape. Figure from Schölkopf & Smola (2002). 

Let x denote a vector drawn from the input space, assumed to be of dimension N0 and let 
{Φj(x)}, j = 1, 2, ..., N1 denote a set of nonlinear transformations from the input space to the 
redescription space, where N1 is the dimension of the redescription space. Given such a set 
of nonlinear transformations, we may define a hyperplane acting as the decision surface 
which is computed in the redescription space in terms of the linear weights of the machine 
as follows: 

 
(11) 

where w = {w0, w1, ..., wN1} denotes a set of linear weights connecting the redescription 

space to the output space. And it is assumed that Φ0(x) = 1 for all x, so that w0 denotes the 
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bias. Define the vector Φ(x) = [Φ0(x), Φ1(x), ..., ΦN1 (x)]T, then we can rewrite the decision 

surface in the compact form: 

 (12) 

Given the training feature vectors, Φ(xi) corresponds to the input pattern xi, and the 
corresponding desired response di, i = 1, 2, ...,N0, which is either 1 or -1 (or, 0 or 1), it has 
been shown that (Haykin, 1994) the optimal weight vector w can be expressed as 

 
(13) 

where {αi}, i = 1, 2, ..., N0 is the optimal Lagrange multipliers resulted from maximizing the 
subject function 

 
(14) 

subject to the constraints 
(1)   and 
(2) 0 ≤ αi ≤ C, 
where C is a user-specified constant which may be considered as regulation parameter. 
Substituting equation (13) into (12), we obtain the optimal hyperplane 

 
(15) 

which will be used for linearly separating the testing data, i.e. for any testing sample x, if 

 
(16) 

then x is classified into the subset having the training response di = 1, otherwise it is 
classified into the other subset with di = –1 (or 0). The user may choose the radial basis 

function (RBF) in defining the inner product kernel K(x, xi) = ΦT(xi)Φ(x) . 
According to equation (16), once the number of nonzero Lagrange multipliers, αi, is 
determined, the number of radial basis functions and their centers are determined 
automatically. This differs from the design of the conventional neural network, such as 
the back-propagation neural network or radial-basis function network (Haykin, 1994), where 
the numbers of hidden layers or of hidden neuron are usually determined heuristically. 
The kernel generally used in BCI research is the Gaussian or radial basis function (RBF) 
kernel: 

 
(17) 
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In this case, the SVM is known as Gaussian SVM or RBF SVM (Burges, 1998; Bennett & 
Campbell, 2000; Garrett et al., 2003; Kaper et al., 2004). 
This classifier has been applied, with success, to a relatively large number of BCIs 
problems (Blankertz et al., 2002; Garrett et al., 2003; Rakotomamonjy et al., 2005; Helmy 
et al., 2008; Trad et al., 2009). 

• Multiclass SVM (M-SVM) 
To solve a given multiclass problem it is preferable to use a combination of several 
binary SVM classifiers and a decision strategy to decide the class of the input pattern. 
The most popular methods to achieve this goal are: one-versus-all method using Winner-
Takes- All strategy (WTA-SVM); One-Versus-One method implemented by Max-Wins 
Voting (MWV-SVM) (Duan et al., 2007); Decision Directed Acyclic Graph (DAGSVM) (Platt 
et al., 2000); and error correcting codes (Dietterich & Bakiri, 1995). 

6.2.2 Nonlinear Bayesian Classifiers (NBC) 
This section introduces one Bayesian classifier used for BCI: hidden Markov models (HMMs). 
This Classifier produces nonlinear decision boundaries. Furthermore, they are generative, which 
enables them to perform more efficient rejection of uncertain samples than discriminative 
classifiers. As brain signals used to drive BCI have specific time courses, HMM have been 
applied to the classification of temporal sequences of BCI features or even raw EEG 
(Obermeier et al., 2000; 2001; Cincotti et al., 2003; Schlogl et al., 2005; Helmy et al., 2008; Trad 
et al., 2009). 
HMMs are very efficient nonlinear techniques used for the classification of time series 
(Rabiner, 1989). HMMs have been widely applied in automatic speech recognition and now 
being applied to many fields, e.g. signal processing, pattern recognition, modelling and 
control. Their use necessitates two stages: a training stage where the stochastic process 
models are estimated through extensive observation corpus and decoding or detection stage 

where the model may be used off/on-line to obtain the likelihoods of the given testing 
sequence evaluated by each model. 
In its conventional definition, a HMM is defined by the following compact notation to 
indicate the complete parameter set of the model λ = (Π,A,B), where Π, A and B are the 
initial state distribution vector, matrix of state transition probabilities and the set of the 
observation probability distribution in each state, respectively: Π = [π1,π2, ...,πN], with  
πi = P(q1 = si), A = [aij], with aij = P(qt+1 = sj|qt = si), 1 ≤ i, j ≤ N, si, sj 2 S, S = {s1, s2, ..., sN},  
t ∈ {1, 2, ...,T}. The observation at time (or index) t, Ot, is considered in this paper as 
continuous Ot ∈ RK. For a continuous observation (CHMMs case), the state conditional 
probability of the observation bi(Ot) may be defined by a finite mixture of any log-concave 
or elliptically symmetric probability density function (pdf ), e.g. Gaussian pdf, with state conditional 

observation mean vector ¯i and state conditional observation covariance matrix Σi. In this paper we 
consider only a single Gaussian pdf, so B may be defined as B = {¯i, Σi}, i =1, 2, ..., N. At each 
instant of time t, the model is in one of the states i, 1≤i ≤ N. It outputs Ot according to a 
density function bi(Ot) and then jumps to state j, 1 ≤ j ≤ N with probability aij. The state 

transition matrix defines the structure of the HMM (Rabiner, 1989). The model λ may be 
obtained off-line by a given training procedure. In practice, given the observation sequence 
Ol = {O1,O2, ...,OT}, 1 ≤ l ≤ L and a model λ, the HMMs need three fundamental problems to 
be solved 

www.intechopen.com



 Intelligent and Biosensors 

 

48 

1.   How to calculate the likelihood P(Ol |λ)? The solution to this problem provides a 
       scoren of how Ol belongs to λ. 
2.  How to determine the most likely state sequence that corresponds to Ol? The 
       solution to this problem provides the sequence of the hidden states corresponding 
       to the given observation sequence Ol . 
3.   How to adjust the model λ in order to maximize P(Ol |λ)? This is the problem of  
        estimating the model parameters given a corpus of training observations sequences. 

Problems 1 and 2 are solved in the decoding or detection stage using the forward or the 
Viterbi algorithms (Rabiner, 1989), while problem 3 is solved during the training phase using 
either a conventional algorithm such as the Baum-Welch algorithm (Rabiner, 1989) or 
another optimization based algorithm such as the simulated annealing based algorithm 
(Alani & Hamam, 2010). 

7. Hidden Markov models and support vector machines approaches applied 
to P300-based Brain-Computer interface - a comparative study 

This section reports on our contribution to investigate the use of Hidden Markov Models 
(HMMs) and Support Vector Machines (SVMs) approaches for tasks classification in P300-
based Brain-Computer Interface (BCI) system. These approaches are applied to 
electroencephalogram (EEG) data sets of the École Polytechnique Fédérale de Laussane - BCI 
Groupe. These data are issued from five disabled subjects and four able-bodied subjects. For 
each subject, the HMMs and SVM are trained on different sets. Each set represents a specific 
P300 potential evoked task and contains multiple sequences (issued from different trials) of 
EEG records. For each task, the HMMs and the SVM that have been built take into account 
the variability of EEGs during different trials. Based on Bayesian Inference Criterion (BIC) 
(Schwarz, 1978), the proposed HMM training algorithm is able to select the optimal number 
of states corresponding to each task. This scheme makes the training procedure independent 
of the initialization problem and the a priori knowledge of the optimal number of HMM-
related states needed in the training algorithm. The SVM is trained by introducing the 
different sets at the same time. We report training procedures and testing results for the 
HMMs and the SVM then we compare the performance of the two approaches on the same 
testing data sets. We also present promising preliminary comparative results based on the 
two classification approaches with correct classification rates for all subjects. 

