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Chapter

Genetics and Acquired Hearing 
Loss
Moza Al-Kowari and Meritxell Espino-Guarch

Abstract

Hearing loss (HL) is a worldwide disease with substantial economic costs for 
the public health. Around 466 million people have disabling hearing loss and 
the WHO estimated that by 2050 over 900 million people will suffer hearing 
loss. Several factors including infections, noise-exposure, ototoxic medications 
or genetic disorders could cause hearing impairment. Hearing devices such as 
cochlear implants and aids are the current therapies. Although the prevalence 
of hearing loss is very high, alternative treatments as pharmaceutical agents are 
currently insufficient. Within the past years, increased knowledge on hearing 
loss etiology and physiopathology opened new opportunities for future research 
towards hearing loss treatment. Here we aim to review current bibliography on 
genetics factors involved in hearing loss.

Keywords: hearing loss, genetics, syndromic, non-syndromic, age-related

1. Introduction

The World Health Organization (WHO) defines hearing loss (HL) as the 
inability to perceive the sounds with different grades of impairment, from slight to 
profound including deafness [1].

Sound waves move from outer (or external) to middle and then to the inner 
ear, three anatomically distinct structures of the ear which transmit the sound to 
a signal into the brain. The sound waves travel down the cannel of the outer and 
middle ear until hitting the tympanic membrane. Vibrations from the middle ear 
create movement of the fluid in the inner ear. This movement of the fluid is trans-
mitted through the tectorial membrane to the hair cells in the organ of Corti, then 
the stimulus is transmitted by electric signals up to the auditory nerve to the brain. 
The brain interprets the electrical signals as sound. Figure 1 shows the different 
compartment of the ear as described above.

Depending on the compartment affected, hearing loss could be classified as 
conductive or sensorineural. Conductive hearing loss is when the outer and middle 
ear are affected, and it results in the inability to transmit sound waves to the inner 
ear [3]. On the other hand, impairments in the inner ear are known as sensorineural 
[4]. Conductive hearing loss could be treated by medication, surgery cochlear 
implants or hearing aids, meanwhile sensorineural is mostly irreversible because of 
the complexity of the structure, the limited regeneration and access to the sensory 
structures in the cochlea [5].
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2. Hearing loss etiology

There are several causes of hearing loss affecting over 500 million people world-
wide [6]. Approximately 50% of the hearing impairment has a genetic etiology, the 
remaining cases are attributed to external factor such as noise or injury (acquired/
spontaneous). In addition, the contribution of both (genetic predisposition and 
environment) is very common as found in age-related hearing loss [7, 8].

Inherited hearing loss can be autosomal recessive or dominant, X-linked or 
mitochondrial-related. The autosomal recessive hearing loss is caused by pathogenic 
variant in both alleles (the child inherits them from both parents). Autosomal 
dominant inheritance occurs when variants in one single allele are able to cause 
hearing loss. Independent of the inheritance pattern, genetics of hearing loss are 
classified as syndromic when they are associated with pathologies in other organs 
or malformations of the external ear and non-syndromic [6]. Approximately 30% 
of hearing loss are syndromic whereas the 70% remaining are non-syndromic [9]. 
Each type of hearing loss (syndromic and non-syndromic) is further classified 
according to the mode of inheritance into autosomal recessive, autosomal domi-
nant, X-linked and mitochondrial hearing loss.

2.1 Syndromic hearing loss

Syndromic hearing loss (SHL) is a form of hearing impairments in which it is 
associated with other diseases or symptoms. Most commonly SHL is associated 
with diseases that affect eyes, nervous system and skin. SHL accounts for 30% of 
hereditary hearing loss and can be inherited in an autosomal recessive, dominant 
and X-linked patterns. Moreover, several genes described in SHL are also causing 
non-syndromic hearing loss (NSHL) such as mutations in CDH23 gene causing 
either Usher syndrome type 1D and autosomal recessive NSHL (DFNB12) (OMIM: 
605516) [10].

