
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter

Recurrent Level Set Networks for
Instance Segmentation
Thi Hoang Ngan Le, Khoa Luu, Marios Savvides,

Kha Gia Quach and Chi Nhan Duong

Abstract

Level set (LS)-based segmentation has been widely used in medical imaging
domain. It however has some difficulty when dealing with multi-instance objects in
the real world. Furthermore, LS’s performance is generally quite sensitive to some
initial settings and parameters such as the number of iterations. To address these
issues and promote the classic LS methods to a new degree of performance in a
trainable deep learning framework, we are presenting a novel approach contextual
recurrent level sets (CRLS) for object instance segmentation. In the proposed net-
works, the curve deformation process is formed as a hidden state evolution proce-
dure in gated recurrent units (GRUs) and updated by minimizing an energy
functional composed of fitting forces and contour length.

Keywords: level sets, convolutional neural networks (CNNs), recurrent neural
networks (RNNs), image segmentation, semantic segmentation

1. Introduction

One of the central goals of computer vision is object recognition and scene
understanding. Humans are able to (1) possess a remarkable ability to parse an
image simply by looking at them. (2) analyze an image and separate all the compo-
nents present in it (3) recognize a new object that has never seen before based on
observing a set of objects. The Holy Grail of a computer vision system is to able to
perform as same tasks as humans are with the ability of across huge variations in
pose, appearance, viewpoint, illumination, occlusion, etc. Obviously, this is a very
difficult computational problem and involves in eventually making intelligent
machines. An image understanding system can be roughly defined in four different
subproblems, i.e., image classification, object detection, semantic segmentation,
semantic instance segmentation, according to its level of complexity.

1. Image classification: assign a label to an image. In this subproblem, all the
objects presenting in a scene are given one label, independent of its location.

2.Object detection: predict the bounding box around an object as well as the
class of each object. This subproblem is also known as object localization.

3.Semantic segmentation: predict the semantic class of the individual pixels in
an image. However this subproblem unable to distinguish different instances
of the same class.

1

4.Instance segmentation: label as well as provide pixel-level segmentation to
each object instance in the image. This subproblem is the higher level of
semantic segmentation. It can be considered as a combination of the second
subproblem and third problem.

This chapter focus on the problem of semantic instance segmentation by
reformulating the classic LS contour evolution in a new learnable deep framework
recurrent level set (RLS) that employs gated recurrent unit under the energy mini-
mization of a LS functional. In the proposed RLS framework, the curve deformation
process in the classic LS acts as a hidden state evolution procedure and updated by
minimizing an energy functional composed of fitting forces and contour length. By
sharing the convolutional features and collaborating with region proposal detection
in a fully end-to-end trainable framework, we extend RLS to Contextual RLS (CRLS)
to address semantic segmentation in the wild.

This book chapter is organized as follows: Section 2 introduce basic concept of
both LS and deep learning including convolutional neural networks (CNNs) and
recurrent neural networks (RNNs). The next two sections focus on contextual recur-
rent level set for object instance segmentation. The last section is targeting at exper-
imental results which have been conducted on PASCAL VOC and COCO datasets.

2. Background

This section starts with introducing the convolutional neural networks (CNNs)
models, and recurrent neural networks (RNNs), specialized artificial neural net-
works (ANNs) architecture particularly useful for computer vision problems. Then,
we introduce active contour (AC) and a classic variational level set (LS) mechanism
which have been used in image segmentation.

2.1 Convolutional neural networks

Convolutional neural networks (CNNs) [1–4] are a special case of fully
connected multi-layer perceptrons that are mainly focusing on weight sharing to
process grid-like topology data, i.e., an image. In CNNs, the spatial correlation of
the signal is used to constrain the architecture in a more sensible way. There are two
keys properties in their architecture, i.e., spatially shared weights and spatial
pooling. These properties are made based on biological visual system which help
them extremely useful for image applications. In such kind of network, the pooling
layers aim at producing feature that are shift-invariant whereas the convolution
layers is to lean visual representation. Since 2012, one of the most notable results in
deep learning is the use of convolutional neural networks to obtain a remarkable
improvement in object recognition for ImageNet classification challenge.

A typical convolutional network has multiple stages. Each stage contains one or
many convolution layer, activation layer, pooling layer. The output of each stage is
feature maps which are a set of 2D arrays. In its more general form, a convolutional
network can be written as:

h0 ¼ x

hl ¼ pooll σl wlhl�1 þ bl
� �� �

,∀l∈ 1, 2,…L

o ¼ hL ¼ f x; θð Þ

(1)

2

Pattern Recognition - Selected Methods and Applications

where wl,bl are trainable parameters as in MLPs at layer l. x∈Rc�h�w is
vectorized from an input image with c is color channels, h is the image height and w

is the image width. o∈Rn�h0�w0 is vectorized from an array of dimension h0 �w0 of

output vector (of dimension n). pooll is a (optional) pooling function at layer l.
The main difference between multi-layer neural networks (MLPs) and CNNs

lies in the parameter matrices wl. In MLPs, the matrices can take any general form,
while in CNNs these matrices are constraints to be Toeplitz matrices. That is, the
columns are circularly shifted versions of the signal of various shifts for each
columns in order to implement spatial correlation operation using matrix algebra.
Furthermore, these matrices are very sparse because the image size is much bigger
than the kernel size. Thus, the hidden unit hl can be expressed as a discrete-time
convolution between the kernel wl and the previous hidden unit hl�1. A point-wise
non-linearity and pooling are then applied on the hidden unit. There are numerous
variants of CNNs architectures in the literature. However, their basic components
are very similar which contains of convolutional layer, pooling layer, activation
layer and fully connected layer.

• Convolutional layer: the convolutional layer aims to learn feature
representations of the inputs and it is composed of several convolution kernels
which are used to compute different feature maps. In a convolutional layer,
each neuron of a feature map is connected to a region of neighboring neurons
in the previous layer. The new feature map can be obtained by first convolving
the input with a kernel and then applying an element-wise nonlinear activation
function on the convolved results. The feature maps are obtained by using a set
of different kernels.

• Activation layer: the activation function introduces nonlinearities to CNNs.
This layer controls how the signal flows from one layer to the next, emulating
how neurons are fired in our brain.

• Pooling layer: pooling layer is also called sampling layer to smooth the input
from the convolutional layer. The pooling layer helps to (1) reduce the
sensitivity of the filters to noise and variations. Pooling operation is usually
placed between two convolutional layers. Each feature map of a pooling layer is
connected to its corresponding feature map of the preceding convolutional layer.

• Loss layer: it is important to choose an appropriate loss function for a specific
task. Softmax loss is a commonly used loss function which is essentially a
combination of multinomial logistic loss and softmax. Softmax turns the
predictions into non-negative values and normalizes them to get a probability
distribution over classes. Such probabilistic predictions are used to compute
the multinomial logistic loss.

• Regularization: regularization aims to reduce the overfitting problem during
training. lp-norm, Dropout, and DropConnect are some common regularization
techniques have been developed to solve this.

