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Chapter

Fringe Pattern Analysis in Wavelet
Domain
Yassine Tounsi, Abdulatef Ghlaifan, Manoj Kumar,

Fernando Mendoza-Santoyo, Osamu Matoba

and Abdelkrim Nassim

Abstract

We present a full-field technique for single fringe pattern analysis based on
wavelet transform. Wavelets technique is a powerful method that quantifies at
different scales how spatial energy is distributed. In the wavelets domain, fringe
pattern analysis requires spatial modulation by a high-frequency carrier. We realize
the modulation process numerically by combining the fringe pattern and its
quadrature generated analytically by spiral phase transform. The first application
concerns the speckle denoising by thresholding the two-dimensional stationary
wavelet transform (2D-swt) coefficients of the detail sub-bands. In the second
application, the phase derivatives are estimated from the 1D-continuous wavelet
transform (1D-cwt) and 2D-cwt analysis of the modulated fringe pattern by
extracting the extremum scales from the localized spatial frequencies. In the third
application, the phase derivatives distribution is evaluated from the modulated
fringe pattern by the maximum ridge of the 2D-cwt coefficients. The final
application concerns the evaluation of the optical phase map using two-dimensional
discrete wavelet transform (2D-dwt) decomposition of the modulated fringe
pattern. The optical phase is computed as the arctangent function of the ratio
between the detail components (high-frequency sub-bands) and the approximation
components (low-frequency sub-bands). The performance of these methods is
tested on numerical simulations and experimental fringes.

Keywords: continuous wavelets transform (cwt), stationary wavelets transform
(swt), discrete wavelets transform (dwt), fringe pattern analysis, residual speckle
denoising

1. Introduction

The single fringe pattern is an emerging technique for the analysis of full-field
measurements in optical metrology. Fringe pattern analysis becomes a key tech-
nique in interferometric metrology which is more suitable for dynamic processes.
The main purpose of this chapter is to exploit wavelet transform for single fringe
pattern analysis to extract useful information. Wavelets are a powerful method
allowing to know the spatial energy distribution at several scales.

Fringe pattern analysis using wavelets transform requires a spatial modulation
by a high-frequency carrier as the case of Fourier domain [1]. We realize the
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modulation process digitally [2] by combining the fringe pattern and its quadrature
generated analytically by spiral phase transform SPT [3, 4]. The advantage of this
method lies in its implementation of numerical algorithms to reduce experimenta-
tion burden present in the phase shifting methods [5], namely, multiple fringe
pattern generation and the experimental carrier introduction.

In the first application, we describe a residual speckle noise reduction technique
by 2D-stationary wavelet decomposition of the speckle correlation fringe pattern
[6]. The speckle noise is removed by thresholding the 2D-swt detail sub-bands
coefficients [7].

The second application presents a method for phase derivative estimation based
on 1D-continuous wavelet analysis of the modulated fringe pattern using Paul’s
function as the mother wavelet [8]. The phase derivative is calculated by extracting
the extremum scales from the localized spatial frequencies. The third application is
phase derivatives evaluation by 2D-continuous wavelet analysis of the modulated
fringe pattern using complex Morlet’s function as the mother wavelet [9]. The phase
derivative is estimated by a maximum ridge of wavelets coefficients. Finally, we
introduce an algorithm for optical phase extraction by 2D-Discrete wavelet
decomposition of the modulated fringe pattern using Gabor’s function as the
mother wavelet [10]. The optical phase is extracted as the ratio between the detail
components (high-frequency sub-bands) and the approximation components
(low-frequency sub-bands).

The remaining part of the chapter proceeds as follow: divided into three sections:
the second section will examine a brief description of continuous, discrete and
stationary wavelet transforms. In the third section, we briefly introduce the speckle
correlation fringes obtained by digital speckle pattern interferometry (DSPI).
Finally, the fourth section is devoted to applications of wavelets to fringe pattern
analysis.

2. Wavelet transform analysis

The concept of the wavelets and its numerous fields of the application make
them a useful tool in several studies concerning localized variations analysis for
non-stationary or transient signal analysis. This concept is based on the
multiresolution analysis that represents signal variations at different scales. A
detailed review of wavelets theory has been published by Ingrid Daubechies in [11].
However, we present here a brief description of three wavelets families for
completeness.