2.1.1 Autosomal dominant SHL

Waardenburg syndrome (WS) is first described in 1951 by Waardenburg. It is 
one of the most common congenital, sensorineural SHL [11]. Clinical symptoms 
include lateral displacement of the inner canthus of the eye (dystopia canthorum), 

Figure 1. 
Scheme of hearing system from external ear to inner ear. Path of the sound waves (in blue) through outer, 
middle and inner ear is represented where Sw, sound waves; E, external ear; ec, ear canal; T, tympanic 
membrane; C, cochlea; N, auditory nerve. Magnification of the cochlea structures (adapted from Sanchez-
Calderon et al. [2]) is shown framed in yellow where BC, border cells; CC, Claudius’s cells; DC, Deiter’s cells; 
HC, Hensen’s cells; IC, intermediate cells; IHC, inner hair cells; IPC, inner phalangeal cells; Li, spiral limbus; N,  
cochlear neurons; MB, Basilar Membrane; OHC, outer hair cells; PC, pillar cells; RM, Reisner’s membrane; 
SG, spiral ganglion; SL, spiral ligament; SV, stria vascularis and TM, tectorial membrane.
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pigmentations of the hair, eye and skin. It is estimated that WS is accounting for 
2–5% of congenital hearing loss cases. According to the presence or absence of the 
clinical symptoms, Waardenburg syndrome is divided into four subtypes: WS1, 
WS2, WS3 and WS4. Patients with WS1, usually has dystopia canthorum, while 
patient with WS2 are not. WS3 also called Klein-Waardenburg syndrome charac-
terized by dystopia canthorum and upper limb abnormalities. The last type WS4 
also called Waardenburg-Shah syndrome is associated with Hirschsprung disease. 
Patients with WS4 are suffering from blockage of the large intestine and neuro-
logical defects. According to the hereditary hearing loss homepage, six genes are 
associated with WS (Table 1) [12]. These genes are essential for the development of 
melanocytes and have a major role in the function of the inner ear.

Branchio-Oto-Renal Syndrome (BOR) is the second common autosomal dominant 
congenital SHL. It is characterized by malformations in the ears and is associated 
with different types of hearing loss: conductive, sensorineural and mixed hearing 
loss. Moreover, BOR syndrome is affecting kidneys structure and functions which 
results in renal abnormalities [13]. The frequency of BOR syndrome is estimated to 
be 1 in 40,000 individuals. Mutations in Eyes Absent homolog 1 (EYA1), Sine Oculis 
Homebox 5 (SIX5) and Sine Oculis Homebox 1 (SIX1) genes are found to be associ-
ated with BOR syndrome (Table 1). These genes are required for normal embryonic 
development of different organs including both the kidneys and the ears.

Syndrome Gene OMIM entry Inheritance

Alport syndrome COL4A3 120070 AR

COL4A4 120131 AR

COL4A5 303630 XL

Branchio-Oto-Renal syndrome EYA1 601653 AD

SIX5 600963 AD

SIX1 601205 AD

CHARGE syndrome CHD7 608892 AD

SEMA3E 608166 AD

Jervell and Lange-Nielsen syndrome KNCQ1 607542 AR

KCNE1 176261 AR

Norrie disease NDP 300658 XL

Pendred syndrome SLC26A4 605646 AR

KCNJ10 602208 AR

FOX11 601093 AR

Perrault syndrome HSD17B4 601860 AR

HARS2 600783 AR

CLPP 601119 AR

LARS2 604544 AR

TWNK 606075 AR

ERAL1 607435 AR

Stickler syndrome COL2A1 120140 AD

COL11A1 120280 AD

COL11A2 120290 AD

COL9A1 120210 AR

COL9A2 120260 AR
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CHARGE syndrome is another form of autosomal dominant hearing loss syn-
drome that affects several organs. Patients with CHARGE syndrome are character-
ized by different phenotypes, from which the name of the syndrome comes from, 
this includes: Coloboma, Heart defects, Atresia choanae, growth Retardation, 
Genital abnormalities and Ear abnormalities. The degree of abnormalities varies 
from one patient to another. It ranges from very severe and vital cases to minor phe-
notypes. The prevalence of CHARGE syndrome estimated to be 1 in 8500 to 10,000 
newborns worldwide. Chromodomain helicase DNA-binding protein-7 (CHD7) 
is found to be the common cause of CHARGE syndrome. CHD7 is a transcription 
factor protein that regulates chromatin [14].