7.1 Problem definition 
It has been shown by (Hoffman et al., 2008) that evoked potential (P300) in EEG data due to 
different images (tasks) appearing randomly on a computer screen in face of the subject may 
be efficiently used for exogenous mental task recognition. In Hoffman's work, extensions of 
LDA have been employed for pattern recognition. In our work we investigate the use of 
HMMs and SVM to classify the same P300 based tasks defined in (Hoffman et al., 2008) and 
using tasks data given in (Hoffman et al., 2009). 

7.2 Data structure and feature extraction 
For the clarity of the following sections, this section introduce briefly the experimental setup 
and the data given by Hoffman et al. (Hoffman et al., 2008), (Hoffman et al., 2009) that we 
adopted in our work. 
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7.3 Hoffman's experimental setup 
In the experimental setup given by Hoffman et al., the users used a laptop screen displaying 
randomly six images (a television, a telephone, a lamp, a door, a window, and a radio), Fig. 
11. Subjects were asked to count silently how often a prescribed image was flashed. The six 
images (Tasks) were displayed on the screen and a warning tone was issued. 
 

 
Fig. 11. The display used for evoking the P300. One image was flashed at a time (Hoffman et 
al., 2008), (Hoffman et al., 2009). 

These images were selected in order to control some electrical appliances based on the BCI 
system. Each image flashed during 100 ms followed by a period of 300 ms of non flashing. 
The sampling rate of EEG was 2048 Hz using 32 electrodes according to the 10-20 
international system. 

7.3.1 Subjects 
The recorded data given by Hoffman et al. (Hoffman et al., 2009) and used in our work are 
issued from five disabled subjects (subjects 1 to 5) and four able-bodied subjects (subjects 6 
to 9). The disabled subjects were all wheelchair-bound but had varying communication and 
limb muscle control abilities. Subjects 1 and 2 were able to perform simple, slow movements 
with their arms and hands but they were unable to control other extremities. Spoken 
communication with subjects 1 and 2 was possible, although both subjects suffered from 
mild dysarthria. Subject 3 was able to perform restricted movements with his left hand but 
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was unable to move his arms or other extremities. Spoken communication with subject 3 
was impossible. However the patient was able to answer yes/no questions with eye blinks. 
Subject 4 had very little control over arm and hand movements. Spoken communication was 
possible with subject 4, although a mild dysarthria existed. Subject 5 was only able to 
perform extremely slow and relatively uncontrolled movements with hands and arms. Due 
to a severe hypophony and large fluctuations in the level of alertness, communication with 
subject 5 was very difficult, thus this subject was not taken into account by Hoffman at al. 
(Hoffman et al., 2008), (Hoffman et al., 2009). Subjects 6 to 9 were normal persons (all male, 
age 30 to 32). None of subjects 6 to 9 had known neurological deficits. In this study we use 
the data from all subjects. 

7.3.2 Preprocessing and feature extraction 
The data were preprocessed (referencing, bandpass-filtering, downsampling, and artefacts 
rejection). The EEG was downsampled from 2048 Hz to 32 Hz by selecting each 64th sample 
from the bandpass-filtered data. For each subject, the data were obtained during four 
sessions. One session comprised on average 810 trials, and the whole data for one subject 
consisted on average of 3240 trials. One trial duration takes 1000 ms. Single trials of duration 
1000 ms were extracted from the data. Single trials started at stimulus onset, i.e. at the 
beginning of the intensification of an image, and ended 1000 ms after stimulus onset. Due to 
the Inter-stimulus interval of 400 ms, the last 600 ms of each trial were overlapped with the 
first 600 ms of the following trial. 

7.3.3 Electrode selection 
Hoffman et al. (Hoffman et al., 2008), (Hoffman et al., 2009) proved that the configuration 
with 8 electrodes gives the best result for the studying data Fig. 12. 
 

 
Fig. 12. The best configuration with 8 electrodes given by Hoffman et al. (Hoffman et al., 
2008), (Hoffman et al., 2009). 

7.3.4 Feature vectors construction 

The samples from the selected electrodes were concatenated to obtain matrices of feature 
vectors. Each matrix is composed of Ne lines and Nt columns, where Ne denotes the number 
of electrodes and Nt denotes the number of temporal samples (feature vectors) in one trial. 
Due to the trial duration of 1000 ms and the downsampling to 32 Hz in (Hoffman et al., 2008) 
and (Hoffman et al., 2009), Nt is always taken equal to 32. In this work, we consider only 
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matrices of dimension 8 × 32, i.e. each matrix O contains a sequence of 32 feature vectors O = 
{O1, O2, ..., O32}, Ot ∈ RK, K = 8. For the purpose of our HMMs or SVM training and testing 
schemes, we divided the set of all matrices corresponding to each subject into two parts: 
training set and testing set. Each set contains six subsets of multiple observation sequences 
(feature matrices {O1, O2, ..., OL}, L ≥ 1), one subset for each image (Task) issued from 
different trials. Fig. 13 summarizes the training and data structures used in this work 
 

 
Fig. 13. Structures of the training and testing data sets for subject s, 1 ≤ s ≤ 8. There are six 
subsets of multiple observation sequences (feature matrices {O1, O2, ...,OL}, L ≥ 1), one subset 
for each image (Task). Each matrix is of dimension 8 ×32. 

7.4 Method 
In this section, we give the HMM and SVM training schemes and their implementations in 
the context of our work. 

7.5 HMM training algorithm 
Given a set of L training data sequences {O1, O2, ..., OL}, Ol = {O1,O2, ...,OTl }, 1 ≤ l ≤ L issued 
from one of Z classes of stochastic processes pz, z ∈ 1, 2, 3, ..., Z. The problem of the training 
in our work is to build Z HMMs for each process pz. 
We consider that each HMM contains an optimal state number Nopt of internal states to be 
determined automatically between Nmin and Nmax. In order to determine Nopt, we developed 
an optimal state number selection algorithm based on the Bayesian Inference Criterion. This 
algorithm constructs a number of HMMs with different number of states between Nmin and 
Nmax given by the user. For every state number, each iteration is initialized by the most 
appropriate model using data clustering, and by the rejection of the least linked state or the 
rejection of the least probable state of the previous iteration. Consequently, every training 
iteration begins by a more precise model. After constructing these HMMs, the algorithm 
selects the optimal HMM with the number of states that maximize the BIC. 
Given Nmin and Nmax, the algorithm may be summarized as follows: 
1.    Initialization (clustering): estimate the initial HMM λ0 with Nmax states using k-mean 
         clustering algorithm. 
2.      While N ≥Nmin, do: 
         a.    run a training algorithm such a Baum-Welch algorithm (used in this work) until 
                  some convergence criterion is satisfied 
         b.     calculate and save the selection criterion, BIC(N), of the current model 
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FN is the total number of free parameters of the current estimated HMM (λN) and Tt 

be the total number of observations in all training observation sequences, i.e. 
  