2.1 Continuous wavelet transform (cwt)

The analysis of a given signal by continuous wavelets transform concerns
to decompose it into several basic functions named wavelets. They are oscillatory
functions with a finite duration and having zero average value, also, they are
characterized by irregularity and the good localization These properties of the
continuous wavelets make them a superior basis for signals analysis with
discontinuities. The wavelets are constructed by translating and dilating
them other wavelet functions resulting in a self-similar wavelet’s families
as follows.

ψ s,ξ xð Þ ¼ ψ s�1 x� ξð Þ
� �

(1)
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where s and ξ are respectively the scale and translation parameters. The wavelet
coefficients obtained by 1D-cwt decomposition of the signal f(x) are given by:

w s; ξð Þ ¼
ðþ∞

�∞

f xð Þ:ψ ∗
s,ξ xð Þ:dx ¼ s�1=2

ðþ∞

�∞

f xð Þ:ψ ∗ s�1 x� ξð Þ
� �

:dx (2)

where ψ*s,ξ(x) represents the conjugate of the wavelet ψs,ξ(x) defined for each
shift ξ and each scale s. Wavelet coefficients are the output of the correlation
product between a signal and the mother wavelet for different values of dilatation,
and this is interpreted as a measure of the local similarity between them.

The 2D-continuous wavelet coefficients are obtained by the computation of the
correlation product between the input image (signal 2D) and the mother wavelet. In
the 2D case, a parameter of orientation angle is added, and the 2D-cwt wavelet
coefficients of an input image f(x,y) are defined as:

w ξ; η; s; θð Þ ¼ s�2
ðð

f x; yð Þ � ψ ∗ s�1Rθ x� ξ; y� ηð Þ
� �

dxdy (3)

where ξ and η are respectively the translation parameters along x- and y- direc-
tions, s and θ are respectively the scale vector and rotation angle; ψ denotes the 2D
mother wavelet and Rθ represents the conventional 2�2 rotation matrix
corresponding to θ given by

Rθ ¼ x: cos θ þ y: sin θ; y: cos θ � x: sin θð Þ (4)

2.2 Discrete wavelets transform (dwt)

The discrete wavelet transform denoted by dwt is a fast computing algorithm; it
was introduced by Mallat [12] in 1989 for signal or image decomposition into two
important components called approximation and details.

The 1D-dwt decomposition is based on two functions called scaling and wave-
lets. These functions, i.e., the scaling and the mother wavelet functions are related
to the impulse response of h[n] and g[n], respectively, as illustrated in Figure 1. The
approximation (low-frequency) and details (high-frequency) obtained respectively
by scaling and wavelets functions are the down-sampled outputs of the first filters
h[n] and g[n].

Figure 1.
Block diagram of filter analysis.
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The relation between the two functions and the two filters is expressed as:

ϕ xð Þ ¼
ffiffiffi
2

p
∑
n
h n½ �φ 2x� nð Þ (5)

ψ xð Þ ¼
ffiffiffi
2

p
∑
n
g n½ �ψ 2x� nð Þ (6)

g is the conjugate mirror of h:

g n½ � ¼ �1ð Þn:h 1� n½ � (7)

In Eq. (7), conjugation and mirror effects are represented respectively by
�1ð Þnand (�n). The internal orthogonality relation is satisfied by the low-pass filter
h as follows:

∑
n
hnhnþ2j ¼ 0 (8)

and to have

∑
n
h2n ¼ 1 (9)

The filter g satisfies h, the same internal orthogonality and both obey the mutual
orthogonality relation expressed as following:

∑
n
hngnþ2j ¼ 0 (10)

In 2D-dwt, the wavelet transform of an image involves recursive filtering and
sub-sampling process. Figure 2 describes the procedure of dwt analysis, three detail
images, and one approximation image are obtained at each level. Concerning detail
images, they contain the high-frequency information we denote horizontal image
sub-band by HD, vertical image sub-band by VD and the diagonal image sub-band
by DD and the approximation image sub-band is denoted by AI which accommo-
dates the low-frequency information.