2.1.2 Autosomal recessive SHL

Usher syndrome is an autosomal recessive sensorineural hearing loss (SNHL) 
with retinitis [15]. According to the clinical phenotype, Usher syndrome is clas-
sified to three main types: Usher 1 (USH1), Usher 2 (USH2) and Usher 3 (USH3). 
USH1 is characterized by severe to profound SNHL, severe vestibular impairments 
and early onset retinitis pigmentosa. Mutations in several genes are found to be 
the cause of USH1 syndrome (Table 1). The most common genes causing USH1 are 
MYO7A and CHD23. Both genes are important for the development and function of 
inner ear hair cells. Patients with USH2 are found to suffer from moderate to severe 
SNHL with mid onset retinitis pigmentosa and no vestibular impairment. Usherin 
(USH2A) and Adhesion-G protein coupled receptor VI (ADGRVI) are found to be 

Syndrome Gene OMIM entry Inheritance

Treacher Collins syndrome TCOF1 606847 AD

POLR1D 613715 AD

POLR1C 610060 AD

Usher syndrome MYO7A 276903 AD

USH1C 605242 AR

CDH23 605516 AR

PCDH15 605514 AR

SANS 607696 AR

USH2A 608400 AR

ADGRV1 602851 AR

WHRN 607928 AR

CLRN1 606397 AR

HARS 142810 AR

Waardenburg syndrome PAX3 606597 AD

MITF 156845 AD

SNAI2 602150 AD

SOX10 602229 AD

PAX3 606597 AD

EDNRB 131244 AR

EDN3 131242 AR

SOX10 602229 AR

Table 1. 
List of syndromic hearing loss and its associated genes [12].
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mutated in patients diagnosed with USH2. The last type is USH3 that is character-
ized by variable phenotypes of progressive hearing loss, vestibular impairment and 
late onset retinitis pigmentosa. The prevalence of Usher syndrome is estimated to be 
1 in 6000 to 10,000 with USH1 and USH2 being the most common types.

The second common autosomal recessive SHL is Pendred Syndrome which is 
characterized by hearing loss and thyroid enlargement [16]. The hearing loss 
ranges from severe to profound are usually developed at early childhood [17]. A 
characteristic feature of Pendred syndrome is the Mondini malformation which 
is a combination of enlarged vestibular aqueduct and abnormal shape of the 
cochlea. The prevalence of Pendred syndrome is ranged from 1 to 7.5 per 100,000 
newborns. Three genes are found to be mutated in patients with Pendred syn-
drome: SLC26A4 which encodes for sodium-independent transporter of chloride 
iodide protein called Pendrin [18], FOXI1 [19] and KCNJ10 [20]. Approximately 
50% of Pendred syndrome patients had mutations in SLC26A4 gene, whereas the 
other two genes mutated in Pendred syndrome patients account for less than 2% 
of the cases are).

Jervell and Lange-Nielsen Syndrome is the third common autosomal recessive 
syndromic hearing loss. This condition is characterized by profound hearing loss 
with arrhythmia and long QT interval in the electrocardiogram that may result in 
heart failure and sudden death [21]. The prevalence of this syndrome is estimated 
to affect 1.6–6 per million people worldwide [22]. Genes found to be mutated in 
patients with this syndrome are potassium channel voltage-gated KQT-like sub-
family member 1 (KCNQ1) [23] and potassium channel voltage-gated ISK-related 
subfamily member 1 (KCNE1) [24] with majority of the mutations (90%) occurs in 
KCNQ1. These channels are important for the movement of the potassium ions in 
order to maintain the normal function of the inner ear and cardiac muscle.

2.1.3 X-linked SHL

Hearing loss conditions inherited with an X-linked pattern are rare. Only few 
syndromes with few patients were reported. Norrie disease and Mohr-Tranebjaerg 
syndrome are examples of X-Linked SHL.

Norrie disease is a rare X-linked recessive disorder characterized by progressive 
visual impairment. One-third of males with Norrie disease will develop progressive 
hearing loss and other phenotype-like intellectual disabilities. Mutation in NDP 
gene is the cause of 95% of the affected individuals. NDP is a gene that encodes 
Norrin protein which regulates vascularization of the retina [25].

