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Chapter

Distinctive Characteristics of
Cosserat Plate Free Vibrations

Lev Steinberg and Roman Kvasov

Abstract

In this chapter, we present the theoretical analysis of the distinctive characteris-
tics of Cosserat plate vibrations. This analysis is based on the dynamic model of the
Cosserat plates, which we developed as an extension of the Reissner plate theory.
Primarily, we describe the validation of the model, which is based on the compari-
son with three-dimensional exact solutions. We present the results of the computer
simulations, which allow us to identify different characteristics of the plate vibra-
tions. Particularly, we illustrate and discuss the detection and the classification of
the additional high resonance frequencies of a plate depending on the shape and
orientation of microelements incorporated into the Cosserat plates.

Keywords: variational principle, Cosserat plate vibrations,
frequencies of micro-vibrations

1. Introduction

The theory of asymmetric elasticity introduced in 1909 by the Cosserat brothers
[1] gave rise to a variety of Cosserat plate theories. In 1960s, Green and Naghdi
specialized their general theory of Cosserat surface to obtain the linear Cosserat
plate [2], while independently Eringen proposed a complete theory of plates in the
framework of Cosserat elasticity [3]. Numerous plate theories were formulated
afterwards; for the review of the latest developments in the area of Cosserat plates
we recommend to turn to [4].

The first theory of Cosserat plates based on the Reissner plate theory was devel-
oped in [5] and its finite element modeling is provided in [6]. The parametric theory
of Cosserat plate, presented by the authors in [7], includes some additional
assumptions leading to the introduction of the splitting parameter. This provided
the highest level of approximation to the original three-dimensional problem. The
theory provides the equilibrium equations and constitutive relations, and the opti-
mal value of the minimization of the elastic energy of the Cosserat plate. The paper
[7] also provides the analytical solutions of the presented plate theory and the three-
dimensional Cosserat elasticity for simply supported rectangular plate. The com-
parison of these solutions showed that the precision of the developed Cosserat plate
theory is similar to the precision of the classical plate theory developed by Reissner
(8, 9].

The numerical modeling of bending of simply supported rectangular plates is
given in [10]. We developed the Cosserat plate field equations and a rigorous
formula for the optimal value of the splitting parameter. The solution of the
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Cosserat plate was shown to converge to the Reissner plate as the elastic asymmetric
parameters tend to zero. The Cosserat plate theory demonstrates the agreement
with the size effect, confirming that the plates of smaller thickness are more rigid
than is expected from the Reissner model. The modeling of Cosserat plates with
simply supported rectangular holes is also provided. The finite element analysis of
the perforated Cosserat plates is given in [11].

The extension of the static model of Cosserat elastic plates to the dynamic
problems is presented in [12]. The computations predict a new kind of natural
frequencies associated with the material microstructure and were shown to be
compatible with the size effect principle reported in [10] for the Cosserat plate
bending.

This chapter represents an extension of the paper [12] for different shapes and
orientations of micro-elements incorporated into the Cosserat plates. It is based on
the generalized variational principle for elastodynamics and includes a non-
diagonal rotatory inertia tensor. The numerical computations of the plate free
vibrations showed the existence of some additional high frequencies of micro-
vibrations depending on the orientation of micro-elements. The comparison with
three-dimensional Cosserat elastodynamics shows a high agreement with the exact
values of the eigenvalue frequencies.

2. Cosserat linear elastodynamics
2.1 Fundamental equations

The Cosserat linear elasticity balance laws are

Oji,j = %, (1)
aq.
EijkOjke + Hji,; = %, (2)

where the oj; is the stress tensor, Hjj the couple stress tensor, p, = p% and

o . . .
q; =Jji % are the linear and angular momenta, p and J;; are the material density and
the rotatory inertia characteristics, &, is the Levi-Civita tensor.
We will also consider the constitutive equations as in [13]:

gji = (U + a)yji + (= @)ri + A (3)
Wi = (v + e + (v — €y + Brui (4)

and the kinematic relations in the form
Vi = tij + &k and yj; = &, j> (5)

Here u; and ¢; represent the displacement and microrotation vectors, y;; and y;

represent the strain and bend-twist tensors, y, 4 are the Lamé parameters and «a, f,
v, € are the Cosserat elasticity parameters.
The constitutive Egs. (3)-(4) can be written in the reverse form [5].

vi = (W +d)oji + (W' — a')oy + Vo, (6)
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Xji = (7 + i + (V' — €y + B g @)

1 o 1 o / 7/1

We will consider the boundary condltlons g1ven in [12].
ui =u), p; = ¢, on G, = dBo\dB, x [to,1], (8)
ojin; = GJQ, pini = ,ujo onG, = 0B, X [to, 1], 9)
and initial conditions
ui(x,0) = UY, ¢;(x,0) = @7, inB,, (10)
ii(x,0) = U, ¢;(x,0) = &, inB,, (11)

where u? and gb? are prescribed on G, 6]9 and ,ujo on G,, and #; is the unit vector
normal to the boundary 0B of the elastic body B.