The 2D scaling function denoted by ϕ(x,y), and the 3D wavelet ψH(x,y), ψV(x,y),
and ψD(x,y) are computed by the algebraic product between the one dimensional
scaling and wavelet function as expressed in the following Eq. [13],

ϕ x; yð Þ ¼ ϕ xð Þ:ϕ yð Þ
ψH x; yð Þ ¼ ψ xð Þ:ϕ yð Þ
ψV x; yð Þ ¼ ϕ yð Þ:ψ xð Þ
ψD x; yð Þ ¼ ψ xð Þ:ψ yð Þ

(11)

Figure 2.
Diagrams of dwt image decomposition.
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The three functions ψV, ψH, and ψD provide respectively the vertical, horizontal
and diagonal variations, from there, the three details images are obtained.

2.3 Stationary wavelet transform (swt)

Stationary wavelets transform (swt) was presented in [14]. Swt has the same
principle of decomposition as dwt transform, but the process of down-sampling is
eliminated which means the swt is translation-invariant. The 2D-swt is founded on
the idea of no down-sampling. Specifically, this transform is applied at each pixel of
the image and saves the detail coefficients and exploits the low-frequency data at
each level. A clear description of this technique is detailed in [15].

The principle of swt analysis is schematized in Figure 3. In brief, the swt
technique consists to decompose an input sequence at each level and the given
output is a new sequence that has the same length as the original sequences. In order
to implement this transform, the process of original image decimation is removed,
nonetheless, the size of the filter is modified at each level by zero paddings.

We introduce an operator denoted Ẑ that alternates an input sequence with
zeros so that for all the integers j, we have (Ẑx)2j = xj and (Ẑx)2j + 1 = 0. It is also
assumed the filters Hr and Gr to have weights Ẑ rh and Ẑ rg, respectively. Thus, the
filter Hr is characterized by a weight hr2

r
j = hj and hrkj = 0 in the case where k is not a

multiple of 2r. The filter Hr is attained by introducing a zero between each adjacent
pair of the filter H(r�1) elements, and an identical trend should be followed for Gr.
The following relations satisfy the above statements:

Dr
0H

r½ � ¼ HDr
0 and Dr

0G
r½ � ¼ GDr

0 (12)

We start the swt definition by setting uJ to be the original input sequence, the
stationary wavelet transform can be described for j = J, J-1, ...,1,

uj�1 ¼ H J�j½ �uj and vj�1 ¼ G J�j½ �uj (13)

The vectors uj and vj acquire the same length for the vector uJ with a length of 2J.

3. Speckle correlation fringe analysis

3.1 Speckle effect

The speckle appears as a granular structure and it results from the self-
interference of a large number of coherent waves randomly scattered from and/or

Figure 3.
Block diagram of filter analysis.
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transmitted through a rough object surface [16]. When we illuminate a porous
surface with coherent light, the scattered light intensity has a random spatial varia-
tion called “speckle effect.” The “speckle pattern” appears chaotic and disordered; it
is described by using statistics and probability. The speckle pattern structure is
dependent on the coherence properties of the used illumination light and also on the
characteristics of the object’s surface diffusion. Locally in space, the electric field of
the speckle pattern is given by computing the contribution sum of all illuminated
scattering elements of the rough object’s surface and is given by [16]

E x; y; zð Þ ¼ ∑
n

k¼1
akj j exp jϕkð Þ (14)

In Eq. (14), n represents the scattering number of elements; ak and ϕk are
respectively the amplitude and phase of the kth scatterer contribution. The theorem
of the central limit state that the random variable resulting from the sum of several
independent random variables results in a Gaussian distribution when their number
(number of an independent random variable) approaches infinity.

In the case where the number of scatterers is large, by applying the central Limit
we deduce that:

a. The two components (real and imaginary) of the field are identically
distributed Gaussian variables, independent and with zero means.

b.The intensity I(x,y,z) is characterized by a negative exponential probability
distribution expressed as [16].

p Ið Þ ¼ exp �I=< I>ð Þ=< I> (15)

The associated phase ϕ is uniformly distributed between �π and π [16]

p ϕð Þ ¼ 1=2π (16)