Mohr-Tranebjaerg syndrome also called deafness dystonia optic atrophy syndrome 
is another X-linked recessive syndrome that is associated with early onset hearing 
loss, movement disability and visual impairment. Less than 70 cases of this syn-
drome were reported worldwide. TIMM8A is the causative gene for this syndrome 
which encodes the Translocase of Inner Mitochondrial Membrane 8 homolog A 
protein. This protein is important for the development of nervous system [26].

2.1.4 Mitochondrial-linked SHL

Maternally inherited diabetes and deafness (MIDD) is a mitochondrial disorder 
causing a syndromic form of diabetes accompanied by sensorineural hearing loss 
and some cases include renal problems, pigmentary retinopathy, ptosis, myopathy, 
cardiomyopathy and/or neuro-psychiatric symptoms (OMIM: 520000) [27, 28]. 
Mutations in MT-TL1, MT-TK or MT-TE mitochondrial genes coding for mtRNAs, 
which participate in the protein production in mitochondria and impair their 
functioning had been linked in MIDD [29].
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2.2 Non-syndromic hearing loss

Hearing loss which is not associated with any other disease or symptoms is called 
non-syndromic hearing loss (NSHL). It accounts for more than 70% of hereditary 
hearing loss. According to the hereditary hearing loss homepage, there are more 
than 100 genes associated with NSHL and more than 6000 causative variants are 
identified so far which makes it extremely heterogeneous [30].

According to the mode of inheritance, NSHL can be classified as autosomal 
recessive (75–85%), autosomal dominant (20–25%) and X-linked or mitochondrial 
(1–2%). The loci responsible for NSHL are named DEN which stands for Deafness. 
Letter “A” is added, if the mode of inheritance is autosomal dominant (DFNA), 
“B” if the inheritance is recessive (DFNB) and “X” if the inheritance is X-linked 
(DFNX). The numbers indicate the chronological order of gene discovery.

2.2.1 Autosomal dominant NSHL genes (DFNA)

Autosomal dominant forms account for 20–25% of NSHL and are characterized 
by post-lingual progressive hearing loss [31]. More than 40 genes are associated 
with autosomal dominant NSHL. DIAPH1 gene which is located in the DFNA1 locus 
is one of the first loci described for autosomal dominant NSHL. It encodes protein 
that is important for polymerization with actin which plays major role in cytoskel-
etal of hair cells in the inner ear. Mutations in DIAPH1 are associated with early 
onset progressive hearing loss and some patients may have mild thrombocytopenia 
without bleeding tendencies [32].

WFS1 encodes for Wolframin protein which plays role in regulating cel-
lular Ca2

+ homeostasis and is involved in the process of sensory perception of 
sound. Mutations in WFS1 are found to be associated with DFNA6, DFNA14 and 
DFNA38 in which they are characterized by hearing loss in low frequency [33, 34]. 
Some missense mutations in this gene are also associated with congenital profound 
hearing loss, progressive optic atrophy and diabetes. The above-mentioned pheno-
types are a form of autosomal recessive hearing loss condition known as Wolfram 
syndrome [35].

The TECTA gene that encodes the tectorin-alpha protein forms the tectorial 
membrane in the cochlea and the otolithic membrane in the vestibular system. 
Mutations in TECTA are found in families with DFNA8/12 in which hearing loss 
could be pre- or post-lingual [36]. The severity of hearing loss varies depending on 
the domain where the mutation occurs. Some mutations in TECTA are also associ-
ated with DFNB21 hearing loss in which hearing loss is prelingual with severe to 
profound phenotype [37].

Deafness autosomal dominant 5 (DFNA5) gene that encodes for the 
Gasdermin-E protein is another gene associated with autosomal dominant non-
syndromic hearing loss [38]. Gasdermin-E plays essential role in cellular response to 
DNA damage by regulating TP53.

Other genes associated with autosomal dominant hearing loss are listed in Table 2.