2.2 Cosserat elastic energy

The strain stored energy U of the body By is defined by the integral [13]:
Ue=| Wir.zya, 12)
By

where

—I— Hu—a A
WAy X} = =75 + =5 Vitji T 5Tk

(13)
yte y—¢ p
X T T Xk T S X

is non-negative. The relations Egs. (3)-(4) can be written in the form [12]:
6=V,Wandu =V, W. (14)

The stress energy is given as

Uk = J @{o,p}dv, (15)
Bo
where
/ / / / !
H+a H—-a 4
q){O',ﬂ} = ——F—0jj0j + — 5  0ij0ji + = Ok Oun
2 2 2 (16)
/ + g r_ ¢ /
A P s T s+
7 Fiti o Fili Ty Mk

and the relations Egs. (6)—(7) can be written as [12].

(e} D
J R andx—a— (17)

72% op
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We consider the work done by the stresses 6 and p over the strainsy and y as in [13].
U=J [0y +p - xldv (18)
By
and
U=Ug=Uc (19)

Here o -y = ojiy; and p - x = ;i
The stored kinetic energy T is defined as

2 2
e (@) @)

The kinetic energy Tk is given as

fie= JBO Tiip qidv = %JB (P’ + g )do, (21)
where
P—%:p% andq:%ZJaa(tp, (22)
and
%:%:ppland %z%zq]l, (23)

The work Ty done by the inertia forces over displacement and microrotation is
given as in [12].

_ [ (P 4.9,
TW—JBOYwdv—JBO(at u+at ¢>dv (24)

Keeping in mind that the variation of p u, q, ¢, 5u, and 6¢ is zero at ¢y and ¢, we
can integrate by parts

Lr th 1 173 i
J Txdt = J Tdt = §J (p ‘u+q- ¢)dl) 5 J Twdt (25)
to to By to to
tr tr
5J Tk = —5J Tw (26)
to to
or
0Tc = 6Tk = —0Tw (27)
and therefore
g du o (™ op aq
[ L ((ea(5) ravalG0)) Je == ], (5 on 5o e
(28)
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2.3 Variational principle for elastodynamics

We modify the HPR principle [14] for the case of Cosserat elastodynamics in
the following way: for any set Av of all admissible states s = [u, ¢, 7, ¥, 6, | that
satisfy the strain-displacement and torsion-rotation relations Eq. (5), the zero
variation

50(s) =0

of the functional

b 0 0
O(s) :J |:UK+TC_J (6-7+ﬂ-x+pgu+qg¢)dv}dt

to By

t

v [ om0 + @ — e + |

to Lo

J [60 - u+pg - pldadt
G
(29)

at s € A is equivalent of s to be a solution of the system of equilibrium
Egs. (1)-(2), constitutive relations Egs. (6)—(7), which satisfies the mixed boundary
conditions Egs. (8)-(9).

Proof of the variational principle for elastodynamics

Let us consider the variation of the functional ©(s):

3
5@(5) = J [5UK + 5Tc]dt

to

g ou <au> o <0¢>}
- 56-7+6- Sy +ou-x+u-Sg+=0p+p-8(= | +6q- —=+q-5(= | |dvde
Bo|: Y Y TORh X TH O o PP o q o q ot

Jto

T
+ 064 - (W — o) + 640U + S, - (P — o) + p,0¢)dadt
to JG1

t
+ [60 - U+ pg - Sldadt

to J G2

Taking into account Eq. (5) we can perform the integration by parts

J 0'-5ydv:J 6n~6uda—J 6u~divadv—|—J €o - 5¢pdv
By 0B By

By

J - Sydv = J U, - 6pda — J o¢p - divudv
Bo 0Bo Bo
and based on Egs. (17)-(23)

oD oD e _[ou\ oYc _[0p
5D =— 56 +— - o, 5YC:—H-5<—>+ -5(—).
Z oF) \at) o) \o

Then keeping in mind that 6Tx = —6T and Eq. (28) we can rewrite the
expression for the variation of the functional 60(s) in the following form
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[ [(57) o ][5 o
L) o 0% ) o)
|

t

3
+ (leO' — —) 5u} dvdt + J J Kdivp +e-6— 0_q) . 5u} dvdt
to to JBo ot
t r
]| 10 o) -smadade | | 16 o) - o
to JG1 G1
t 4
+ [(6n — 00) - Su]dadt + J J [(n — Bo) - Op]dadt
Jtg J G, to Gy

3. Dynamic Cosserat plate theory

In this section we review our stress, couple stress and kinematic assumptions of
the Cosserat plate [7]. We consider the thin plate P, where % is the thickness of the
plate and x3 = O represents its middle plane. The sets T and B are the top and
bottom surfaces contained in the planes x3 = /2, x3 = —h /2 respectively and the
curve I' is the boundary of the middle plane of the plate.