3.2 Digital speckle pattern interferometry (DSPI)

Digital/electronic speckle pattern interferometry (DSPI/ESPI) is an optical
interferometric technique demonstrated simultaneously by Macovski et al. [17], and
Butters and Leendertz [18, 19] at the beginning of the 1970s. Later on, the technique
was enriched by Beidermann and Ek [20] and Lokberg and Hogmoen [21] with
several new investigations. Figure 4 shows the typical schematic of the DSPI system
with a sensitivity vector responding to out-of-plane deformation/displacement
measurements (Figure 4a), and the digital electronics and image processing unit
(Figure 4b). The DSPI technique measures the phase changes introduced by the
speckle intensity changes. In this technique, a spatially filtered reference beam is
added to the speckle pattern which is scattered from or transmitted through the test
object, to code its phase. Therefore, a speckled interferogram, resulting from the
superposition of the speckle pattern and the reference beams, contains essential
information about the random phase. In DSPI, as shown in Figure 4, two speckle
interferograms, corresponding to two different states of the object are recorded and
stored in the frame grabber card. For example, one speckle interferogram, A, is
recorded when the object is in its initial state, say the reference state, while another
speckle interferogram, B, is recorded in the deformed state of the object, say by a
small distance “d,” as shown in Figure 4a. The DSPI fringe pattern is observed after
subtraction of these two speckle interferograms A and B by using the appropriate
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software. The useful information about the object is encoded in the DSPI fringe
pattern like the one shown in Figure 4b.

The DSPI system can be made sensitive to out-of-plane or in-plane deforma-
tions, or both, depending on the design of the optical setup. Numerous measure-
ment applications of DSPI have been investigated with different proposed
experimental configurations [22–48] which have immense importance in the scien-
tific, engineering, and industrial fields. The popularity of the technique, in optical
metrology, is by virtue of the several advantages it offers such as: it is a non-contact/
invasive type technique; it provides full-field of view information; it is faster in
operation as almost real-time observations can be obtained; investigations on large-
size objects can be observed with the use of proper optics, and the technique is less
sensitive to environmental perturbations in comparison with its counterparts. The
DSPI technique has proven its capability in many investigations, e.g., for the mea-
surement of displacement/deformation with variable sensitivity to in-plane and
out-of-plane direction [22–27], measurement of three-dimensional shape [28–30],
surface roughness measurement [31], vibration measurement/monitoring [32–34],
measurement of material properties [35–37], flow visualization [38, 39], measure-
ment of refractive index and temperature distribution [40–42], and the investigation
of the magnetic fields on the temperature profile of gaseous flames [43, 44].
A Doctoral Thesis describing the comprehensive study of DSPI and some of its novel
investigations is recommended for interested readers working in this field [48].

Mathematically, the fringe formation in DSPI is demonstrated here. The inten-
sity distribution recorded before the object deformation is expressed as follows:

f B x; yð Þ ¼ b x; yð Þ þ a x; yð Þ: cosϕs x; yð Þ (17)

In this equation, the term b(x,y) represents the background or bias, a(x,y) the
visibility and term ϕs(x,y) is the original speckle phase appearing as a high fre-
quency, and the intensity of pixel by pixel is randomly distributed. When the object
is deformed, the intensity distribution of speckle-pattern becomes:

fA x; yð Þ ¼ b x; yð Þ þ a x; yð Þ: cos ϕs þ φð Þ: (18)

where φ(x,y) represents the phase variation stemming from the object deforma-
tion. Assuming that the introduced deformations are sufficiently small, we can
ignore the speckle decorrelation effects.

Figure 4.
Schematic of the DSPI system: (a) Speckle interferometer and (b) Digital electronics and image processing unit.
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The speckle fringe correlation intensity distribution in the subtraction mode is
expressed as:

f ¼ fA � f B ¼ 2:a: sin φ=2ð Þ: sin ϕs þ φ=2ð Þ (19)

The above equation can be further expressed as:

f 2 ¼ 4a2: sin 2 φ=2ð Þ: sin 2 ϕs þ φ=2ð Þ (20)

The speckle phase ϕs(x,y) changes faster across the speckle pattern, the second
sine squared term has an ensemble average expressed as:

sin 2 ϕs þ φ=2ð Þ ≈ 1=2πnð Þ
ð2π

0

sin 2 ϕs þ φ=2ð Þd ϕs þ φ=2ð Þ ¼ 1=2 (21)

Hence, the speckle fringe correlation intensity distribution becomes:

fC ¼ f 2 ¼ 2a2: sin 2 φ=2ð Þ ¼ a2: 1� cosφð Þ (22)

The obtained intensity distribution fc is rendered as the classical form of a cosine
fringe pattern.