• Optimization: data augmentation, weight initialization, stochastic gradient
descent, batch normalization, shortcut connections are some common
optimization techniques that will be discussed. Popular data augmentation
methods are sampling, various photometric transformations, shifting, and
greedy strategy. Stochastic gradient descent [5] (SGD) is the most popular
technique used to update the parameter during backpropagation.

3

Recurrent Level Set Networks for Instance Segmentation
DOI: http://dx.doi.org/10.5772/intechopen.84675

2.2 Recurrent neural networks

The Recurrent Neural Networks (RNNs) is an extremely powerful sequence
model and was introduced in the early 1990s [6]. A typical RNNs contains three
parts, namely sequential input data (xt), hidden state (ht) and sequential output
data (ot).

RNNs contains a sequence of elements and each element performs the similar
task. The input of future element depends on the output of current element. The
RNNs contains one or many input and one or many output depending on the
applications. Some examples, of RNNs architecture are given in Figure 1.

In RNNs, the activation of the hidden states at timestep t is computed as a
function F of the current input symbol xt and the previous hidden states ht�1.
The output at time t is calculated as a function G of the current hidden state ht as
follows:

ht ¼ F Uxt þWht�1ð Þ

ot ¼ F Vhtð Þ
(2)

where W is the state-to-state recurrent weight matrix, U is the input-to-hidden
weight matrix, V is the hidden-to-output weight matrix. F is usually a logistic
sigmoid function or a hyperbolic tangent function and G is defined as a softmax
function.

Most work on RNNs has made use of the method of backpropagation through
time (BPTT) [7] to train the parameter set U;V;Wð Þ and propagate error backward
through time. In classic backpropagation, the error or loss function is defined as:

E o;y
� �

¼ ∑
t

ot � yt

�

�

�

�

2
(3)

where ot is prediction and yt is labeled groundtruth.
For a specific weight W, the update rule for gradient descent is defined as

Wnew ¼W� γ ∂E
∂W, where γ is the learning rate. In RNNs model, the gradients of the

error with respect to our parameters U, V and W are learned using stochastic
gradient descent (SGD) and chain rule of differentiation.

There are two popular improvements of RNNs in order to solve the problems of
exploding and vanishing when dealing with long time dependency.

• Long short time memory: to address the issue of learning long-term
dependencies, Hochreiter and Schmidhuber [8] proposed Long Short-Term
Memory (LSTM), which is able to maintain a separate memory cell inside it
that updates and exposes its content only when deemed necessary. Similar to
RNNs, LSTMs are defined under a chain like structure, but the repeating
module has a different structure. Instead of having a single neural network

Figure 1.
Example of RNNs architecture.

4

Pattern Recognition - Selected Methods and Applications

layer (single tanh layer), LSTMS have four neural networks in each layer and
they are interacting in a very special way. The key to LSTMs is the cell state
(Ct) which has the ability to remove or add information by optionally letting
information through. Gates are composed out of a sigmoid layer and a
pointwise multiplication operation.

• Gated recurrent units: to make each recurrent unit adaptively capture
dependencies of different time scales, [9] proposed gated recurrent unit
(GRU) as an extension of RNN. Similar LSTM unit, GRU contains gating units
that control the flow of information inside the unit. However, GRU does not
have separate memory cells. By using leaky integration, GRU is able to fully
expose its memory content each timestep and balance between the previous
memory content and the new memory content strictly. Notably, its adaptive
time constant is controlled by the update gate. In traditional RNNs, the content
of activation unit is always replaces by a new value calculated from the current
input and the previous hidden state. Instead of replacing, GRU jsut adds the
new content on top and still keeps the existing content. This addition provides
shortcut paths that bypass multiple temporal steps. In GRUs, thank to these
shortcuts, the error is back-propagated easily without too quickly vanishing as
a result of passing through multiple, bounded nonlinearities. Thus it help to
reduce the difficulty due to vanishing gradients. Furthermore, using the
addition, each unit is able to remember the existence of a specific feature in the
input stream for a long series of steps.

2.3 Variational level set

Variational level set is an implicit implementation of active contour (AC). The
main ideas of applying AC for image segmentation is to start with an initial random
(guess) contour C which is represented in a form of closed curves. The curve is then
iteratively adjusted by shrinking or expanding under an image-driven forces until it
reach to the boundaries of the desired objects. The entire process is called contour
evolution or curve evolution, denoted as ∂C

∂t .

There are two main approaches in active contours: snakes and level sets. Snakes
explicitly move predefined snake points based on an energy minimization scheme,
while level set approaches move contours implicitly as a particular level of a function.

Level set (LS)-based or implicit active contour models have provided more
flexibility and convenience for the implementation of active contours, thus, they
have been used in a variety of image processing and computer vision tasks. The
basic idea of the implicit active contour is to represent the initial curve C implicitly
within a higher dimensional function, called the level set function ϕ x; yð Þ : Ω! R,
such as: C ¼ x; yð Þ : ϕ x; yð Þ ¼ 0, ∀ x; yð Þ∈Ω, where Ω denotes the entire image plane.

A zero level set function is used to formulate the contour, i.e., the contour

evolution is equivalent to the evolution of the level set function, i.e., ∂C
∂t ¼

∂ϕ x;yð Þ
∂t . The

reason of using the zero level set is that a contour can be defined as the border
between a positive area and a negative area. Thus, everything on the zero area
belongs to the contour and it is identified by signed distance function as follows:

ϕ xð Þ ¼

d x;Cð ÞÞ if x is insideC

0 if x isonC

�d x;Cð ÞÞ if x is outsideC

8

>

<

>

:

(4)

where d x;Cð Þ denotes the distance from an arbitrary position to the curve.

5

Recurrent Level Set Networks for Instance Segmentation
DOI: http://dx.doi.org/10.5772/intechopen.84675

The computation is performed on the same dimension as the image plane Ω,
therefore, the computational cost of level set methods is high and the convergence
speed is quite slow.

Under the scenarios of image segmentation, we consider an image in 2D space,
Ω. The level set is to find the boundary C of an open set ω∈Ω, which is defined as:
C ¼ ∂ω. In LS framework, the boundary C can be represented by the zero level set ϕ
as follows:

∀ x; yð Þ∈Ω

C ¼ x; yð Þ : ϕ x; yð Þ ¼ 0f g

inside Cð ÞÞ x; yð Þ : ϕ x; yð Þ>0f g

output Cð ÞÞ x; yð Þ : ϕ x; yð Þ<0f g

8

>

<

>

:

(5)

Under the image segmentation problem, entire domain of an image I is presented
by Ω which contains three regions corresponding to: inside contour (¿0), on contour
(=0) and outside the contour (¡0). Clearly, the zero LS function ϕ partitions the region
Ω into two regions: region inside ω (foreground), denoted as inside (C) and region
outside ω (background) denoted as outside (C). Using the zero level set function, the
length of the contour C and the area inside the contour C are defined as follows:

Length Cð Þ ¼

Z

Ω

∣∇H ϕ x; yð Þð Þ∣dxdy ¼

Z

Ω

δ ϕ x; yð Þð Þ∣∇ϕ x; yð Þ∣dxdy

Area Cð Þ ¼

Z

Ω

H ϕ x; yð Þð Þdxdy

(6)

where Hε �ð Þ is a Heaviside function.
Typically, the LS-based segmentationmethods startwith an initial level setϕ0 and an

given image I. The LS updating process is performed via gradient descent byminimizing
an energy functionwhich defined based on the difference of image features, such as
color and texture, between foreground and background. The fitting term in LSmodel is
defined by the inside contour energy (E1) and outside contour energy (E2).