c.     determine the number of zeros in each line of the state transition matrix, A. 
d.   select the best initialization method for the next HMM according to the following 
        criterion: 

i. if all the lines of A contain zeros, then make a clustering of the observation 
data. 

ii. if all the lines of A don't contain zeros but only some lines, then find and reject 
the state with minimal connections to other states. 

iii. else, calculate the least probable state and reject it. 

e.     obtain a reduced model λ  

f.      Fixe N ←N – 1 and λN   λ  and go to step 2 
In this work we consider only a single Gaussian pdf, so B may be defined as B = {¯i, Σi},  
i = 1, 2, ...,N. In this case FN is calculated by 

 
where Ot ∈ RK. In our case, we used Nmin = 2 and Nmax = 4. These values were chosen in order 
to not constraint the clustering algorithm because the number of feature vectors is always 
equal to 32 (see section 7.2). The training and testing data sets for each subject described in 
section 7.2 were used for the following training and testing schemes: 

7.5.1 Training scheme 
Using the above algorithm, the goal of this scheme is to construct, for each subject, six 
HMMs: HMM1, HMM2, .., HMM6 corresponding to six images (Tasks). Each HMM is 
constructed with either 2 states, 3 states or 4 states. The training data sequences for all 
subjects s,1 ≤ s ≤ 8 and for the six images, all collected from different trials (see section 7.2), 
are given by the set {Tr_s_I}, 1 ≤ s ≤ 8, 1 ≤ I ≤ 6, where .Tr. and .I. denote training and image 
(or task) number respectively. 

7.5.2 Off-line testing scheme 
Our task is to classify six given testing feature sequences into class I, 1 ≤ I ≤ 6. In order to 
make off-line (or on-line detection in future work) of these sequences, a stochastic dynamic 
programming based (Viterbi decoding algorithm) (Rabiner, 1989) has been used. This 
algorithm gives at the same time the solution to problems 1 and 2 of HMMs discussed in 
section 6.2.2. In this case, the likelihoods of the data sequence are compared with respect to 
all six built HMMs. The selected HMM (i.e. task) is the model that maximize the likelihood. 
The testing data sequences for all subjects s,1 ≤ s ≤ 8 and for the six images, all collected from 
six trials (Hoffman et al., 2008), (Hoffman et al., 2009), are given by the set {Te_s_I}, 1 ≤ s ≤ 8, 
1 ≤ I ≤ 6, where Te and I denote testing and image (or task) number respectively. Fig 14 show 
the training and testing schemes for one subject and for six images. 

7.5.3 Multiclass SVM (M-SVM) 
In our work, we used a modified version of the multiclass SVM (M-SVM). The M-SVM 
method adopted in this work is the one-versus-all. This method is done by winner takes-all 
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Fig. 14. Left: Training scheme for one subject and for six images. Right: Testing scheme for 
one subject given one or more task-related sequences. 

combination strategy (Friedman, 1996), the outputs of the binary one-vs-all classifiers are 
compared and the most probable output among the other ones is chosen. The ith SVM is 
trained with all of the examples in the ith class with positive labels, and the rest with negative 
labels. An optimal hyperplane is constructed to separate N/M positive examples from  
N(M – 1)/M negative examples where M is the number of SVMs and N is the number of the 
training examples used to construct an SVM for a given class. The same training and testing 
data structures, described in sections 7.2, 7.5.1 and 7.5.2, were used for SVM training and 
testing. To train or to test the SVM for a one subject, a number of 6 × L training or testing 
feature matrices for all 6 tasks corresponding to this subject were concatenated and fed 
together to the M-SVM algorithm. 

7.6 Results 
The performance of BCI depends on different evaluation parameters. Among these 
evaluation parameters of interest in this work is the classification accuracy. This section 
reports experimental evaluations of the classification accuracy based on the testing scheme 
introduced in section 7.5.2. Using 60 testing feature matrices for all tasks corresponding to 
each subject (10 feature matrices for each task), the obtained classification results give the 
highest percentages of classification rates for the two applied approaches SVM and HMMs. 
The highest classification percent rates for all subjects are shown in the diagonals of the 
confusion matrices given in Table 1, see (Appendix). To conclude on the obtained results, we 
consider the case of comparison between the one of the more severely disabled subject, i.e. 
subject 3 (late-stage amyotrophic lateral sclerosis) and one of the able-bodied subjects, i.e 
subject 6 (subject had no known neurological deficits). Fig. 15 show the HMMs-SVM based 
comparative result for subject 3 and for subject 6. Fig. 15 and Table 1 show that the overall 
classification percent rates give a satisfactory and promising results for all the disabled 
subjects compared to the able-bodied ones. Fig. 16 show the HMMs-SVM based comparative 
results of the means and standard deviations of all the tasks generated by all subjects. 
Fig. 16 show that 
• In both the HMMs and the SVM cases, the means and the standard deviations of the 

classification percent rates in the disabled subjects are approximately the same or 
slightly higher than those in the able-bodied. 
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Fig. 15. Classification percent rates versus task number for subject 3 (top): late-stage 
amyotrophic lateral sclerosis and for subject 6 (down): subject had no known neurological 
deficits. 
 

 
Fig. 16. Means and standard deviations of the classification percent rates in all tasks versus 
subject number (top: HMMs case, down: SVM case). 
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• In both the HMMs and the SVM cases, the means of the classification percent rates for 
the disabled subjects (except subject 2) as well as for the able-bodied subjects (except 
subject 9) are approximately uniformly distributed. 

• The standard deviations of the classification percent rates for all subjects in the SVM 
case are less than or equal to those in the HMMs case. 

These results give a way to study the ability of the different persons to learn the different 
P300-based BCI tasks. 

8. Conclusions 

This chapter have introduced a comprehensive survey of signal processing, feature extraction/ 
selection and classification methods used to provide the readers with guidelines on design 
brain-computer interfaces (BCIs). Based on the results given by (Bashashati et al., 2007) and 
(Lotte et al., 2007), this chapter shows which method have received more attention by the 
BCI community prior to 2006. However, other existing methods, not currently applied in 
BCI design, could be explored. The exploration of new methods would be strongly driven 
by the new properties that will have to be taken into consideration in the real future 
applications of BCIs. 
As a contribution to the classification methods, a Hidden Markov Models (HMMs) and support 
vector machines (SVM) approaches for task classification in P300-based BCI system is 
presented. In the HMMs case, we proposed a training algorithm which is able to select 
automatically the optimal number of HMM-related states corresponding to each set of EEG 
training records. In the SVM case, we applied a multiclass SVM based on the one-versus-all 
method. The confusion matrices give a correct classification rates for the able-bodied subjects 
as well as for the disabled subjects. The comparative results demonstrate that the two 
approaches are promising. If the HMMs are not constructed correctly or the training data set 
is not sufficient, the HMM approach gives in this case a low classification rates. In such 
cases, a hybrid HMM-SVM may be employed, where the HMM is used as a dynamic classifier 
and the SVM is used as a good discriminative classifier by considering all the training 
examples in the training data set and train all the task-related models simultaneously. The 
authors are currently working on extending this work to include off-line and on-line 
training and classification schemes by using this strategy. The information transfer rate (bit 
rate) will be taken into account to include both accuracy and speed of a BCI system. 