3.3 Fringe pattern analysis

The analysis of the fringe patterns concerns to evaluate the coded phase
distribution related to the physical magnitude. We classified the phase extraction
techniques to methods that explore a shifted fringe pattern as the phase shifting
techniques and methods that require the introduction of a spatial carrier such as the
Fourier transform method and the wavelet method.

The phase shifting (see Ref. [5]) and the Fourier transform methods (see Ref.
[1]) are the most common methods exploited for fringe pattern analysis. The goal of
the next section is to present algorithms based on wavelets transform to analyze a
single frame speckle fringe pattern.

4. Applications to speckle correlation fringe analysis

As we stated previously, the fringe pattern analysis in wavelet domain requires a
modulation process by introducing a spatial carrier. In our case, the spatial carrier in
generated numerically and the entire process is carried out directly using a com-
puter. Before presenting the four applications, we present in the next subsection the
modulation process required by wavelets transform.

4.1 Fringe pattern modulation

In order to modulate a given fringes pattern in a chosen direction, we combine
the fringe pattern and its quadrature with a cos(m.x) and sin(m.x) matrix respec-
tively where mmeans the modulation rate. We consider the fringe pattern intensity
distribution expressed as follow:

f x; yð Þ ¼ b x; yð Þ þ a x; yð Þ � cos φ x; yð Þð Þ (23)
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A low-pass filter applied to the intensity distribution removes the background
illumination and Eq. (23) becomes:

~f x; yð Þ ¼ a x; yð Þ � cos φ x; yð Þð Þ (24)

Larkin proposed recently a transform called spiral phase quadrature denoted -
SPT- for the 2D fringe pattern (see Refs. [3, 4]). The SPT of ef is computed as:

SPT ~f
� �

¼ j � exp j �D x; yð Þð Þ � a x; yð Þ � sin φð Þ (25)

where, a(x,y).sinφ is the quadrature term, j2 = �1, and D(x,y) represents the
direction map. Then, we obtain the sine fringe pattern as:

a x; yð Þ � sin φð Þ ¼ �j � exp �j �D x; yð Þð Þ � SPT ~f
� �

(26)

The direction map is computed by the ratio between the horizontal and vertical
gradient of the ef as and analytically expressed as:

tan Dð Þ ¼ ∇y
~f =∇x

~f (27)

So, we define the quadrature map as:

q x; yð Þ ¼ b x; yð Þ � sin φð Þ ¼ �j � exp �j �Dð Þ � SPT ~f
� �

(28)

Then, the intensity distribution of the modulated fringe pattern is defined as:

fm ¼ ~f � cos m � xð Þ � q � sin m � xð Þ ¼ b x; yð Þ � cos φþm � xð Þ (29)

4.2 Speckle noise reduction using various wavelet-based techniques: a
simulation study

4.2.1 Speckle noise reduction using 2D-swt

As a reminder, the speckle fringe pattern intensity distribution in the subtrac-
tion mode is expressed in (Eq. (19)) as f ¼ 2:a: sin φ=2ð Þ: sin ϕs þ φ=2ð Þ. The speckle
fringes, presented in Eq. (19), are characterized by multiplicative residual speckle
noise, therefore, a denoising step is necessary before the evaluation of the phase
distribution and their derivatives. The high-frequency sin(ϕs + φ/2) noise should be
removed with an appropriate filtering technique. After decomposition by swt of the
speckle fringe pattern, the noise is reduced by thresholding the detail sub-bands
coefficients using a soft threshold function. The choice of this type of thresholding
stems from its characteristic to obtain near-optimal minimax rate. Generally, the
threshold estimation requires the knowledge of the noise variance and the optimal
threshold is estimated by taking into consideration the variance (σ2) of the coeffi-
cients in the highest wavelets decomposition. Figure 5 illustrates the capability of
stationary wavelet transform thresholding technique to reduce the speckle noise.
The left and the right halves present the intensity distribution of speckle fringe
correlation before and after denoising. It is clearly shown in the line profile plot in
Figure 5b along the line AB, the influence of swt to remove the frequency from the
noised image.
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4.2.2 Phase derivatives extraction using 1D-cwt

The idea is the phase extraction by spatial frequencies using the1D-continuous
wavelet transform and Paul’s function as the mother wavelet. The phase derivatives
are evaluated from the modulus of the cwt coefficients by extracting the extremum
scales from the localized spatial frequencies and the phase is obtained by numerical
integration.