E ¼ E1 þ E2 ¼

Z

insideC
I x;yð Þ � c1
� �2

dxdyþ

Z

outsideC
I x;yð Þ � c2
� �2

dxdy (7)

where c1 and c2 are the average intensity inside and outside the contour C,
respectively.

One of the most popular region based active contour models is proposed by
Chan-Vese (CV) [10]. In this model the boundaries are not defined by gradients
and the curve evolution is based on the general Mumford-Shah (MS) [11] formula-
tion of image segmentation as shown in Eq. (8).

E ¼

Z

Ω

I� uj j2dxdyþ

Z

Ω=C
∇uj j2dxdyþ νLength Cð Þ (8)

CV’s model is an alternative form of MS’s model which restricts the solution to
piecewise constant intensities and it has successfully segmented an image into two
regions, each having a distinct mean of pixel intensity by minimizing the following
energy functional.

E c1; c2;ϕð Þ ¼ μArea ω1ð Þ þ νLength Cð Þ þ λ1

Z

ω1

I x; yð Þ � c1j j2dxdyþ λ2

Z

ω2

I x; yð Þ � c2j j2dxdy

(9)

6

Pattern Recognition - Selected Methods and Applications

where c1 and c2 are two constants. The parameters μ, ν, λ1, λ2 are positive param-
eters and usually fixing λ1 ¼ λ2 ¼ 1 and μ ¼ 0. Thus, we can ignore the first term in
Eq. (9). Thus the energy functional is rewritten as follows:

E c1; c2;ϕð Þ ¼ μ

Z

Ω

H ϕ x; yð Þð Þdxdyþ ν

Z

Ω

δ ϕ x; yð Þð Þ∣∇ϕ x; yð Þ∣dxdy

þ λ1

Z

ω1

Iðx; yÞ � c1j j2dxdyþ λ2

Z

ω2

Iðx; yÞ � c2j j2dxdy

(10)

For numerical approximations, the δ function needs a regularizing term for
smoothing. In most cases, the Heaviside function H and Dirac delta function δ are
defined as in Eq. (11) and Eq. (12), respectively.

Hε xð Þ ¼
1

2
1þ

2

π
arctan

x

ε

� �

� �

and δε xð Þ ¼ H0 xð Þ ¼
1

π

ε

ε2 þ x2
(11)

δε xð Þ ¼ H0 xð Þ ¼
1

π

ε

ε2 þ x2
(12)

As ε! 0, δε ! δ, and Hε ! H. Using Heaviside function H, the Eq. 10 becomes
Eq. 13.

E c1; c2;ϕð Þ ¼ μ

Z

Ω

H ϕ x; yð Þð Þdxdyþ ν

Z

Ω

δ ϕ x; yð Þð Þ∣∇ϕ x; yð Þ∣dxdy

þ λ1

Z

Ω

Iðx; yÞ � c1j j2H ϕ x; yð Þð Þdxdyþ λ2

Z

Ω

Iðx; yÞ � c2j j2 1�H ϕ x; yð Þð Þð Þdxdy

(13)

In the implementation, they choose ε ¼ 1. For fixed c1 and c2, gradient descent
equation with respect to ϕ is:

∂ϕ x; yð Þ

∂t
¼ δε ϕ x; yð Þ νκ ϕ x; yð Þ � μ� λ1 I x; yð Þ � c1ð Þ2 þ λ2 I x; yð Þ � c2ð Þ2

h i

(14)

where δε is a regularized form of Dirac delta function and c1, c2 are the mean of
inside the contour ωin and the mean of the outside of the contour ωout, respectively.
The curvature κ is given by:

κ ϕ x; yð Þð Þ ¼ �div
Δϕ

Δϕj j

� �

¼ �
ϕxxϕ

2
y � 2ϕxϕyϕxy þ ϕyyϕ

2
x

ϕ2
x þ ϕ2

y

� �1:5 (15)

where ∂xφt, ∂yφt and ∂xxφt, ∂yyφt are the first and second derivatives of φt with
respect to x and y directions. For fixed ϕ, gradient descent equation with respect to
c1 and c2 are:

c1 ¼
∑x,yI x; yð ÞH ϕ x; yð Þð Þ

∑x,yH ϕ x; yð Þð Þ
and c2 ¼

∑x,yI x; yð Þ 1�H ϕ x; yð Þð Þð Þ

∑x,y 1�H ϕ x; yð Þð Þð Þ
(16)

herein, we use notation φt to indicate φ at the iteration tth in order to distinguish
the φ at different iterations. Under this formulation, the curve evolution is shown as
a time series process which helps to give better visualization of reformulating LS.
From this point, we redefine the curve updating in a time series form for the LS
function φt as in Eq. (17).

7

Recurrent Level Set Networks for Instance Segmentation
DOI: http://dx.doi.org/10.5772/intechopen.84675

φtþ1 ¼ φt þ η
∂φt

∂t
(17)

The LS at time tþ 1 depends on the previous LS at time t and the curve evolution
∂φt

∂t with a learning rate η.

3. Recurrent level set for object instance segmentation

To reformulate level set under a RNNs/GRUs deep framework, we need to solve
the following problems:

• Input: How to generate a sequential data xt from a single image I if we treat ϕt

in LS as hidden state ht in RNNs with the same updating manner?

• Output: In the segmentation problem by LS, the binary mask corresponding to
foreground and background is computed by one forward process with many
iterations whereas the RNNs is computed by forward procedure and learnt by
backward procedure. How to compute the error and perform backward
procedure in LS framework?

• Update rule: Does the update rule in LS work in the same fashion as the
forward procedure in RNNs/GRUs deep framework?

As shown in Table 1, one of the most challenging problems of reformulating LS
as RNNs is data configuration. RNNs work on sequential data whereas LS uses
single image as input and produce a mask as single image too. The first question
here is how to generate sequential data from a single image. Moreover, there are two
source inputs used in LS, i.e., an input image I and an initial contour which is
treated as initial LS function ϕ0 and updated by Eq. (17). That means we need to
generate a sequential data xt (t ¼ 1,⋯, N) from single image I in our proposed RLS.
In order to achieve this goal, we define a function g I;ϕt�1ð Þ as in Eq. (18).

xt ¼ g I;ϕt�1ð Þ ¼ ϕt�1 þ η κ ϕt�1ð Þ � Ug I� c1ð Þ2 þWg I� c2ð Þ2
h i

(18)

In Eq. (18), c1 and c2 are average values of inside and outside of the contour
presented by the LS function ϕt�1 and defined in Eq. (16). κ denotes the curvature
and defined in Eq. (15). Ug and Wg are two matrices that control the force inside
and outside of the contour.