9. Acknowledgments 

The authors would like to thank Dr. U. Hoffman and the EPFL-Brain-Computer team for the 
data and the software given in (Hoffman et al., 2008) that they were used in this work. The 
authors would like also to thank Dr. A. Bashashati for his authorization to use or modify 
some figures given in the paper (Bashashati et al., 2007) to illustrate some sections given in 
this chapter. 

10. References 

Anderson, C.W. & Sijercic, Z. (1996). Classication of EEG signals from four subjects during 
five mental tasks. In Solving Engineering Problems with Neural Networks. 

www.intechopen.com



 Intelligent and Biosensors 

 

56 

Proceedings of the International Conference on Engineering Applications of Neural 

Networks (EANN.96). 
Anderson, C.W.; Stolz, E. A. & Shamsunder, S. (1998). Multivariate autoregressive models 

for classification of spontaneous electroencephalographic signals during mental 
tasks. IEEE Trans Biomed Eng, 45, pp. 277-286. 

Altenmüller, E. O.; Gerloff, C. (1999). Psychophysiology and the EEG. In: Niedermeyer E, 

Lopes da Silva FH, editors. Electroencephalography: basic principles, clinical 
applications and related fields, 4th ed. Baltimore, MD: Williams and Wilkins, pp. 
637-655. 

Al-ani, T. & Hamam, Y. (2010). A low Complexity Simulated Annealing Approach For 
Training Hidden Markov Models. Int. J. of Operational Research (IJOR), (Accepted for 
publication), Vol. 8, No. 3. 

Bayliss, J. D. & Ballard, D. H. (1999). Single trial P300 recognition in a virtual environment. 
Proc. Int. ICSC Symp. on Soft Computing in Biomedicine, (Genova, Italy). 

Bayliss, J. D. & Ballard, D. H. (2000a). Recognizing evoked potentials in a virtual 
environment. Advances in Neural Information Processing Systems, Vol 12, ed S A Solla, 
T K Leen and K R Müller (Cambridge, MA: MIT Press), pp. 3-9. 

Bayliss, J. D. & Ballard, D. H. (2000b). A virtual reality testbed for brain-computer interface 
research IEEE Trans. on Rehabilitation Engineering, Vol. 8, pp. 188-190. 

Bayliss, J. D.; Inverso, S. A. & Tentler, A. (2004). Changing the P300 Brain-Computer 
Interface. Journal of CyberPsychology & Behavior, Vol. 7, No.6, pp.694-704. 

Bayliss, J. D. & Inverso, S. A. (2005). Automatic Error Correction Using P3 Response 
Verification for a Brain-Computer Interface. Proc. 11th International Conference on 

Human- Computer Interaction, July 22-27, Las Vegas, NV. Mahwah: Lawrence 
Relbaum Associates. 

Bashashati, A.;Ward R. K. & Birch, G. E. (2005). A new design of the asynchronous brainŰ - 
computer interface using the knowledge of the path of features. Proc. 2nd IEEE-

EMBS Conf. on Neural Engineering, (Arlington, VA), pp. 101-104. 
Bashashati, A.; Fatourechi, M.;Ward R. K. & Birch, G. E. (2007). A survey of signal 

processing algorithms in brain-computer interfaces based on electrical brain 
signals, J. Neural Eng., June, Vol. 4, No. 2, pp. R32-R57. 

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton University Press, 
New Jersey. 

Bell, C. J.; Shenoy, P.; Chalodhorn, R. & Rao, R. P. N. (2008). Control of a humanoid robot by 
a noninvasive brainŰcomputer interface in humans, J. Neural Eng. 5, pp. 214-220. 

Bennett, K. P. & Campbell, C. (2000). Support vector machines: hype or hallelujah?, ACM 

SIGKDD Explor. Newslett., pp. 21-13. 
Birbaumer, N.; Flor, H.; Ghanayim, N.; Hinterberger, T.; Iverson, I.; Taub, E.; Kotchoubey, 

B.; Kubler, A. &. Perelmouter, J. (1999). A spelling device for the paralyzed, Nature, 
Vol.398, No. 6725, pp. 297-298. 

Birbaumer, N.; Kübler, A.; Ghanayim, N.; Hinterberger, T.; Perelmouter, J.; Kaiser, J.; 
Iversen, I.; Kotchoubey, B.; Neumann, N. & Flor, H. (2000). The thought translation 
device (TTD) for completely paralyzed patients. IEEE Trans. Rehab. Eng., Vol. 8, No. 
2, pp. 190-192. 

www.intechopen.com



Signal Processing and Classification Approaches for Brain-computer Interface  

 

57 

Birbaumer1, N. & Cohen, L. G. (2007). Brain-computer interfaces: communication and 
restoration of movement in paralysis. The journal of Physiology, Vol. 579, No. 3, pp. 
637-642. 

Blankertz B; Curio, G. & Müller, K. R. (2002). Classifying single trial EEG: towards brain 
computer interfacing. Adv. Neural Inf. Process. Syst. (NIPS 01), Vol. 14, 157-164. 

Blankertz, B.; Dornhege, G.; Krauledat, M.; Müller, K. R.; Kunzmann, V.; Losch, F. & Curio, 
G. (2006). The Berlin brain-computer interface: EEG-based communication without 
subject training. IEEE Trans. on Rehabilitation Engineering, Vol. 14, No. 2., pp. 147-
152. 

Boostani, R. & Moradi, M. H. (2004). A new approach in the BCI research based on fractal 
dimension as feature and adaboost as classifier. Journal of Neural Engineering, Vol. 1, 
No. 4, pp. 212-217. 

Bostanov, V. (2004). BCI competition 2003-data sets ib and IIb: feature extraction from 
eventrelated brain potentials with the continuous wavelet transform and the t-
value scalogram. IEEE Trans. Biomed. Eng., Vol. 51, pp. 1057-1061. 

Breiman, L. (1998). Arcing classifiers. Ann. Stat., Vol. 26, pp. 801-849. 
Brill, F.Z.; Brown, D.E. & Martin, W.N. (1992). Fast Genetic Selection of Features for Neural 

Network Classsers. IEEE Transactions on Neural Networks, Vol. 3, pp. 324-328. 
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Knowl. 

Discov. Data Min., Vol. 2, pp. 121-167. 
Burke, D. P.; Kelly, S. P.; deChazal, P.; Reilly, R. B. & Finucane, C. (2005). A parametric 

feature extraction and classification strategy for brain-computer interfacing. IEEE 

Trans. On Rehabilitation Engineering, Vol. 13, No. 1. 
Cincotti, F.; Scipione, A.; Tiniperi, A.; Mattia, D.; Marciani, M. G.; Millán J. del R; Salinari, S.; 

Bianchi, L. & Babiloni, F. (2003). Comparison of different feature classifiers for 
brain computer interfaces. Proc. 1st Int. IEEE EMBS Conf. on Neural Engineering. 

Comon, P. (1994). Independent Component Analysis: a new concept?. Signal Processing, 

Elsevier, Vol. 36, No. 3, pp. 287-314. 
Congedo, M.; Lotte, F. & Lécuyer, A. (2006). Classification of movement intention by 

spatially filtered electromagnetic inverse solutions. Physics in Medicine and Biology, 
Vol. 51, No. 8, pp. 1971-1989. 

Cortes, C. & Vapnik, V. (1995). Support vector networks. Machine Learning. Machine 

Learning, Vol. 20, pp. 273-297. 
Dien, J. (1998). Issues in the application of the average reference: Review, critiques, and 

recommendations. Behavior Research Methods. Instruments, & Computers, Vol. 30, 
No. 1, pp. 34-43. 