2.2.2 Autosomal recessive NSHL

Autosomal recessive hearing loss account for majority (75–85%) forms of non-
syndromic hearing loss in which the hearing loss is prelingual and severe to pro-
found. The most common gene causing autosomal recessive NSHL is GJB2 accounts 
for 50% of the cases. The other 50% of the autosomal recessive NSHL resulted from 
mutations in 70 genes (Table 2).
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Gene Locus OMIM entry Inheritance

ACTG1 DFNA20/26 102560 AD

ADCY1 DFNB44 103072 AR

AIFM1 DFNX5 300169 XL

BDP1 DFNB49 607012 AR

BSND DFNB73 606412 AR

CABP2 DFNB93 607314 AR

CCDC50 DFNA44 611051 AD

CD164 DFNA66 603356 AD

CDC14A DFNB32/105 601728 AR

CDH23 DFNB12 605516 AR

CEACAM16 DFNA4B 614591 AD

CIB2 DFNB48 605564 AR

CLDN14 DFNB29 605608 AR

CLIC5 DFNB103 607293 AR

COCH DFNA9 603196 AD

COL11A1 DFNA37 120280 AD

COL11A2 DFNB53, DFNA13 120290 AR, AD

COL4A6 DFNX6 303631 XL

CRYM DFNA40 123740 AD

DCDC2 DFNB66 605755 AR

DIAPH1 DFNA1 602121 AD

DMXL2 612186 AD

ELMOD3 DFNB88 615427 AR

EPS8 DFNB102 600206 AR

EPS8L2 DFNB106 614988 AR

ESPN DFNB36 606351 AR

ESRP1 609245 AR

ESRRB DFNB35 602167 AR

EYA4 DFNA10 603550 AD

FAM65B DFNB104 611410 AR

GIPC3 DFNB15/72/95 608792 AR

GJB2 DFNB1A, DFNA3A 121011 AR, AD

GJB3 DFNA2B 603324 AD

GJB6 DFNB1B, DFNA3B 604418 AR, AD

GPSM2 DFNB82 609245 AR

GRHL2 DFNA28 608576 AD

GRXCR1 DFNB25 613283 AR

GRXCR2 DFNB101 615762 AR

GSDME/DFNA5 DFNA5 608798 AD

HGF DFNB39 142409 AR

HOMER2 DFNA68 604799 AD

IFNLR1 DFNA2C 607404 AD

ILDR1 DFNB42 609739 AR
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Gene Locus OMIM entry Inheritance

KARS DFNB89 601421 AR

KCNQ4 DFNA2A 603537 AD

KITLG DFNA69 184745 AD

LHFPL5 DFNB66/67 609427 AR

LMX1A DFNA7 600298 AD

LOXHD1 DFNB77 613072 AR

LRTOMT/COMT2 DFNB63 612414 AR

MARVELD2 DFNB49 610572 AR

MCM2 DFNA70 116945 AD

MET DFNB97 164860 AR

MIRN96 DFNA50 611606 AD

MPZL2 604873 AR

MSRB3 DFNB74 613719 AR

MTRNR1 561000 MIT

MTTS1 590080 MIT

MYH14 DFNA4A 608568 AD

MYH9 DFNA17 160775 AD

MYO15A DFNB3 602666 AR

MYO3A DFNB30 606808 AR, AD

MYO6 DFNB37, DFNA22 600970 AR, AD

MYO7A DFNB2, DFNA11 276903 AR, AD

NARS2 DFNB94 612803 AR

NLRP3 DFNA34 606416 AD

OSBPL2 DFNA67 606731 AD

OTOA DFNB22 607038 AR

OTOF DFNB9 603681 AR

OTOG DFNB18B 604487 AR

OTOGL DFNB84 614925 AR

P2RX2 DFNA41 600844 AD

PCDH15 DFNB23 605514 AR

PDE1C 602987 AD

PDZD7 DFNB57 612971 AR

PJVK DFNB59 610219 AR

PNPT1 DFNB70 610316 AR

POU3F4 DFNX2 300039 XL

POU4F3 DFNA15 602460 AD

PPIP5K2 DFNB100 611648 AR

PRPS1 DFNX1 311850 XL

PTPRQ DFNB84, DFNA73 603317 AR, AD

RDX DFNB24 179410 AR

REST DFNA27 600571 AD

ROR1 DFNB108 612959 AR

S1PR2 DFNB68 609427 AR

SERPINB6 DFNB91 173321 AR
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GJB2 gene is one of the gap junction proteins that are expressed in the inner ear, 
which encodes connexin 26. This protein allows the exchange of potassium ions 
between the cells in the inner ear. More than 100 mutations identified in GJB2 were 
found to cause DFNB1 and DFNA3 [39].