In such equation, the curve evolution in the proposed RLS functions as same as

in the traditional LS defined by Eq. (14), i.e. the input at iteration tth, xt, is updated
based on the input image I and the previous LS function ϕt�1. In our proposed RLS,
xt is considered to be sequential input whereas LS updating ϕt is treated as hidden
state updating. Notably, the initial contour in LS function plays the role as initial
hidden state as randomly generated. The relationship among I, xt, and ϕt are given
in Figure 2.

So far, the question of generating input sequence from the single image I has
been answered. In the proposed RLS, we use the same input as defined in LS
problem, namely the input image I and the initial ϕ0. We generate sequential data xt

from the input as single image. The next challenging problem is how to generate the
hidden state ϕt from the input data xt and the previous hidden state ϕt�1. Under the
same intuition of proposing GRUs [9], the procedure of generating hidden state ϕt

8

Pattern Recognition - Selected Methods and Applications

is based on the updated gate zt, the candidate memory content ~ht and the previous
activation unit ϕt�1 as the rule given in Eq. (19).

ϕt ¼ zt~ht þ 1� ztð Þϕt�1 (19)

The update gate zt, which controls how much of the previous memory content is
to be forgotten and how much of the new memory content is to be added is defined
as in Eq. (20).

zt ¼ σ Uzxt þWzϕt�1 þ bzð Þ (20)

where σ is a sigmoid function and bz is the update bias. However, the propose
RLS does not have any mechanism to control the degree to which its state is
exposed, but exposes the whole state each time in such naive definition. To address
that issue, the new candidate memory content yt is computed. as in Eq. (21).

~ht ¼ tanh U~h
xt þW~h

ϕt�1 ⊙ rtð Þ þ b~h

� �

(21)

where ⊙ denotes an element-wise multiplication, b~h
is the hidden bias. The

reset gate rt is computed similarly to the update gate as in Eq. (22).

Input Update Output

CLS Image I

Initial LS function ϕ0

ϕtþ1 ¼ ϕt þ η
∂ϕt

∂t
∂ϕt

∂t ¼ δε ϕt νκ ϕt � μð½ð λ1 I� c1ð Þ2 þ λ2 I� c2ð Þ2�Þ

ϕN

GRUs Sequence x1, x2,…xN
Initial hidden state h0

zt ¼ f Uzxt þWzht�1ð Þ

rt ¼ f Urxt þWrht�1ð Þ

~ht ¼ h Uhxt þWh ht�1 ◦ rtð Þð Þ

ht ¼ 1� ztð Þht�1 þ zt~ht

h: Tanh

f: Sigmoid or Tanh

G VhNð Þ

G: softmax

RLS Image I

Initial LS function ϕ0

xt ¼ κ ϕt�1 �Ug I� c1ð Þ2 þWg I� c2ð Þ2
� �

zt ¼ σ Uzxt þWzϕt�1 þ bzð Þ

rt ¼ σ Urxt þWrϕt�1 þ brð Þ
~ht ¼ h Uyxt þWy ϕt�1 ◦ rtð Þ þ by

� �

ϕt ¼ 1� ztð Þϕt�1 þ ztht

h: Tanh

σ: Sigmoid

G VϕN þ bVð Þ

G: softmax

Table 1.
Comparison of input, update rule and output used in traditional LS, GRUs, and our proposed RLS.

Figure 2.
The visualization of generating sequence input data xt and hidden state ϕt from the input image I and the
initial LS function ϕ0.

9

Recurrent Level Set Networks for Instance Segmentation
DOI: http://dx.doi.org/10.5772/intechopen.84675

rt ¼ σ Urxt þWrϕt�1 þ brð Þ (22)

where br is the reset bias. When rt is close to 0 (off), the reset gate effectively
makes the unit act as if it is reading the first symbol of an input sequence, allowing
it to forget the previously computed state. The output o is computed from the
current hidden states ϕt and then a softmax function is applied to obtain fore-
ground/background segmentation ŷ given the input image as follows:

ŷ ¼ softmax oð Þ

o ¼ Vϕt þ bV

(23)

where V is weighted matrix between hidden state and output. Figure 4 (left)
illustrate the proposed RLS in folded mode where the input of the network is
defined as the same as the LS model, i.e., a given input image I and an initial LS
function ϕ0. In our proposed RLS, the curve evolution from ϕt at present time step t
to the future ϕtþ1 at time tþ 1 is designed in the same fashion as the hidden state in
GRUs and is illustrated in Figure 4 (right) where ϕtþ1 depends on both previous LS
function ϕt and the present input xtþ1. We have summarized the comparison among
LS, GRUs and our proposed RLS in Table 1 and visulized the relationship between
LS and GRUs as Figure 3. It is easy to see that RLS uses the same input as in
traditional LS where the curve evolution (i.e., update procedure) and output in the
proposed RLS follows similar fashion as in GRUs.

We summarize the proposed building block RLS in Algorithm 1.

Algorithm 1. Algorithm of the proposed building block RLS

Input: Given an image I, an initial level set function ϕ0, time step N, learning
rate η, initial parameters θ ¼ Uzð , Wz, bz, Ur, Wr, br U~h

, W~h
, b~h

, V, bVÞ.

for each epoch do
Set ϕ ¼ ϕ0

for t = 1 : T do
Generate RLS input xt: xt g I;ϕt�1ð Þ

Compute update gate zt, reset gate rt and intermediate hidden unit ~ht:
zt σ Uzxt þWzϕt�1 þ bzð Þ
rt σ Urxt þWrϕt�1 þ brð Þ

Figure 3.
The proposed RLS network for curve updating process under the sequential evolution and its forward
computation of curve evolution from time t � 1 to time t.

10

Pattern Recognition - Selected Methods and Applications

~ht tanh U~h
xt þW~h

ϕt�1 ◦ rtð Þ þ b~h

� �

Update the zero LS ϕt: ϕt 1� ztð Þ~ht þ ztϕt�1

end for
Compute the loss function L: L �∑n yn log ŷn

Compute the derivate w.r.t. θ: ∇θ ∂L
∂θ
.

Update θ: θ θ þ η∇θ
end for

The proposed RLS described in the previous section performs the image seg-
mentation task, i.e., dividing an image into two parts corresponding foreground and
background segments. Given a real-world image, RLS however performs neither
the instance segmentation nor image understanding which are significant tasks in
many computer vision application. In order solve this requirement, we introduce
contextual recurrent level sets (CRLS) for semantic object segmentation which is an
extension of our proposed RLS model to address the multi-instance object segmen-
tation in the wild. The proposed CRLS is able to (1) localize objects existing in
the given image; (2) segment the objects out of the background; (3) classify the
objects in the image. The output of our CRLS is multiple values (each value is
corresponding to one object class) instead of two values (foreground and back-
ground) as in RLS.

Our proposed CRLS inherits the merits of RLS and faster-RCNN [12] for
semantic segmentation which simultaneously performs three tasks which are
addressed by three stages, i.e., detection, segmentation and classification in a fully
end-to-end trainable framework as shown in Figure 5. In our CRLS, the network

Figure 5.
The flowchart of our proposed CRLS for semantic instance segmentation with three tasks which are addressed by
three stages, i.e. object detection by Faster R-CNN [12], object segmentation by RLS and classiffication.