Dietterich, T. & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting 
output codes. Journal of Artificial Intelligence Research, Vol. 2, pp. 263-286. 

Dobkin B. H. (2007). Brain-computer interface technology as a tool to augment plasticity and 
outcomes for neurological rehabilitation, Journal of physiology, vol. 579, No. 3, pp. 
637-642. 

Dornhege, G.; Millán, J. del R.; Hinterberger, T.; McFarland, D. J.; Müller, K-R; Sejnowski, T. 
J. (2007). An introduction to brain computer interfacing. In: Towards. Brain-Computer 
Interfacing, MIT Press, Cambridge. 

www.intechopen.com



 Intelligent and Biosensors 

 

58 

Duda, R. O.; Hart, P. E. & Stork, D. G. (2001). Pattern Recognition. 2nd. ed. (New York: Wiley- 

Interscience). 
Duan, K-B.; Rajapakse, J.C. & Nguyen, M.F. (2007). One-versus-one and one-versus-all 

multiclass SVM-RFE for gene selection in cancer classification. In: EvoBIO, pp. 228-
234. 

Farwell, L. A. & Donchin, E. (1988). Talking off the top of your head: Towards a mental 
prosthesis utilizing event-related brain potentials Electroencephalogr. Clin. 

Neurophysiol., Vol. 80 510-523. 
Flotzinger, D.; Pregenzer, M. & Pfurtscheller, G. (1994). Feature selection with distinction 

sensitive learning vector quantisation and genetic algorithms. Proc. IEEE Int. Conf. 

on Neural Networks, (Orlando, FL), pp. 3448-3451 
Friedman, J. H. (1996). Another approach to polychotomous classification. Technical report, 

Department of Statistics, Stanford University. 
Friedman, J. H. K. (1997). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data 

Min. Knowl. Discov., Vol. 1, pp. 55-77. 
Friedman, D.; Slater, M.; Steed, A.; Leeb, R.; Pfurtscheller, G. & Guger, C. (2004). Using a 

brain-computer-interface in a highly immersive virtual reality. In IEEE VR 

Workshop. 
Fukunaga, K. (1972). In: Introduction to Statistical Pattern Recognition, Oxford, UK., 

Clarendon.  
Fukunaga, K. (1990). Statistical Pattern Recognition. 2nd edn (New York: Academic). 
Garcia, G.; Ebrahimi, T. & Vesin, J. M. (2003). Support vector EEG classification in the 

Fourier and time-frequency correlation domains. Proc. 1st IEEE-EMBS Conf. on 

Neural Engineering, Capri Island, Italy, pp. 591-594. 
Garrett, D.; Peterson, D. A.; Anderson, C. W. & nd Thaut, M. H. (2003). Comparison of 

linear, nonlinear, and feature selection methods for EEG signal classification. IEEE 

Trans. On Rehabilitation Engineering, Vol. 11, pp. 141-144. 
Geman, S.; Bienenstock, E. & Doursat, R. (1992). Neural Networks and the Bias/Variance 

Dilemma. Neural Computation, Vol. 4, pp. 1-58. 
Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization. and Machine Learning. 

Addison-Wesley.  
Grave de Peralta Menendez, Gonzalez Andino, R.; S.; Perez L.,; Ferrez, P. & Millán, J. (2005). 

Non-invasive estimation of local field potentials for neuroprosthesis control. 
Cognitive Processing, Special Issue on Motor Planning in Humans and 
Neuroprosthesis Control. 

Gupta, S. & Singh, H. (1996) Preprocessing EEG signals for direct human-system interface. 
Intelligence and Systems. IEEE International Joint Symposia on, pp. 32-37. 

Guger, C.; Ramoser, H. & Pfurtscheller G. (2000). Real-Time EEG Analysis with Subject- 
Specific Spatial Patterns for a Brain-Computer Interface (BCI). IEEE Trans. on 

rehabilitation engineering, Vol. 8, No. 4, pp. 447-456. 
Guger, C.; Schlögl, A.; Neuper, C.; Walterspacher, D.; Strein, T. & Pfurtscheller, G. (2001). 

Rapid prototyping of an EEG-based brain-computer interface (BCI). IEEE Trans. 

Rehab. Eng., Vol. 9, No. 1, pp. 49-58. 

www.intechopen.com



Signal Processing and Classification Approaches for Brain-computer Interface  

 

59 

Hagemann, D.; Naumann, E. & Thayer, J.F. (2001). The quest for the EEG reference revisited: 
A glance from brain asymmetry research. Psychophysiology, Vol. 38, 847-857. 

Haibin, Z; Xu, W. & Hong, W. (2008). Brain-computer interface design using relative 
wavelet energy. The 2nd International Conference on Control and Decision, pp. 3558-
3561, 2-4 July. 

Haselsteiner, E. & Pfurtscheller, G. (2000). Using time-dependant neural networks for EEG 
classification. IEEE Trans. on Rehabilitation Engineering, Vol. 8, pp. 457-463. 

Haykin, S. (1994). Neural Network: A Comprehensive Foundation. New York: Macmillan 

College Publishing Company. 
Helmy, S.; Al-ani, T.; Hamam, Y. & El-madbouly, E. (2008). P300 Based Brain-Computer 

Interface Using Hidden Markov Models. ISSNIP 2008, Sydney, 15-18 Dec. 
Hinterberger, T.; Kubler, A.; Kaiser, J.; Neumann, N. & Birbaumer, N. (2003). A brain- 

computer interface (BCI) for the locked-in: comparison of different EEG 
classifications for the thought translation device. Electroencephalogr. Clin. 

Neurophysiol. Vol. 114, pp. 416-25. 
Hinterberger, T.;Weiskopf, N.; Veit, R.;Wilhelm, B.; Betta, E. & Birbaumer, N. (2004). An 

EEGDriven Brain-Computer Interface Combined With Functional Magnetic 
Resonance Imaging (fMRI). IEEE Transactions On Biomedical Engineering, June, Vol. 
51, No. 6. 

Hjorth, B. (1970). EEG analysis based on time domain properties. Electroencephalography and 

Clinical Neurophysiology, Vol. 29, No. 3, pp. 306-310. 
Hoffmann, U.; Vesin, J.-M.; Ebrahimi, T. & Diserens K. (2008). An efficient P300-based 

braincomputer interface for disabled subjects, Journal of Neuroscience Methods, Vol. 
167, No. 1, pp. 115-125. 

Hoffmann, U.; Vesin, J.-M.; Ebrahimi, T. & Diserens K. (2009). An efficient P300- based 
brain-computer interface for disabled subjects. Available from URL: 
http://mmspl.epfl.ch/page33712.html. Visited on September, 10, 2009. 

Huan, N.-J. & Palaniappan, R. (2004a). Classification of mental tasks using fixed and 
adaptive autoregressive models of EEG signals. In: IEMBS .04. 26th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1-
5. 

Huang, N. E.; Shen, Z.; Long, S. R.; Wu, M. C.; Shih, H. H.; Zheng, Q.; Yen, N. C.; Tung, C. C. 
& Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum 
for nonlinear and non-stationary time series analysis. Proceedings of the Royal 

Society, Vol. 454, pp. 903-995. 
Huan, N.-J. & Palaniappan, R. (2004b). Neural network classification of autoregressive 

features from electroencephalogram signals for brain-computer interface design. J. 
Neural Eng., Vol. 1, pp. 142-150. 