Other gene related to GJB2 is GJB6 that encodes for connexin 30 protein. Studies 
show that both genes can be inherited together and 8% of patients with GJB2 muta-
tion also carry mutation in GJB6 [40].

OTOF gene encodes otoferlin protein that is responsible for the neural transmis-
sion at the synaptic cleft of the inner hair cell. Mutations in this gene cause prelin-
gual, profound autosomal recessive hearing loss (DFNB9) and will result in damage 
of the neural receptors of the inner ear that will result on interruption of the nerve 
pathways to the brain [41].

Conventional and unconventional myosins are group of genes that are function-
ing as actin-binding proteins. Conventional myosins regulate contractility of actin 
filaments, while unconventional myosins are essential for vesicle trafficking and 
endocytosis [42]. Mutations in some unconventional myosins are associated with 
NSHL. MYO6 is an example of unconventional myosins that is expressed in the 

Gene Locus OMIM entry Inheritance

SIX1 DFNA23 601205 AD

SLC17A8 DFNA25 607557 AD

SLC22A4 DFNB60 604943 AR

SLC26A4 DFNB4 605646 AR

SLC26A5 DFNB61 604943 AR

SMAC/DIABLO DFNA64 605219 AD

SMPX DFNX4 300226 XL

STRC DFNB16 606440 AR

SYNE4 DFNB76 615535 AR

TBC1D24 DFNB86, DFNA65 613577 AR, AD

TECTA DFNB21, DFNA8/12 602574 AR, AD

TJP2 DFNA51 607709 AD

TMC1 DFNB7/11, DFNA36 606706 AR, AD

TMEM132E DFNB99 616178 AR

TMIE DFNB6 607237 AR

TMPRSS3 DFNB8/10 605511 AR

TNC DFNA56 187380 AD

TPRN DFNB79 613354 AR

TRIOBP DFNB28 609761 AR

TSPEAR DFNB98 612920 AR

Unknown DFNY1 400043 YL

USH1C DFNB18 605242 AR

WBP2 606962 AR

WFS1 DFNA6/14/38 606201 AD

WHRN DFNB31 607928 AR

Table 2. 
List of genes associated with autosomal dominant (AD), autosomal recessive (AR), X-linked (XL) and 
mitochondrial (MIT) non-syndromic hearing loss (NSHL) [12].
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inner hair cell of the cochlea. Mutation in MYO6 causes DFNB37, a form of non-
syndromic deafness characterized by prelingual severe to profound hearing loss 
[43]. Other genes are listed in Table 2.

2.2.3 X-linked NSHL

This form of hearing loss is very rare and only few genes are associated with 
non-syndromic hearing loss (Table 2). This form of hearing loss is characterized by 
progressive, conductive and sensorineural hearing loss. Mutations in POU3F4 gene 
which cause DFNX2, account for 50% of the cases [44]. POU3F4 gene encode for 
POU domain class 3 transcription factor 4 protein, which regulates the proliferation 
of neural cells in middle and inner ear early during development. Because this form 
of hearing loss is X-linked, the severity of hearing loss differs from male to female. 
In males, hearing loss is prelingual and range from severe to profound while in 
females hearing loss is post-lingual and less severe.

2.2.4 Mitochondrial-linked NSHL

Despite the crucial role of mitochondria producing the energy for the cell, there 
are mtDNA mutations which lead to non-syndromic hearing impairment. The 
carriers exhibited sensorineural hearing loss with variable severity and onset [45]. 
These mutations have been reported in the mitochondrial genes encoding for 12S 
rRNA and tRNA genes [46, 47].

2.3 Age-related hearing loss

The auditory system exhibits senescent changes with the past time which could 
trigger to acquire sensorineural hearing loss. The most of acquired-hearing loss are 
characterized by a bilateral inner ear degeneration determined by genetic factors 
superimposed with environmental stress [48], excluding injuries and severe infec-
tions. Noise, drugs, aging and/or other systemic conditions (i.e., diabetes or hyper-
tension [49, 50]) are numerous variables that can contribute to the final outcome of 
the disease [51, 52]. It is habitual among the causes of life related hearing loss that 
the severity progress beginning as mild loss and worsening over time.