The set of points P = (I' x [~ 4]) UT UB forms the entire surface of the plate
and I, x [—%, 1] is the lateral part of the boundary where displacements and
microrotations are prescribed. The notation I'; = I'\I', of the remainder we use to
describe the lateral part of the boundary edge I', x [—%, 4| where stress and couple
stress are prescribed. We also use notation Py for the middle plane internal domain
of the plate.

In our case we consider the vertical load and pure twisting momentum boundary

conditions at the top and bottom of the plate, which can be written in the form:
033(x17x27h/27t) = 6Z<x17x27t)5 633<x1,)€2, _h/27t) = Ub<x17x27t)5 (30)
63ﬂ(x1,X2, :|:h/2,t) =0, (31)
/"33(x17x27h/2, t) X ﬂt(xlaxb t)’ /133(9(71,.%2, _h/27 t) — /’th(xl?x27 t)’ (32)
,u3ﬂ(x1,x2,:|:h/2,t) = O, (33)

where (x1,x;) €Py.
We will also consider the rotatory inertia J in the form

Ju Jio O
J=1Jno Jn O
0 0 Js

Let A denote the set of all admissible states that satisfy the Cosserat plate strain-
displacement relation Eq. (5) and let ® be a functional on A defined by

MLW:L@+T%—J<S¢HJL%$—P-W+m9$mm+LS¢CU—1m¢+1 S, - ‘Uds,

u
Po

(34)
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for everys = [U, £,S] € A. Here P = (p,,p,) and W = (W, W*), p, = yp and

p,=50—np
Here the plate stress and kinetic energy density by the formulas
Ug = J ®(S)da, Ty = J Yc (ﬂ) da (35)
Po PO at

where Py is the internal domain of the middle plane of the plate.

3A(Moq) (Mg
O(S) = — 3—(//)
h’u(32 + 2u)
Bla+uMly  Bla+p) .. A > .
8Q,Q, +15Q,Q, +20Q,Q" +8QQ;}
T 160h3aﬂ[QQ Q.Q, +20Q,Q; +8Q;Q;|
3(a— /’t)Miﬂ a— i A
21Q,(5Q, +4Q,;
Wiy 280h%au { Q ( Qe +4Q )}
Yy — € 2 * *
- 160]17/8 |:24Rmx + 45R(1a + 60R(1/1Ra/; + 48R12R21]
3(7/—|—8)S:S; ]/+ £ 2 * * *
Wiye 160h°%ye [8Raﬁ T DRyRap +20R Ry }
3ﬂ k 3k E3
~ S0 2y | Ree) (Rep) — 15(R2,) (R ) —20(Ree) (R |
B * 2 2
— L _[(2Ru+3R: )t —h(V2+T
) | Joh(Vi+ T
A 5+ 3y
M
" 560hu (31 + 21) [(1 ? }
(A+wh (140 +168n+ 51>\ 5,  (A+wuh , €k N
3724+ V
84043 + 241) 211n) 2430+ 200 T apye BT+ V7))
(36)
and

OUN\  hp (OWN?  4hp (OW*\? 2hp (OWOW*\  Kp [d¥,\°
Yol —=— ) == + + 2\ A + ==
ot 2 \ o 15 \ o 3 \o o 24 \ ot

+4h]aﬂ 000 092 +h]aﬂ o0, afz; +2h]aﬁ 0Q) ‘mg W (02 g
15 \ or o 2 \or o 3 \ o o 6 \ o )

S, ‘U and € are the Cosserat plate stress, displacement and strain sets

§ = |Map Qu Q2 Qus R Rig 5 | (37)
Sy = |[M.Q".Q, R, RS, (38)
So = [Hoa, Moz, T3, Mg, Mgey, M3 ], (39)
U= [P, W,03,Q0, W*, Q7] (40)
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E = [eap, @, 05 D T30 T T (41)

where Mysng = Hoa, Rypng = Moa, Qg = Io3, Sy g = M5, Q g = T15,
~ > % ~ >k =" ~
Raynpg =M., M, = Mggng, Q = Qpnpg, R, = Rypmnp, S = Sgnp, Q = Q np,

R =R ;ﬁnﬁ. (np is the outward unit normal vector to I',).

a
The plate characteristics provide the approximation of the components of the
three-dimensional tensors oj; and y;;