Figure 4.
Visualization of relationship between LS and GRUs in a RLS unit.

11

Recurrent Level Set Networks for Instance Segmentation
DOI: http://dx.doi.org/10.5772/intechopen.84675

takes an image of arbitrary size as the input, and outputs instance-aware semantic
segmentation results. The network contains three components corresponding three
stages of a semantic instance segmentation: object detection for proposing box-
level, object segmentation is for mask-level and object classification is for catego-
rizing each instance. These three stages are designed to share convolutional fea-
tures. Each stage involves a loss term and the loss of later stage relies on the output
of an predecessor stage, so the three loss terms are not independent. We train the
entire network end-to-end with a unified loss function.

3.1 Stage 1: object detection

One of the most important approaches to the object detection and classification
problems is the generations of region-based convolutional neural networks
(R-CNN) family [12–15].

In order to propose a fully end-to-end trainable network, we adapt the region
proposal network (RPN) introduced in Faster R-CNN [12] to predict the object
bounding boxes and the objectness scores. Aiming at reducing time consuming,
both the detection and segmentation procedure share the convolutional features of
a deep VGG-16 network [16].

As for the share convolutional features, we utilize a VGG-16 networks with 13
convolution layers where each convolution layer is followed by a ReLU layer but
only four pooling layers are placed right after the convolution layer to reduce the
spatial dimension.

In this stage, object detection, the network proposes object instances in the form
of bounding boxes which are predicted with an objectness score. The network struc-
ture and loss function of this stage follow the work of Region Proposal Networks
(RPNs) [12]. RPNs take an image of any size as the input and predicts bounding box
locations and objectness scores in a fully-convolutional form. A 3 � 3 convolutional
layer for reducing the dimension is applied on top of share convolutional features.
The lower dimension features are fed into two sibling 1 � 1 convolutional layers: one
is for a box-regression layer and the other is for box-classification layer.

From the share feature maps and at each sliding-window location, multiple
region proposals are generated. Denote k is the maximum possible proposals for
each location. Each box is presented by four values corresponding to locations (x, y
w, h) and two scores corresponding the probability of object or not object. Each
anchor, which is centered at the sliding window, is associated with an aspect ratio
and scale. In the experiments, each sliding position has 9 (k = 9) anchors
corresponding to three scales and three aspect ratios. If the sharing feature maps of
size W�H, there are k�W�H anchors. For the purpose of object detection, there
are only two anchors considered:

• Positive anchor: there are two cases are taken into account, i.e., (i) an anchor
with the highest Intersection-over-Union (IoU) overlap with a ground-truth
box, (ii) an anchor that has an IoU overlap higher than 0.7 with any ground-
truth box.

• Negative anchor: an anchor with IoU score is lower than 0.3 with all ground-
truth boxes.

• Ignore anchor: an anchor that is neither positive nor negative do not contribute
to the training objective.

12

Pattern Recognition - Selected Methods and Applications

There are two sibling output layers: probability of classification and bounding
box regression in the end of RPNs, therefore, the RPNs loss is based on two losses:
boxes regression loss and object classification loss.

LRPN pi; bi
� �

¼
1

Ncls
∑
i
Lcls pi; pi ∗

� �

þ λ
1

Nreg
∑
i
pi ∗Lreg bi; bi ∗

� �

(24)

In this equation:

• i is the index of an anchor in a mini-batch.

• pi is the predicted probability of anchor i being an object and pi is computed by
a softmax over the K outputs of a fully connected layer (K categories).

• Ncls and Nreg are the two normalization terms.

• λ is a balancing parameter.

• pi ∗ is groundtruth and it sets as 1 if the anchor is positive, and 0 if the anchor is
negative.

• bi ¼ bix; b
i
y; b

i
w; b

i
h

� �

is a vector representing the four parameterized

coordinates of the predicted bounding box.

• bi ∗ ¼ bi ∗x ; bi ∗y ; bi ∗w ; bi ∗h

� �

is groundtruth bounding of positive box and is a

vector representing the four parameterized coordinates. Let denote

(xi ∗ , yi ∗ , wi ∗ , hi ∗), (xi, yi, wi, hi), (xa, ya, wa, ha) are four coordinations (box
center, width, and height) of groundtruth box, predicted box and anchor box,
the parameterization of the four coordinates are as follows:

bi ∗x ¼ xi ∗ � xa
� �

=wa bix ¼ xi � xa
� �

=wa

bi ∗y ¼ yi ∗ � ya
� �

=ha biy ¼ yi � ya
� �

=ha

bi ∗w ¼ log wi ∗ =wa
� �

biw ¼ log wi=wa
� �

bi ∗h ¼ log hi ∗ =ha
� �

bih ¼ log hi=ha
� �

(25)

• The bounding boxes regression is defined by smoothl1 as follows:

Lreg ¼ ∑
u∈ x, y,w, h

smoothl1 biu � bi ∗u
� �

(26)

smoothl1 xð Þ ¼

1

2
x2 if ∣x∣< 1

∣x∣� 0:5 otherwise

8

<

:

(27)

The classification loss Lclsð Þ is log loss over two classes (object vs. not object).
The RPNs loss is defined as in Eq. (28) where i is the ground truth class.

13

Recurrent Level Set Networks for Instance Segmentation
DOI: http://dx.doi.org/10.5772/intechopen.84675

Lcls pi; pi ∗
� �

¼ � log pi
� �

: (28)

To easy to follow, we denote the loss of this stage as: LRPN ¼ LRPN B Θð Þð Þ
where Θ represents all network parameters to be optimized. B is the network

output of this stage, representing a list of bounding boxes B ¼ bf gi. Each bounding
box is presented by four coordinations (box center, width, and height) and
predicted objectness probability bi ¼ bx; by; bw; bh; pi

� �

i
.

3.2 Stage 2: object segmentation

The second stage takes the share features and the results from the first stage
(predicted box) as inputs. The output of this stage is binary segmentation which
contains foreground (object) and background.

For each predicted box, we make use of RoI warping layer to crop and warp a
region on the feature map into the target fixed size by interpolation. Each predicted
box from the deep feature map (conv5) is now resized to m�m where m ¼ 21 in
our experiment. To reduce the size of a region, RoI warping layer is performed by
using a pooling payer to convert features inside any valid region of interest into a
small feature map. Each RoI is defined by top-left corner r; cð Þ and its height and
width h;wð Þ. That means, it is defined by a four-tuple r; c; h;wð Þ. The feature map of

size h� w is partitioned into m�m grid of sub-windows of approximate size h
m�

w
m.

The max pooling is then applied into each sub-window. As a result, RoI warping
layer outputs a grid cell.

The fixed size extracted features are passed through the proposed RLS together
with a randomly initial ϕ0 to generate a sequence input data xt based on Eq. (18).
The curve evolution procedure is performed via LS updating process given in
Eqs. (14) and (17). This task outputs a binary mask as given in Eq. (23) sized m�m
and parameterized by an m2 dimensional vector.