Generally, the modulated fringe pattern intensity distribution, as represented by
Eq. (18), can also be expressed as:

fm x; yð Þ ¼ b x; yð Þ þ a x; yð Þ cos m:xþ φ x; yð Þð Þ (30)

Using Eq. (2), the wavelet transform coefficients of the modulated fringe
pattern, given in Eq. (30), can be represented as

w x; s; ξð Þ ¼ s�1=2
ðþ∞

�∞
b x; yð Þ þ a x; yð Þ cos m:xþ φ x; yð Þð Þ½ � ψ y� ξð Þ=sð Þð Þ ∗ dy (31)

The localization property of the wavelet is taken into account in order to write
the Taylor series of the phase φ(x,y) near the central value ξ as:

φ x; yð Þ ¼ φ x; ξð Þ þ y� ξð Þ∂φ x; yð Þ=∂yþ… (32)

Assuming that the bias a and the visibility b have a slow variation, so the higher
order of (y-ξ) is neglected with respect to the phase-modulated carrier because of
the localization of the wavelet. With these considerations, the 1D-cwt coefficients
are now computed as:

w x; s; ξð Þ ¼ s�1=2b x; ξð Þa x; ξð Þ
ðþ∞

�∞
cos mxþ φ x; ξð Þ þ y� ξð Þ∂φ x; ξð Þ=∂y½ � ψ y� ξð Þ=sð Þð Þ ∗ dy

(33)

and the Parseval’s identity gives

w x; s; ξð Þ ¼
ffiffi
s

p

2π

ðþ∞

�∞
f̂ a x; kð Þ ψ̂ skð Þð Þ ∗ eiξkdk (34)

Figure 5.
(a) Speckle fringe correlation before and after denoising; and (b) the 1D intensity profile along line AB.
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where

f̂ a x; kð Þ ¼ b x; ξð Þa x; ξð Þπh x; kð Þ (35)

with

h x; kð Þ ¼ δ k�m1ð Þ exp i φ x; ξð Þ � ξ∂φ x; ξð Þ=∂yð Þ½ �
þδ kþm1ð Þ exp �i φ x; ξð Þ � ξ∂φ x; ξð Þ=∂yð Þ½ �

(36)

m1 ¼ mþ ∂φ x; ξð Þ=∂x (37)

The wavelet transform reduces to.

w x; s; ξð Þ ¼ 0:5:a x; ξð Þb x; ξð Þ
ffiffi
s

p
ψ̂ sm1ð Þð Þ ∗ exp i ξmþ φ x; ξð Þð Þð Þ½

þ ψ̂ �sm1ð Þð Þ ∗ exp �i ξmþ φ x; ξð Þð Þð Þ�
(38)

Introducing Paul’s mother wavelet defined as:

ψ xð Þ ¼ 2nn! 1� ixð Þ� nþ1ð Þ
� �

= 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nð Þ!=2

p� �
(39)

we get

w x; s; ξð Þ ¼ 2nð Þ!ð Þ�1a x; ξð Þb x; ξð Þsnþ1=2mn
1 exp �sm1ð Þ � exp i ξmþ φ x; ξð Þð Þð Þ

(40)

whose modulus is computed as

w x; s; ξð Þj j ¼ 2nð Þ!ð Þ�1a x; ξð Þb x; ξð Þmn
1 s

nþ1=2 exp �sm1ð Þ (41)

The extremum scale denoted by S is represented by

S x; ξð Þ ¼ 2nþ 1ð Þ=2m1 (42)

Equations (37) and (42) provide the phase derivative as

∂φ x; ξð Þ=∂y ¼ 2nþ 1ð Þ=2S x; ξð Þ �m (43)

where m is the modulation ratio.
The performance of this algorithm is illustrated in Figure 6, where the phase

derivatives of the speckle fringe correlation along x- and y-directions are presented.