Hung, C-I.; Lee, P-L.; Wu, Y-T.; Yeh, T-C. & Hsieh, J-C. (2005). Recognition of Motor 
Imagery Electroencephalography Using Independent Component Analysis and 
Machine Classifiers. Annals of Biomedical Engineering, Vol. 33, No. 8, pp. 1053-1070. 

Hyvärinen, A. & Oja, E. (2000). Independent Component Analysis: A Tutorial. Neural 

Networks, Vol. 13, No. 4-5. , pp. 411-430. 

www.intechopen.com



 Intelligent and Biosensors 

 

60 

Ivanova, I.; Pfurtscheller, G. & Andrew, C. (1995). AI-based classification of single-trial EEG 
data. Proc. 17th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology 

Society, (Montreal, Canada), pp. 703704. 
Jain, A. K. & Chandrasekaran, B. (1982). Dimensionality and sample size considerations in 

pattern recognition practice. In: Handbook of Statistics, Vol. 2, pp. 835-855. 
Jain, A. K.; Duin, R. P.W. & Mao, J. (2000). Statistical pattern recognition: a review. IEEE 

Trans. Pattern Anal. Mach. Intell., Vol. 22, pp. 4-37. 
Jung, T-P.; Humphries, C., Lee, T-W., Makeig, S.; McKeown, M. J.; Iragui, V. & Sejnowski T. 

J. (1998). Removing electroencephalographic artefacts: comparison between ICA 
and PCA. Neural Networks Signal Processing, Vol. III, pp. 63-72. 

Jung, T-P.; Makeig, S.; Westerfieldad, M.; Townsendad, J.; Courchesnead, E. & Sejnowski T. 
J. (2000). Removal of eye activity artefacts from visual event-related potentials in 
normal and clinical subjects. Clinical Neurophysiology, Vol. 111, pp. 1745-1758. 

Kaper, M.; Meinicke, P.; Grossekathoefer, U.; Lingner, T. & Ritter, H. (2004). BCI competition 
2003-data set iib: support vector machines for the p300 speller paradigm. IEEE 

Trans. Biomed. Eng., Vol. 51, pp. 1073-1076. 
Keirn, ZA. & Aunon, JI. (1990). A new mode of communication between man and his 

surroundings. IEEE Trans Biomed Eng, 37, pp. 1209-1214. 
Kohonen, T. (1990). The Self-Organizing Map. Proc. IEEE. Vol. 78, No. 9, pp. 1161-1180. 
Koles, Z. J. (1991). The quantitative extraction and topographic mapping of the abnormal 

components in the clinical EEG, Electroenceph. Clin. Neurophysiol., Vol. 79, pp. 440-
447. 

Lang, W.; Cheyne, D.; Hollinger, P.; Gerschlager, W. & Lindinger, G. (1996). Electric and 
magnetic fields of the brain accompanying internal simulation of movement, Cogn 

Brain Res, 3, pp. 125-129. 
Lehmann, E. & Skrandies,W. (1984). Spatial Analysis of Evoked Potentials in Man - A 

Review. Progress in Neurobiology, Vol. 23, pp. 227-250. 
Lee, H. & Choi, S. (2003). PCA+HMM+SVM for EEG pattern classification. In: Proceedings 

of the Seventh International Symposium on Signal Processing and Its Applications. 
Lemm, S.; Schafer, C. & Curio, G. (2004). BCI competition 2003-data set iii: probabilistic 

modelling of sensorimotor mu rhythms for classification of imaginary hand 
movements. IEEE Trans. Biomed. Eng., Vol. 51, pp. 1077-1080. 

Lécuyer A.; Lotte, F.; Reilly, R. B.; Leeb, R.; Hirose, M.; Slater, M. (2008). Brain-Computer 
Interfaces, Virtual Reality, and Videogames. IEEE Computer, Vol. 41, No. 10, pp.66-
72. 

Lotte, F.; Congedo, M.; Lécuyer, A.; Lamarcheand, F. & Arnaldi, B. (2007). A review of 
classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng., 4, 
pp. R1-R13. 

Mason, S; Bashashati, A.; Fatourechi, M.; Navarro, K. & Birch, G. (2007). A comprehensive 
survey of brain interface technology designs, Annals of Biomedical Engineering, Vol. 
35, No. 2, pp. 137-169. 

Meinicke, P.; Kaper, M.; Hoppe, F.; Heumann, M., & Ritter, H. (2003). Improving Transfer 
Rates in Brain Computer Interfacing: a Case Study. In: Advances in Neural 

www.intechopen.com



Signal Processing and Classification Approaches for Brain-computer Interface  

 

61 

Information Processing Systems, Cambridge, MA, 15, Eds.: Suzanna Becker and 
Sebastian Thrun and Klaus Obermayer, MIT Press. 

McFarland, D. J.; McCane, L. M.; David, S. V. &Wolpaw, J. R. (1997a). Spatial filter selection 
for EEG-based communication Electroencep. Clin. Neurophysiol., Vol. 103, pp. 386-
394. 

McFarland, D. J.; Lefkowicz, A. T. & Wolpaw, J. R. (1997b). Design and operation of an 
EEGbased brain-computer interface (BCI) with digital signal processing 
technology. Behav. Res. Meth. Instrum. Comput., Vol. 29, pp. 337-345. 

McFarland D. J.; Miner L. A.; Vaughan T. M. & Wolpaw J. R. (2000). Mu and beta rhythm 
topographies during motor imagery and actual movement. Brain Topogr, 3, pp. 
177- 186. 

McFarland, D. J. &Wolpaw, J. R. (2005). Sensorimotor rhythm-based brain-computer 
interface (BCI): feature selection by regression improves performance. IEEE Trans. 

on Rehabilitation Engineering, Vol. 13, No. 3, pp. 372-379. 
Millan, J.; Mourino, J.; Cincotti, F.; Varsta, M.; Heikkonen, J.; Topani, F.; Marciani, M. G.; 

Kaski, K. & Babiloni, F. (2000). Neural networks for robust classification of mental 
tasks. Proc. 22nd Annual Int. Conf. of the IEEE Engineering in Medicine and Biology 

Society, (Chicago, IL), pp. 1380-1382. 
Millan, J.; Mourino, J.; Franze, M.; Cincotti, F.; Varsta, M.; Heikkonen, J. & Babiloni, F. 

(2002). A local neural classifier for the recognition of EEG patterns associated to 
mental tasks. IEEE Trans. Neural Netw., Vol. 13 pp. 678-686. 

Millán J. R. & Mouriño, J. (2003). Asynchronous BCI and local neural classifiers: an overview 
of the adaptive brain interface project. IEEE Trans. on Rehabilitation Engineering, Vol. 
11 159-61. 

Moghaddam, B. (2002).Principal Manifolds and Probabilistic Subspaces for Visual 
Recognition. IEEE Trans. Patern Analysis and Machine Intelligence, Vol. 24, No. 6, pp. 
780-788. 

Müller-Gerking, J.; Pfurtscheller, G. & Flyvbjerg, H. (1999). Designing optimal spatial filters 
for single-trial EEG classification in a movement task. Clinical Neurophysiology, Vol. 
110, No. 5, pp.787-798. 

Müller, K. R.; Anderson, C.W. & Birch, G. E. (2003). Linear and nonlinear methods for brain-
computer interfaces. IEEE Trans. on Rehabilitation Engineering, Vol. 11, pp. 165-169. 

Musha, T.; Terasaki, Y.; Haque, H.A. & Ivanitsky, G.A. (1997). Feature extraction from EEGs 
associated with emotions. Artificial Life and Robotics, Vol. 1, No. 1, pp. 15-19. 