Given a set of predicted bounding box from the first stage, the loss term LSEG of
the second stage for foreground segmentation is given by:

LSEG ¼ LSEG S Θð ÞjB Θð Þð Þ (29)

Here, S is the network designed by RLS and is presenting a list of segmentations
S ¼ Sf gi. Each segmentation Si is an m�m mask.

3.3 Stage 3: object classification via fully-connected network

The third stage takes the share feature, bounding box from the first stage, object
segmentation from the second stage as inputs. The output of this stage is class score
for each object instance.

For each predicted bounding box from the first stage, we first extract the feature
by ROI pooling (fROI). The feature is then go through the proposed RLS and
presented by a binary mask (f SEG Θð)) from the second stage. The input of this stage
(fMSK) is the masked feature which depends on the segmentation results (f SEG Θð))
and ROI feature (fROI) and computed by element-wise product of those,
fMSK Θð Þ ¼ f ROI Θð Þ ∗ f SEG Θð . To predict the category of a region, we first apply two
fully-connected layers to masked feature fMSK . As a result, we receive mask-based
feature vector which is then concatenated with another box-based feature vector
to build a joined feature vector. Notably, the box-based feature vector is computed
by applying two fully-connected layers to ROI feature fROI. Finally, two fully-
connected layers are attached to the joined feature and each gives class scores and

14

Pattern Recognition - Selected Methods and Applications

refined bounding boxes using softmax classification of K þ 1ð Þ classes (including
background). The entire procedure of Stage 3 is illustrated in Figure 6.

Let C is the network output of this stage and representing a list of category
predictions for all instances: C ¼ Cf gi. The loss term LCLS of the third stage is
expressed in Eq. (30).

LCLS ¼ LCLS C Θð ÞjB Θð Þ; S Θð Þð Þ (30)

The loss of entire proposed CRLS network is defined as in Eq. (32).

L Θð Þ ¼ LRPN þ LSEG þ LCLS

¼ LRPN B Θð Þð Þ þ LSEG S Θð ÞjB Θð Þð Þ þ LCLS C Θð ÞjB Θð Þ; S Θð Þð Þ
(31)

4. Inference

In our experiment, the top-scored 300 ROIs are first chosen by RPNs proposed
boxes giving an image. Using Non-maximum suppression (NMS)with IoU and
threshold is chosen as 0.7 to filter out highly overlapping and redundant candidates.
The proposedRLS is then applied on to eachROI to partition it into object (foreground)
and non-object (background). From each ROI, we obtain a segmenting mask and a
category score prediction via two fully-connected layers followed by a soft-max layer.

Besides softmax loss, which is to optimize when classifying a region is object or
non-object in the first stage, there are three “dependent” losses in which the later
loss depends on the predecessor loss. Three losses are assigned for each ROI, i.e., (1)
smooth l1 loss—bounding box regression loss in the first state, (2) cross entropy loss
—foreground segmentation loss in the second stage (3) softmax loss—instance
classification loss in the third stage. Among all the losses, computing the gradient w.
r.t. predicted box positions and address the dependency on the bounding box B Θð Þ
is the most difficulty. Given a full size feature map H Θð Þ, we crop a bounding box

region (predicted box) bi Θð Þ ¼ bx; by; bw; bh
� �

and warp it to a fixed size by inter-
polation. The wrapped region ROI is presented as:

FROI Θð Þ ¼ I bi Θð Þð ÞF Θð Þ (32)

where I is cropping and warping operations. As for dimension, F Θð Þ∈RN is a
vector reshaped from the image, N ¼W �H. The cropping and warping matrix

Figure 6.
An illustration of Stage 3 for object classification using f ROI Θð Þ ∗ f SEG Θð Þ as inputs.

15

Recurrent Level Set Networks for Instance Segmentation
DOI: http://dx.doi.org/10.5772/intechopen.84675

I ∈RM � RN . FROI Θð Þ is a target region sized w� h and M ¼ w� h. I bi Θð Þð Þ pre-
sents transforming a that box bi Θð Þ from size of bw � bh into the size of w� h. Let
x0; y0ð Þ and x; yð Þ are two points on target feature map FROI Θð Þ size of w� h and
original map F Θð Þ size of W �Hð Þ, respectively. Using interpolation with (G) is
the bilinear interpolation function, I bi Θð Þð Þ is computed as follows:

I bi Θð Þð Þ ¼ Gð Þ bx þ
x0

w
� x

� �

gð Þ by þ
y0

h
� y

� �

g zð Þ ¼ max 0; 1� jzjð Þ

(33)

5. Implementation details

The proposed RLS approach is implemented using the TensorFlow system [17]
whereas the extended CRLS semantic segmentation is implemented using Caffe
environment [18]. Three functional sub-networks corresponding to three tasks, i.e.,
detection, segmentation and classification (shown in Figure 5), are connected
together to construct an end-to-end network. The first and the third sub-networks,
i.e., object detection and object classification, are adopted from Faster R-CNN
framework [12]. In the second sub-network, we re-implement the defined layers
from RLS-Tensorflow to RLS-Caffe for both forward and backward operations in
Python. Since TensorFlow supports automatic differentiation capabilities, RLS-
TensorFlow is therefore easier to implement than the new layers in RLS-Caffe.

In the experiment, the pre-trained VGG-16 model with 13 convolution layers is
utilized to obtain the share features. Each convolution layer is always followed by a
ReLU layer. There are 4 max-pooling layers are placed right after the convolution
layer.

In the first task of CRLS, i.e., object detection, we use a 3� 3 convolutional layer
to reduce feature dimensions and learn the feature representation and then two
consecutive 1� 1 convolutional layers predicts object’s locations and object’s
presenting scores. Furthermore, we choose the two normalization terms (Ncls, Nreg)
are chosen as Ncls ¼ 256 and Nreg ¼ 2400. The balancing parameter λ is set as
λ ¼ 10. As for non-maximum suppression (NMS), which is used to reduce the

number of boxes generated from the first stage (� 104 regressed boxes are
produced from the first stage), the threshold of the Intersection-over-Union (IoU)
ratio is chosen as 0.7. As a result, the top-ranked 300 boxes are kept for the
second stage.

In the second task of CRLS, i.e., object segmentation by the proposed RLS, we
first extract a fixed-size (21� 21) deep feature from an arbitrary box predicted
using the object detection task. The proposed RLS takes the extracted feature as the
input together with the randomly initial ϕ0 to generate a sequence input data xt
based on Eq. (18). The curve evolution procedure is performed via LS updating
process given in Eq. (14). This task outputs a binary mask as given in Eq. (23) sized
m�m and parameterized by an m2 dimensional vector.

In the final task of CRLS, i.e., object classification, using the shared
convolutional features inside the bounding box region, we extract a feature repre-
sentation for each ROI. Through the second task of CRLS (object segmentation), we
obtain the segmenting mask prediction for that ROI. The masked feature goes
through two fully-connected layers to produce the classification score for that ROI.