4.2.3 Phase derivatives extraction using 2D-cwt

The idea is to evaluate the phase derivative by ridge point using2D-continuous
wavelet transform and Morlet’s function as the mother wavelet. The phase deriva-
tive is computed from maximums scales relating to the ridge point of the wavelet
coefficient modules. From the modulated fringe pattern fm(x, y), we compute the
2D-cwt wavelet coefficients as defined in Eq. (3) and represented again as

w t;d; s; θð Þ ¼ s�2
ðð

fm x; yð Þ � ψM
∗ s�1Rθ x� t; y� dð Þ
� �

dxdy (44)
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The 2D complex Morlet is used as the mother wavelet: it is essentially a plane
wave modulated by a Gaussian window, and is expressed as:

ψM ¼ exp � x2 þ y2
� �

=2
� �

� exp jk0 x � cos θ þ y � sin θð Þ
�

(45)

where k0 is the specific spatial frequency that should be in the range 5–6 in order
to satisfy the admissibility condition [49], and j2 = �1.

A new matrix containing the maximum value of each column of the wavelet
coefficient modulus array defines the wavelet ridge, and then, the corresponding
scale value is determined from the ridge wavelet [50, 51]. The maximum scales smax

correspond to the maximum ridge of the obtained wavelet coefficients modulus:

smax; θð Þ ¼ arg max
s∈Rþ, θ∈ 0;2π½ �

w t; d; s; θð Þj j (46)

where smax represents the scale value for maxima. The phase derivative is
obtained by

∇φ ¼ k0 þ k20 þ 2
� �1=2

=2smax

� �
�m (47)

The horizontal and vertical phase derivatives evaluated from the speckle fringe
correlation are presented in Figure 7.

Figure 7.
The evaluated phase derivatives along (a) x-direction and (b) y-direction using 2D-cwt technique.

Figure 6.
The evaluated phase derivatives along (a) x-direction and (b) y-direction using 1D-cwt technique.
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4.2.4 Optical phase extraction using 2D-dwt

This application concerns to extract the optical phase distribution by dwt com-
ponents using the 2D discrete wavelets transform and Gabor’s function as the
mother wavelet. The 2D-dwt method decomposes the fringe pattern into two com-
ponents: approximation (low-frequency) and details (high-frequency) using two
principal quadrature mirror decomposition filters: low-pass and high-pass filters.

We consider the modulated fringes expressed in Eq. (30) as fm x; yð Þ ¼ b x; yð Þþ
a x; yð Þ: cos m:xþ φ x; yð Þð Þ. It depends on the desired phase φ(x,y). Figure 8 presents
the four sub-bands of the modulated speckle fringe correlation after 2D-dwt
decomposition.

The optical phase distribution coded in the modulated fringe pattern is evaluated
by computing the arctangent function of the ratio between the detail and approxi-
mation images as following:

φ x; yð Þ ¼ atan2 fm ∗h
� �

= fm ∗ g
� �� �

(48)

Inside the atan2 function, the numerator and denominator present the convolu-
tion product between fm and the two filters h and g, and give the detail and approx-
imation images respectively. An illustration of the two images is shown in Figure 9.

The detailed image in the numerator is chosen according to the direction of
modulation. The low-pass filter h and high-pass filters g are respectively the real
and imaginary part of Gabor function expressed as:

h ¼ exp � x2=σ2x þ y2=σ2y

� �
=2

h i
: cos 2πf 0 x cos θ þ y sin θð Þ

� �
(49)

Figure 8.
The four sub-bands images after modulated fringe 2D-dwt decomposition.
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g ¼ exp � x2=σ2x þ y2=σ2y

� �
=2

h i
: sin 2πf 0 x cos θ þ y sin θð Þ

� �
(50)

The 2D Gabor’s function [52] is the extension of the 1D Gabor function intro-
duced by Gabor [53]. It is defined by a Gaussian window that modulates a complex
exponential centered at a fixed frequency It is formulated by:

G ¼ exp � x2=σ2x þ y2=σ2y
� �

=2
h i

: exp j:2πf 0 x cos θ þ y sin θð Þ
� �

(51)

Central frequency, orientation, spatial extent, and aspect are four essential
parameters characterize Gabor function, and they can be adjusted by varying
respectively f0, θ, σx and σy. The use of the atan2 function in Eq. (48) provides the
phase distribution modulo 2π as shown in Figure 10a. To remove this discontinuity,
a phase unwrapping step is obligatory [54]; for this reason, we have implemented
the PUMA algorithm [55]. The unwrapped phase illustration in three-dimensional
representations is presented in Figure 10b.