Müller, K. R.; Krauledat, M.; Dornhege, G.; Curio, G. & Blankertz, B. (2004). Machine 
learning techniques for brain-computer interfaces. Biomed. Technol., Vol. 49, pp. 11-
22. 

Nakamura, A.; Sugi T.; Ikeda, A.; Kakigi, R. & Shibasaki, H. (1996). Clinical application of 
automatic integrative interpretation of awake background EEG: quantitative 
interpretation, report making, and detection of artefacts and reduced vigilance 
level. Electroenceph. Clin. Neurophysiol., Vol. 98, pp. 103-112. 

Neuper, C. & Pfurtscheller, G. (1999a). Motor imagery and ERD Related Desyncronization, 
Handbook of Electroencepalography and Clinical Neurophysiology, (Revised Edition), pp. 
303-525, Vol. 6, Elsevier, Amsterdam. 

www.intechopen.com



 Intelligent and Biosensors 

 

62 

Neuper, C.; Schlögl, A. & Pfurtscheller, G. (1999b). Enhancement of left-right sensorimotor 
EEG differences during feedback-regulated motor imagery. J. Clin. Neurophysiol., 
Vol. 16, pp. 373-382. 

Ng, A. Y. & Jordan, M. I. (2002). On generative versus discriminative classifiers: a 
comparison of logistic regression and naive Bayes. Neural Information Processing 

Systems, Ng, A.Y., and Jordan, M. 
Nicolelis, M.A.L. (2001). Actions from Thoughts. In: Nature, Vol. 409, January 18, pp. 403-

407. 
Obermaier, B.; Neuper, C., Guger, C. & Pfurtscheller, G. (2000). Information transfer rate in a 

five-classes brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 9, 
pp. 283-288. 

Obermeier, B.; Guger, C.; Neuper, C. & Pfurtscheller, G. (2001). Hidden markov models for 
online classification of single trial EEG. Pattern recognition letters, pp. 1299-1309. 

Offner, F.F. (1950). The EEG as Potential Mapping: The Value of the Average Monopolar 
Reference. Electroencephalography and Clinical Neurophysiology, VoI. 2, pp. 215-216. 

Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of Points in Space. 
Philosophical Magazine Vol. 2, No. 6, pp. 559- 572. 

Penny, W. D. & Roberts, S. J. (1999). EEG-based communication via dynamic neural network 
models. Proc. Int. Joint Conf. on Neural Networks. 

Peters, B. O.; Pfurtscheller, G. & Flyvbjerg, H. (2001). Automatic differentiation of 
multichannel EEG signals. IEEE Trans. Biomed. Eng., Vol. 48, pp. 111-116. 

Pfurtscheller, G.; Kalcher J.; Neuper, C.; Flotzinger D & Pregenzer, M. (1996). On-line EEG 
classification during externally-paced hand movements using a neural network-
based classifier. Electroenceph. Clin. Neurophysiol., Vol. 99, pp. 416-425. 

Pfurtscheller, G.; Neuper, C.; Flotzinger D & Pregenzer, M. (1997). EEG-based 
discrimination between imagination of right and left hand movement, Electroenceph 

clin Neurophysiol, 103, pp. 642-651. 
Pfurtscheller, G. & Aranibar, A. (1977). Event related cortical desynchronization detected by 

power measurements of scalp EEG. Electroenceph Clin Neurophysiol, Vol. 42, pp. 817- 
826. 

Pfurtscheller, G.; Neuper, C.; Schlogl, A. & Lugger, K. (1998). Separability of EEG signals 
recorded during right and left motor imagery using adaptive autoregressive 
parameters. IEEE Trans. on Rehabilitation Engineering, Vol. 6, pp. 316-325. 

Pfurtscheller, G.; Neuper C.; Ramoserb H. & Müller-Gerking J. (1999a). Visually 
guided´lmotor imagery activates sensorimotor areas in humans. Neuroscience 

Letters, Vol. 269, No. 3, pp. 153-156. 
Pfurtscheller, G. & Guger, C. (1999b). Brain-computer communication system: EEG-based 

control of hand orthesis in a tetraplegic patient. Acta Chir. Austriaca, Vol. 31 23-25. 
Pfurtscheller, G. (1999c). EEG Event-related Desynchronisation (ERD) and Event-related 

Synchronisation (ERS). In Niedermeyer, pp. 958-967, E., Lopes da Silva, F.H. (Eds.), 
Electroencephalography. Basic Principles, Clinical Applications, and Related Fields, forth 
ed., Williams and Wilkins, Baltimore. 

www.intechopen.com



Signal Processing and Classification Approaches for Brain-computer Interface  

 

63 

Pfurtscheller, G.; Neuper, C.; Guger, C.; Harkam, W.; Ramoser, H.; Schlogl, A.; Obermaier, 
B. & Pregenzer, M. (2000a). Current trends in Graz brain-computer interface (BCI) 
research. IEEE Trans. on Rehabilitation Engineering, Vol. 8, No. 2, pp. 216-219. 

Pfurtscheller, G.; Guger, C.; Müller, G.; Krausz, G. & Neuper, C. (2000b). Brain oscillations 
control hand orthosis in a tetraplegic, Neurosci. Lett., Vol.292, pp. 211-214. 

Pfurtscheller, G. & Neuper, C. (2001). Motor imagery and direct brain-computer 
communication. proceedings of the IEEE, Vol. 89, No. 7, pp. 1123-1134. 

Pfurtscheller, G.; Müller, G. R. ; Pfurtscheller, J.; Gerner, H. J. & Rupp, R. (2003). `Thought' - 
control of functional electrical stimulation to restore hand grasp in a patient with 
tetraplegia. Neuroscience Letters, V. 351, Issue 1, 6 November, pp. 33-36. 

Platt, J.; Cristanini, N. & Shawe-Taylor, J. (2000) . Large margin DAGs for multiclass 
classification. Advances in Neural Information Processing Systems, Vol. 12, pp. 543-557, 
MIT Press. 

Qin, L.; Ding, L. & He, B. (2004). Motor imagery classification by means of source analysis 
for brain computer interface applications. Journal of Neural Engineering, Vol. 1, No. 
3, pp. 135-141. 

Qin, L. & He, B. (2005). A wavelet-based time-frequency analysis approach for classification 
of motor imagery for brain-computer interface applications. J. Neural Eng., Vol. 2, 
pp. 65-72. 

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in 
speech recognition. Proc. IEEE, Vol. 77, pp. 257-286. 

Raudys, S. J. & Jain, A. K. (1991). Small sample size effects in statistical pattern recognition: 
Recommendations for practitioners. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, Vol. 13, No. 3, pp. 252-264,. 
Rakotomamonjy, A.; Guigue, V.; Mallet, G. & Alvarado, V. (2005). Ensemble of SVMs for 

improving brain computer interface p300 speller performances. Int. Conf. on 

Artificial Neural Networks. 
Ramoser, H.; Müller-Gerking, J. & Pfurtscheller, G. (2000). Optimal spatial filtering of 

singletrial EEG during imagined hand movement. IEEE Trans. Rehab. Eng., Vol. 8, 
pp. 441-446. 

Roberts, S. J. & Penny,W. D. (2000). Real-time brain-computer interfacing: a preliminary 
study using Bayesian learning. Med Biol Eng Comput., Jan, Vol. 38, No. 1, pp. 56-61. 