The proposed CRLS framework was implemented on Caffe environment [18]
and under SGD optimization. For each training image, if its shorter side is larger
than 600, the image is down-scaled to 600 on the shorter side. To perform the

16

Pattern Recognition - Selected Methods and Applications

experiments on PASCAL VOC [19], we train the network with 32 and 8 k iterations
at learning rates of 0.001–0.0001, respectively. On the larger dataset like MSCOCO
[20], we train the network with 180 and 20 k iterations at learning rates of 0.001–
0.0001, respectively.

6. Experimental results of CRLS

In this section, we conduct two experiments corresponding to the object seg-
mentation by the proposed RLS method and the semantic instance segmentation by
the proposed CRLS system on PASCAL VOC [19] and COCO [20] datasets.

6.1 Datasets

6.1.1 Synthetic dataset

The synthetic and medical dataset containing 720 images are artificially created
from images reported in [10, 21]. There are actually about 20 images reported in
[10, 21]. To avoid over-fitting problem as well as make sure the proposed RLS is
able to deal with both intensity homogeneity and inhomogeneity, different kinds of
degradation and affined have been used. As for degradation, we use many kinds of
noise and blurring at different ratio. As for affine transformations, we use rotation,
translation, scale, and flip at different degrees. As a result, we obtain 720 images on
this dataset. Half of this data set is used for training, i.e., 360 images which were
artificially generated from first 10 images. The rest of 360 images is used for testing.
Furthermore, we use the one object dataset fromWeizmann [22] for the conducting
the experiment on natural images. Using the same strategy of augmentation as in
medical images, we obtain 4700 images and we used 2350 images for training and
2350 images for testing.

6.1.2 PASCAL VOC

The PASCAL VOC 2012 [19] are a commonly used database for evaluating
semantic segmentation. The PASCAL VOC 2012 training and validation set has
11,540 images containing 27,450 bounding box annotated objects and 6929 seg-
mentations in 20 categories and one background category. The data is divided into
5717 images for training and 5823 images for testing (val). The 20 object classes that
have been selected are: person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle,
boat, bus, car, motorbike, train, bottle, chair, dining table, potted plant, sofa, and
tv/monitor.

6.1.3 MS COCO

TheMS COCO training set contains about 80,000 images for training and 40,000
images for validation [20]. This dataset consists of �500,000 annotated objects of
80 classes and one background class. COCO is a more challenging dataset as it
contains objects in a wide range of scales from small (<322) to large (>962) objects.

6.2 Experiment 1: object segmentation by RLS

This section compares our object segmentation RLS against Chan-Vese’s LS [10],
DRLSE [23], Li’s method. [24], L2S [25] and a simple Neural Network with two
fully-connected layers followed by a ReLU layer in between and we name it

17

Recurrent Level Set Networks for Instance Segmentation
DOI: http://dx.doi.org/10.5772/intechopen.84675

F-ConNet. The experiments are validated on both synthetic images, medical images
and natural images collected in the wild. The input images are resized to 64� 64,
thus, the number of units in fully-connected layers and hidden cell of GRU is 4096.

Figure 7.
Comparison between the proposed RLS against other LS-based methods: 1st row—input images, 2nd row—CLS
[10], 3rd row—DRLSE [23], 4th row—Li et al. [24], 5th row—L2S [25], 6th row—our RLS, and 7th row—
groundtruth. The best results for [10, 23–25].

Methods FM (GT1) FM (GT2) Testing time

CV [10] 88.51 87.51 13.5(s)

DRLSE [23] 80.93 71.76 23.5(s)

Li et al. [24] 79.65 63.87 20.4(s)

L2S [25] 81.36 71.03 10.2(s)

F-ConNet 93.30 93.26 0.001(s)

RLS 99.16 99.17 0.008(s)

Table 2.
Average F-measure (FM) and testing time obtained by CV’s model, DRLSE [23], Li et al. [24], L2S [25], F-
ConNet and our proposed RLS with two different ground truth (GT1 and GT2) across Weizmann database.

18

Pattern Recognition - Selected Methods and Applications

Figure 7 shows comparison between our proposed RLS against other methods on
image segmentation where CLS model [10] is used as baseline, DRLSE [23] as for
global approach, Li et al. [24, 25], L2S [25] as for the inhomogeneity approach,
F-ConNet as a baseline deep learning approach on the synthetic medical dataset
and natural dataset. The best results from CLS’s method, DRLSE, Li’s method are
L2S are given in the second, third, fourth, fifth rows respectively. The performance
of our proposed RLS is given in the sixth row whereas the last row shows the ground
truth. Quantity assessment on F-measure is given in Table 2 with two separated

Methods mAPr @.5 mAPr @.7 Time (s)

SDS (AlexNet) 49.7% 25.3% 48

Hypercolumn 60.0% 40.4% >80

CFM 60.7% 39.6% 32

MNC 63.5% 41.5% 0.36

CRLS (Ours) 66.7% 44.6% 0.54

Table 3.
Quantitative results and comparisons against existing CNN-based semantic segmentation methods (SDS
(AlexNet) [27], Hypercolumn [28], CFM [29], MNC [26]) on the PASCAL VOC 2012 validation set.

Figure 8.
Some examples of semantic segmentation on PASCAL VOC 2012 database. The input image (1st column),
MNC [25] (2nd column), our semantic segmentation CRLS (3rd column), and the ground truth (4th column)
(best viewed in color).

19

Recurrent Level Set Networks for Instance Segmentation
DOI: http://dx.doi.org/10.5772/intechopen.84675

groundtruth versions (GT1 and GT2) provided by two different annotator on
Weizmann database [22]. Compare to other methods, RLS achieves the best
segmentation performance in this experiment on both groundtruth annotated by
two different people.

In terms of time consuming, the baseline method CLS takes 13.5 s while Li et al.’s
and DRLSE approaches have similar time consuming of 20.4 and 23.5 s on average
to process one image with original size. L2S consumes less time (10.2 s) than the
others CLS, Li’s and DRLSE whereas the proposed RLS takes 0.008 s and F-ConNet
takes least time consuming with 0.001 s.

Figure 9.
Some examples of semantic segmentation on MS COCO database on validation set. The input image (1st

column), MNC [26] our semantic segmentation CRLS (2nd column) and the ground truth (3rd column) (best
viewed in color).

20

Pattern Recognition - Selected Methods and Applications

6.3 Experiment 2: semantic instance segmentation by CRLS

We demonstrate our proposed CRLS approach on two common semantic seg-
mentation dataset, i.e., PASCAL VOC 2012 and MS COCO. The end-to-end CRLS
network is trained using the ImageNet pre-trained VGG-16 model. We follow the
same protocols used in recent papers [26–29] to evaluate the semantic segmentation
task. We also use the same metrics reported in recent semantic object segmentation
papers [26–29].

On PASCAL VOC dataset, we evaluate mAPr with IoU at 0.5 and 0.7. As
shown in Table 3, we compare our proposed CRLS against state-of-the-art
CNN-based semantic segmentation methods including SDS [27], Hypercolumn
[28], CFM [29] and MNC [26]. As can be seen from the table, our CRLS
achieves higher mAPr (about 3%) at both 0.5 and 0.7 than previous methods
using the same testing protocol. Not only higher segmentation accuracy, the
experimental results also show that our proposed CRLS gives very better testing
time (0.54 second per image). Some illustrations of multi-instance object
segmentation by our proposed CRLS on PASCAL VOC 2012 dataset are shown
in Figures 8 and 9.