The noise-induced hearing loss (NIHL) is one of the most common work-related 
diseases caused by the extreme exposure to noise. Recurrent exposure to noise 
causes physical damage to hair cells in the cochlea. Moreover, genetic predisposi-
tion and systemic conditions also contribute to the prevalence and severity of the 
phenotype making it difficult to distinguish the cause [53]. In the same line, there is 
a correlation between hazardous daily noise exposure and the prevalence of hearing 
loss among youth population [54, 55].

Ototoxic agents like certain drugs or heavy metals could contribute to the devel-
opment of hearing impairment. Drugs such as cisplatin and aminoglycoside trigger 
hair cells apoptosis by enhancing the production of oxygen reactivity spices and has 
up to 50% reported incidence of irreversible hearing loss [56, 57].

The age-related hearing loss (ARHL) or presbycusis is caused by progres-
sive atrophy of the inner ear during aging [58, 59]. The onset and prevalence of 
the disease vary widely as is multifactorial and many components (genetic and 
environmental) could play a role. Moreover, the heritability of AHRL had been 
stablished around 50% [60–64] and through genome-wide association studies and 
animal models, several age-related hearing loss genes had been identified [65–67]. 
The estimated prevalence of ARHL is one-third of adults above 65 years old and it 
doubles by each decade of life span [68, 69].
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ARHL had been well-documented during the years because of its high preva-
lence in the population. Characterized cochlea manly by atrophy in the basal turns 
of the cochlea and is manifested by abrupt high-tone hearing loss [70, 71]. ARHL is 
commonly classified as sensory, neural and metabolic. Sensory ARHL stems from 
the progressive degeneration of organ of Corti [72], neural ARHL is considered 
when there is 50% or more of cochlear neurons loss [73] and metabolic ARHL is 

Gene Gene name Phenotype Study Ref.

APOE Apolipoprotein E undefined GWAS [79]

ARHI Age-related Hearing Loss SN, M GWAS [80–82]

CDH23 Cadherin-related 23 SN, M Model, 
GWAS

[83–86]

COX 3 cytochrome c oxidase subunit 3 M Model [87, 88]

EDN1 Endothelin-1 M Model, 
GWAS

[89, 90]

GRHL2 Grainyhead-like 2 SN GWAS [91]

GRM7 Metabotropic glutamate receptor type 7 SN GWAS [92]

GST Glutathione S-transferase M Model, 
GWAS

[93–95]

IQGAP2 IQ motif containing GTPase activating protein 2 undefined GWAS [96, 97]

ITGA8 Integrin, alpha 8 SN Model [98, 99]

KCNMA1 Potassium large conductance calcium-activated 
channel, subfamily M, alpha member 1

SN Model [100]

KCNQ1 Potassium voltage-gated channel, KQT-like 
subfamily, member 1

SN GWAS [101, 102]

KCNQ4 Potassium voltage-gated channel, KQT-like 
subfamily, member 4

SN, M Model, 
GWAS

[103, 104]

NAT2 N-acetyltransferase 2 M GWAS [105–107]

P2X Ligand-gated ion channel purinergic receptor 2 undefined GWAS [108]

PCDH15 Protocadherin-related 15 SN Model, 
GWAS

[109, 110]

PTPRD tyrosine phosphatase, receptor type D undefined GWAS [111]

SLC26A4 Solute carrier family 26 member 4 SN Model [112]

SLC7A8 Solute carrier family 7 member 8 SN, M Model, 
GWAS

[67]

SLC9A3R1 Regulator 1 of SLC9 transporter SN Model, 
GWAS

[113]

SPATC1L Spermatogenesis and centriole associated 1 undefined GWAS [114]

SPNS2 Spinster homolog 2 M Model [115, 116]

TBL1Y Transducin beta-like 1 Y-linked SN Model, 
GWAS

[117]

THRB Thyroid hormone receptor 1 SN, M Model, 
GWAS

[118]

TNF Tumor necrosis factor M GWAS [119]

UCP2 Uncoupling protein 2 SN GWAS [120, 121]

Inner ear phenotype classification: sensorineural (SN), metabolic (M) and both of them (SN and M). Study type: 
genome-wide association study and study-case (GWAS) and in vitro or in vivo model (Model).