Rubinstein, Y. D. & Hastie, T. (1997). Discriminative versus informative learning. In: 
Proceedings of the Third International Conference on Knowledge Discovery and Data 

Mining, pp. 49-53. 
Salimi Khorshidi, G., Jaafari, A., Motie Nasrabadi, A., Hashemi Golpayegani, M. (2007). 

Modifying the Classic Peak Picking Technique Using a Fuzzy Multi Agent to Have 
an Accurate P300-based BCI. EUSFLAT Conf. (2) pp. 143-147. 

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist., Vol. 6, No. 2, pp. 461-
464. 

Schlögl, A.; Flotzinger, D. & Pfurtscheller, G. (1997). Adaptive autoregressive modelling 
used for single-trial EEG classification. Biomed. Technik, Vol. 42, pp. 162-167. 

www.intechopen.com



 Intelligent and Biosensors 

 

64 

Scherer, R.; Müller, G. R.; Neuper, C.; Graimann, B. & Pfurtscheller, G. (2004). An 
asynchronously controlled EEG-based virtual keyboard: improvement of the 
spelling rate. IEEE Trans. Biomed. Eng., Vol. 51, pp. 979-984. 

Schlögl, A.; Lee, F.; Bischof, H. & Pfurtscheller, G. (2005). Characterization of four-class 
motor imagery EEG data for the BCI-competition. J. Neural Eng., Vol. 2, pp. L14-
L22. 

Scholkopf, B.; Mika, S.; Burges, C. J. C.; Knirsch, P.; müller, K. R.; Ratsch, G. & Smola., A. J. 
(1999). Input space versus feature space in kernel-based methods. IEEE Trans. 

Neural Networks, Vol. 10, No. 5, pp. 1000-1017. 
Schölkopf, B. & Smolan A. J. (2002). Learning with kernels. The MIT Press. 
Schlogl, Lugger, A.; K. & Pfurtscheller, G. (1997). Using adaptive autoregressive parameters 

for a brain-computer-interface experiment. In: Proceedings 19th International 

Conference IEEE/EMBS, pp. 1533-1535. 
Solhjoo, S., Nasrabadi, A. M. & Golpayegani, M. R. H. (2005). Classification of chaotic 

signals using HMM classifiers: EEG-based mental task classification. Proc. European 

Signal Processing Conference. 
Stanny, R. R. (1989). Mapping the event related Potentials of the brain: Theoretical issues, 

Technical considerations and computer programs. Naval aerospace Medical Research 
Laboratory, Naval Air Station, Pensacola, Florida 32506-5700. 

Sun, S.; Lan, M. & Lu, Y. (2008). Adaptive EEG signal classification using stochastic 
approximation methods. Proceedings of the 33rd IEEE International Conference on 

Acoustics, Speech, and Signal Processing (ICASSP), pp. 413-416. 
Thomas C. (1977). Firefox, New York, NY: Holt, Rinehart and Winston. 
Trad, D.; Helmy, S.; Al-ani, T.; Delaplace, S. (2009). Hidden Markov Models and Support 

Vector Machines applied to P300 Based Brain-Computer Interface - a Comparative 
study. ICTA 09, Hammamet, 7-9 Mai. 

Urszula, S. T.; Urszula, M-k & Kozik, A. (1999). Blinking Artefact Recognition in EEG Signal 
Using Artificial Neural Network. In: Fourth Conference Neural networks and Their 
Applications, Czestochowa. 

Vapnik, V. N. (1995). The nature off Statistical Learning Theory. Springer-Verlag. 
Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Trans. Neural Netw., 

Vol. 10, pp. 988-999. 
Varsta, M.; Heikkonen, J.; Millan, J. D. R. & Mourino, J. (2000). Evaluating the performance 

of three feature sets for brain-computer interfaces with an early stopping MLP 
commitee. Int. Conf. on Pattern Recognition, (Barcelona, Spain), pp. 907-910. 

Vidal, J. J. (1973), Toward direct brain-computer communication. In: Annual Review of 

Biophysics and Bioengineering, L. J. Mullins (Ed.), Annual Reviews, Inc., Palo Alto, 
Vol. 2, pp. 157-80. 

Vidal, J. J. (1977), Real-time detection of brain events in EEG. In: Proceedings of the IEEE, May 
1977, Vol. 65, No. 5, pp.633-641. 

Vidaurre, C.; Schlögl, A.; Cabeza, R.; Scherer, R. & Pfurtscheller G. (2007). Study of On-Line 
Adaptive Discriminant Analysis for EEG-Based Brain Computer Interfaces. IEEE 
Transactions On Biomedical Engineering, Vol. 54, No. 3, March, pp. 550-556. 

www.intechopen.com



Signal Processing and Classification Approaches for Brain-computer Interface  

 

65 

Vourkas, M.; Papadourakis, G. & Micheloyannis, S. (2000). Use of ann and hjorth parameters 
in mental-task discrimination. In: First International Conference on Advances in 

Medical Signal and Information Processing, pp. 327-332. 
Wang, Y.; Berg, P. & Scherg, M. (1999). Common spatial subspace decomposition applied to 

analysis of brain responses under multiple task conditions: a simulation study. 
IEEE Trans. Biomed. Eng., Vol. 110, Issue 4, pp. 604-614. 

Wang, T.; Deng, J. & He, B. (2004a). Classifying EEG-based motor imagery tasks by means of 
time-frequency synthesized spatial patterns. Clin. Neurophysiol., Vol. 115 2744-2753. 

Wang, T.; Deng, J. & He, B. (2004b). Classification of motor imagery EEG patterns and their 
topographic representation. Proc. 26th Annual Int. Conf. of the IEEE Engineering in 
Medicine and Biology Society, (San Francisco, CA), pp. 4359-4362. 

Weber, D.L. (2001) Scalp current density and source current modelling. 
http://dnl.ucsf.edu/users/dweber/dweber_docs/eeg_scd.html. Visited on 
September, 10, 2009. 

Wessberg, J.; Stambaugh, C. R.; Kralik, J. D.; Beck, P. D.; Laubach, M.; Chapin, J. K.; Kim, J.; 
Biggs, S. J.; Srinivasan, M. A. & Nicolelis, M. A. (2000). Real-time prediction of hand 
trajectory by ensembles of cortical neurons in primates, Nature, 16 Nov, Vol. 408, 
pp. 361-365. 

Wentrup, M. G.; Gramann, K.;Wascher, E. & Buss, M. (2005). Eeg source localization for 
brain-computer-interfaces. In: 2nd International IEEE EMBS Conference on Neural 

Engineering, pp. 128-131. 
Wolpaw, J. R.; McFarland, D. J. & Vaughan, T. M. (2000). Brain-computer interfaces for 

communication and control, IEEE Trans. on Rehabilitation Engineering, June, Vol. 8, 
No. 2, pp. 222-226. 

Wolpaw, J. R.; Birbaumer, N.; McFarland, D. J.; Pfurtscheller, G. & Vaughan, T. M. (2002). 
Brain-computer interfaces for communication and control, Clin. Neurophysiol, 113, 
pp. 767-91. 

Xu, B-G. & Song, A-G. (2008). Pattern recognition of motor imagery EEG using wavelet 
transform. J. Biomedical Science and Engineering, Vol. 1, pp. 64-67. 

www.intechopen.com



 Intelligent and Biosensors 

 

66 

11. Appendix 

 

 
 

Table 1. Confusion matrices for the eight subjects and the six tasks (subject 5 is not taken 
into account). Left: HMMs-based, right: M-SVM-based. All the values are rounded to make 
the text readable. 
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