FOn MS COCO 2014, we use 80 k images for training and 20 k images in the test
set (test-dev) for evaluating. The performance is measured on (mAPr) using IoU
between 0.5 and 0.95 and mAPr using IoU at 0.5 (as PASCAL VOC metrics). As
shown in Table 4, our CRLS achieves better results than the previous method
(MNC) on the COCO dataset.

Methods mAPr @[.5:.95] mAPr @.5

MNC 19.5% 39.7%

CRLS (Ours) 20.5% 40.1%

Table 4.
Quantitative results and comparisons against existing CNN-based semantic segmentation method MNC [26]
on the MS COCO 2014 database.

21

Recurrent Level Set Networks for Instance Segmentation
DOI: http://dx.doi.org/10.5772/intechopen.84675

Author details

Thi Hoang Ngan Le1*, Khoa Luu1, Marios Savvides2, Kha Gia Quach3

and Chi Nhan Duong3

1 Department of Computer Science and Computer Engineering, University of
Arkansas, Fayetteville AR, USA

2 Department of Electrical Computer Engineering, Carnegie Mellon University,
Pittsburgh, PA, USA

3 PdActive Inc, Denver CO, USA

*Address all correspondence to: thihoanl@andrew.cmu.edu

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

22

Pattern Recognition - Selected Methods and Applications

References

[1] LeCun Y, Touresky D, Hinton G,
Sejnowski T. A theoretical framework
for back-propagation. In: Proceedings of
the 1988 Connectionist Models Summer
School. CMU, Pittsburgh, PA: Morgan
Kaufmann; 1988. pp. 21-28

[2] LeCun Y, Bottou L, Orr GB, Müller
K-R. Efficient backprop. In: Neural
Networks: Tricks of the Trade. Springer;
1998. pp. 9-50

[3] LeCun Y, Bottou L, Bengio Y,
Haffner P. Gradient-based learning
applied to document recognition. In:
CVPR. 1998. pp. 2278-2324

[4] LeCun YL, Boser B, Denker JS,
Howard RE, Habbard W, Jackel LD,
Henderson D. Handwritten digit
recognition with a back-propagation
network. In: Nips. 1990. pp. 396-404

[5]Qian N. On the momentum term in
gradient descent learning algorithms.
Neural Networks. 1999;12(1):145-151

[6] Jordan MI. Attractor dynamics and
parallelism in a connectionist sequential
machine. In: Diederich J, editor.
Artificial Neural Networks. 1990.
pp. 112-127

[7] Rumelhart DE, Hinton GE, Williams
RJ. Learning representations by back-
propagating errors. In: Anderson JA,
Rosenfeld E, editors. Neurocomputing:
Foundations of Research. Cambridge,
MA, USA: MIT Press; 1988. pp. 696-699

[8]Hochreiter S, Schmidhuber J. Long
short-term memory. Neural
Computation. 1997;9(8):1735-1780

[9] Cho K, van Merrienboer B, Gülçehre
Ç, Bougares F, Schwenk H, Bengio Y.
Learning phrase representations using
RNN encoder-decoder for statistical
machine translation. Computing
Research Repository. 2014;abs/1406:
1078

[10] Chan TF, Vese LA. Active contours
without edges. IEEE Transactions on
Image Processing. 2001;10(2):266-277

[11]Mumford D, Shah J. Optimal
approximation by piecewise smooth
functions and associated Variational
problems. Communications on Pure
and AppliedMathematics. 1989;42(5):
577-685

[12] Ren S, He K, Girshick RB, Sun J.
Faster R-CNN: Towards real-time object
detection with region proposal
networks. Computing Research
Repository. 2015;abs/1506:01497

[13]Girshick R, Donahue J, Darrell JMT.
Region-based convolutional networks
for accurate object detection and
semantic segmentation. Transactions on
Pattern Analysis and Machine
Intelligence. 2015;38:142-158

[14]Girshick R. Fast r-cnn. In: ICCV;
2015. pp. 1440-1448

[15]He K, Zhang X, Ren S, Sun J. Spatial
pyramid pooling in deep convolutional
networks for visual recognition. TPAMI.
2015;37(9):1904-1916

[16] Simonyan K, Zisserman A. Very
deep convolutional networks for large-
scale image recognition. arXiv preprint
arXiv: 1409.1556. 2014

[17] Abadi M, Agarwal A, Barham P,
Brevdo E, et al. TensorFlow: Large-scale
machine learning on heterogeneous
systems, software available from te
nsorow.org. [Online]. 2015. Available
from: http://tensorow.org/

[18] Jia Y, Shelhamer E, Donahue J,
Karayev S, Long J, Girshick R, et al.
Caffe: Convolutional architecture
for fast feature embedding. In: ACM
Intl. Conf. On Multimedia; 2014.
pp. 675-678

23

Recurrent Level Set Networks for Instance Segmentation
DOI: http://dx.doi.org/10.5772/intechopen.84675

[19] Everingham M, Van Gool L,
Williams CKI, Winn J, Zisserman A.
The pascal visual object classes (voc)
challenge. International Journal of
Computer Vision. 2010;88(2):303-338

[20] Lin T, Maire M, Belongie SJ,
Bourdev LD, Girshick RB, Hays J, et al.
Microsoft COCO: Common objects in
context. Computing Research
Repository. 2014;abs/1405:0312

[21] Li C, Kao CY, Gore JC, Ding Z.
Minimization of region-scalable fitting
energy for image segmentation. IEEE
Transactions on Image Processing. 2008

[22] Alpert S, Galun M, Basri R, Brandt
A. Image segmentation by probabilistic
bottom-up aggregation and cue
integration. In: CVPR; 2007

[23] Li C, Xu C, Gui C, Fox MD. Distance
regularized level set evolution and its
application to image segmentation. IEEE
Transactions on Image Processing.
2010;19(12):3243-3254

[24] Li C, Huang R, Ding Z, Gatenby C,
Metaxas DN, Gore JC. A level set
method for image segmentation in the
presence of intensity inhomogene ities
with application to mri. IEEE
Transactions on Image Processing. 2011;
20(7):2007-2016

[25]Mukherjee S, Acton S. Region based
segmentation in presence of intensity
inhomogeneity using legendre
polynomials. IEEE Signal Processing
Letters. 2015;22(3):298-302

[26]Dai J, He K, Sun J. Instance-fully
convolutional instance-aware semantic
segmentation via multi-task network
cascades

[27]Hariharan B, Arbeláez P, Girshick R,
Malik J. Simultaneous detection and
segmentation. In: European Conference
on Computer Vision. Springer; 2014.
pp. 297-312

[28]Hariharan B, Arbelaez P, Girshick R,
Malik J. Hyper-columns for object
segmentation and fine-grained
localization. In: CVPR. 2015

[29]Dai J, He K, Sun J. Convolutional
feature masking for joint object and
stuff segmentation. In: CVPR; 2015.
pp. 21

24

Pattern Recognition - Selected Methods and Applications