4.3 Discussion of wavelet techniques on the numerically simulated fringe
correlations

In order to study the performance and validity of the algorithms, an image
quality assessment (Q) is used [56]. This metric model any image distortion by
combining three factors. The first factor is the loss of correlation between the ideal

Figure 10.
(a) Wrapped phase distribution retrieved by 2-dwt; and (b) continuous phase distribution volume
visualization.

Figure 9.
Approximation and detail image of speckle fringe correlation.
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and the obtained images denoted O and E respectively, which measures the linear
correlation degree between the two input images. This factor is defined as:

Q1 ¼ σOE=σOσE (52)

The second factor is luminance distortion, it measures the mean luminance
between O and E, which its value is computed as:

Q2 ¼ 2O:E= O
� �2 þ E

� �2� �
(53)

The third factor is contrast distortion that measures the contrast similarity
between the two images and it is defined as:

Q3 ¼ 2σOσE= σ2O þ σ2E
� �

(54)

And then, the Q coefficient is computed by the product of three factors:

Q ¼ Q1 � Q2 � Q3 (55)

where Oand E present average of O and E, respectively, σO and σE are respec-
tively the standard deviations of the two images. The Q index takes values between

Retrieved characteristic map Q index value Time in seconds

Horizontal phase gradient 0.95 (1-cwt) & 0.96 (2-cwt) 50.23 (1-cwt) & 20 (2-cwt)

Vertical phase gradient 0.95 (1-cwt) & 0.96 (2-cwt) 50.26 (1-cwt) & 20.11 (2-cwt)

Recovered phase distribution by 2-dwt 0.97 10.55

Table 1.
The measured Q index values.

Figure 11.
(a) Schematic of DSPI setup [57, 58], (b) Recorded DSPI fringe pattern, and (c) Denoised DSPI fringe pattern
by using swt thresholding technique.
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�1 and 1 where 1 means that the retrieval characteristic is exact. The Table 1 below
summarizes the computed Q index values.

As a note, the 1D-cwt analyses images line by line, whereas the 2D-cwt scans
images with the help of the parameter of orientation. On the analysis time side, we
used Matlab on a 2.93 GHz Intel Pentium processor machine with 4 GB RAM.
According to the Q index values, the presented algorithms give the desired infor-
mation with good accuracy (Q between 0.95 and 0.97).

4.4 Application on an experimental speckle fringe correlation

After the presentation of the four applications of the stationary, continuous and
discrete wavelet transform for fringe pattern analysis, and the favorable effective-
ness validated by computer simulation, we exploit this algorithmic arsenal to ana-
lyze an experimental speckle fringe pattern recorded by using the DSPI setup
showed in Figure 11a.

In DSPI, two specklegrams corresponding to the two different states (before and
after deformation) of the object are recorded with an image sensor and then
subtracted in order to get the speckle fringe correlation as shown in Figure 11b.

Figure 12.
(a) Wrapped phase distribution extracted using dwt algorithm. (b) Three-dimensional representation of
continuous phase distribution.

Figure 13.
The estimated phase gradient distribution using 2-cwt technique along: (a) x-direction and (b) y-direction.
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Figure 11c shows the denoised fringe resulting from the swt thresholding
technique. The wrapped phase distribution and corresponding three-dimensional
continuous phase distribution are shown in Figures 12a and b, respectively. The
horizontal and vertical phase derivatives are shown in Figure 13.

5. Conclusion

This chapter has introduced an important thematic in interferometric metrology
namely, fringe pattern analysis. We have discussed the capability of wavelets
transform families (stationary, continuous and discrete wavelet) to analyze the
fringe patterns.

This analysis consists in extracting the optical phase distribution coded in the
fringes and its horizontal and vertical derivatives. We have presented with the help
of computer simulations four applications of the wavelet transform, in order to
analyze the speckle fringes correlation obtained in digital speckle pattern interfer-
ometry (DSPI). We summarize these applications as:

• Speckle noise reduction using stationary wavelet transform thresholding
technique.

• Phase derivative extraction using one and two-dimensional continuous wavelet
transform.

• Optical phase distribution extraction using the two-dimensional discrete
wavelet transform
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