Table 3. 
ARHL-related genes.
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caused by the atrophy of the stria vascularis resulting in a decrease in endolym-
phatic potential [74]. Also, there is a mixed type where the progressive degeneration 
of sensory cells is observed along loss of cochlear neurons [75–77]. Moreover, still 
controversial if the loss of neurons is a secondary consequence or a primary cause.

The task to distinct between genetic and environmental factors in acquired 
hearing loss is very challenging. In this regard, to progress the understanding of the 
mechanisms that lead to the damage, physiopathology of age-related hearing loss 
had been assessed by in vitro (cell lines) and in vivo (rodents and zebrafish) models 
[70]. The studies provided evidences of specific inner damage such as inflamma-
tion, oxidative stress, reduced cochlear blood flow, disrupted ion hemostasis and 
death of sensory and neuronal cells [78]. Table 3 summarizes all current knowledge 
on ARHL-related genetic factors.

2.3.1 Consequences of suffering ARHL

Age-related hearing loss affects communication and information reception 
reducing the quality of live and psychosocial well-being (e.g., anxiety or depres-
sion) of elder population. Limitation in communication has an impact on social and 
personal relationships triggering to loss of autonomy and dependency [122, 123]. 
Even though the World Health Organization estimates that by 2025 approximately 
500 million will suffer from age-related hearing loss; there is a lack of awareness by 
health care professionals as well as no educational programs on how patients could 
overcome obstacles caused by hearing loss.

Few studies have investigated the psychological factor and how individuals 
develop their lives in the presence of hearing loss. The studies reveal that maladap-
tive behavior (e.g., escape, avoiding social interaction and/or pretending to under-
stand) has a negative effect on well-being of elder patients comparing to adaptive 
strategies (e.g., training verbal skills or self-awareness) [124, 125]. Additionally, 
there is a significant increase of hearing aids use by cases who attend audiology 
clinic with a relative than others attending alone [126]. Therefore, elder popula-
tion with acquired hearing loss requires social support from family and health care 
professionals. Educational programs on how to use hearing aids and communica-
tion strategies as well as counseling for follow-up and feedback are needed in order 
to increase adherence to treatment and improve life quality [127].

3. Hearing loss treatments

Hearing loss is not a curable disease however science made some considerable 
progress. Current therapies based on cochlear implants (a device that provides direct 
electrical stimulation to the auditory nerve in the inner ear) and hearing aids (are 
non-surgically placed in the ear canal) which help patients to recover partly hearing.

Hearing aids could be a stigma in the society as are negatively perceived as well 
as expensive making that only one out of five people who could benefit from a hear-
ing aid actually wears it (WHO, [128]). Therefore, the major barriers to improve 
hearing in elder population include perception that hearing loss is a normal part of 
aging or is not amenable to treatment.

Based on the animal research studies, several clinical trials are working to 
investigate the effects of a variety of drugs to prevent hearing loss including anti-
oxidants, ROS scavengers, alpha lipoic acid, N-acetylcysteine or anti-inflammatory 
agents [129–134].

New generation treatments based on microRNA, short interfering RNA as 
well as tissue regeneration using stem cells are promising tools [135, 136]. Due to 
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the in-depth study of stem cell and its therapeutic potential, stem cell technology 
opened new approaches for hair cell and auditory nerve regeneration [137, 138]. By 
using two strategies of endogenous stem cell activation and exogenous stem cell 
transplantation, exciting results on restoring hearing function are showed. Even 
though the use of stem cells to repair cochlear injury is relatively new, they appear 
to be a very promising possibility for the treatment of hearing loss induced by noise, 
aging or ototoxic drugs. These three causes comprise a major part of the burden of 
hearing loss, so if this approach were successful could have a large public health 
effect of hearing impairment. Further research should be supported to solve the 
problems which limit stem cells application in humans.

4. Conclusion

Of the senses that humans use to interact with their environment, hearing 
is considered as one of the dominant after vision. The loss of hearing can occur 
through genetic mutations, through environmental factors or through a combina-
tion of both. ARHL is an increasingly important public health problem which 
reduces life’s quality, isolation, dependence and frustration. Besides basic research 
and more effective therapies for the optimal treatment, management of the condi-
tion is still a pending task. Social support by the family and health care profession-
als is critical to the life quality of the older adults with hearing loss. The quality 
of care and well-being could be improved by active education and counseling to 
provide appropriate support to facilitate everyday communication.
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