6

Oop = ECMaﬁ(xl,xz,t), (42)

3
033 = E (1 - Cz)Qﬁ(xlaxZJ t): (43)

3 2 ® 3 A
03 :E(l_c )Qﬁ (x17x27t) +%Qﬂ(x17x27t>J (44)
31,
033 = _Z gg - &: pl(x17x27t) + C:Pz(xhxbt) + UO(X1,.9C2,t), (45)
_3 R 3 R 6
iuaﬁ - E (1 - C ) aﬁ(x17x27t) + ﬂ (x/}(xlyxZat): (4 )
6
/’[/1’3 - Eé’sﬁ* (Xl,X2,t), (47)
hyp =0, (48)
H33 = §V<x17x27t) + T(x17x27t): (49)
where

plx1,%2,) = o (x1,%2,8) — 6" (%1, %2, 1), (50)

1
00<x17'x27t> = E (Gt(xlwxz,t) + Gb(x17x27t))) (51)

1
V(X1,X2,t) = i (/’lt(xth?t) - /’tb(xth?t)): (52)

1
T(x1,%2,t) = 3 (4 (21,50, 8) + p? (261,22, 1) ). (53)

The pressures p, and p, are chosen in the form

pl(x17x2=t) = np(xluxht): (54)

Po(1,%2,1) = a ; ")p(xl,xz,t)- (55)

and 5 € R is called splitting parameter.
The three-dimensional displacements #; and microrotations ¢;

s ) (56)
Uz = W(Xl,xz,t) + (1 — CZ)W* (xl,X2,t), (57)
¢a = Qg(x17x27t) (1 - Cz) + Qa(xbe;t): (58)
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¢3 = {Q3(x1,%2,1), (59)

and the three-dimensional strain and torsion tensors y; and y;

6
Yap = ﬁceaﬂ@'laxbt); (60)
3 2
73p = E (1 - g )a)ﬂ(xlvx27t)s (61)
3 2 * 3 A
Yp3 :E<1_§ )(x)ﬁ (x1,x2,t) —I—Ea)/j(xl,xz,t), (62)
3 3
)(a[} = % (1 - €2>Taﬂ(x17x27t) + Efs/j(xlvx27t): (63)
6
)(3ﬁ = ?gffj (x17x27t): (64)

where { = %
Then zero variation of the functional

80(s,n) =0

is equivalent to the plate bending system of equations (A) and constitutive
formulas (B) mixed problems.
A. The bending equilibrium system of equations:

Meopa —Qp =1 a;lpﬁ (65)

Qpat P4 :Izazatlz*a (66)

Rop o + €35, (Q -Q ) Lop a;g" , (67)
e Mg, + S5 =I5 6;93 (68)
QuotPr= Iza;—vzv, (69)

Rop o + €3ﬁyQ I 02?%2: (70)

2 A
where 1 =25 p, 1, =2 p, Ly = %], Is =5 ]33, 1% = 2] 1, 1 = Ny and

A

P, =3 (1 — ﬂopt) p, with the resultant traction boundary conditions:
Maﬁnﬂ = g, Raﬁnﬂ - Moa: (71)
Q; Ng = H03: S: g = 103, (72)

at the part I', and the resultant displacement boundary conditions

¥y =Yoo W =W,, QO -Q'O

o’

Q?J - Qo?v (73)

at the part I',.
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B. Constitutive formulas in the reverse form:*

u(A+ )k’ b (3ps + 5p)
M(X(l — 7\11(1 a 7‘{‘ b 4
320 e e 300 7
—a)h? + a)h® L ah’
Mg, = %\Pa,ﬂ + %Tﬁ,a + (1) ?Qa, (75)
5(r—eh o 5(r +e)h o
Rpa = = Q)+ 0, (76)
102y (B +7) 4o Sty 50
Raa H+——— 12 ‘oo~ > 77
3p+2y) " 3(B+2r) P i
. 2(r—eh 4 2y +e)h
Rio =73 Qpat— 5 Qap (78)
. _ Sy + Pk 4rph -
= o Qaet 555 p 79
“ =3ty e g 7
5(u+ah 5(u —a)h 2u—a)h _, . 55ha g 5 5ha -
Q, e Wat T W SRR W+ (F1 TR0+ (-1 G,
(80)
. S(u—ah 5(u— a)’h 2u+ah _ Shaf o (u—a)
=2 Py, 2R Dy SET I e (e 2D Vel
Q. 6 6t et T 3 Wt U S (&t
(81)
A Bauh o« Sauh .
= W+ (-1 3 82
=5 Y g o
Syeh®
Sy =—"——3 4 83
“ T 3(r+e) ®)
and the optimal value 7,,, of the splitting parameter is given as in [10]
zw(OO) . ,W(l()) . W(Ol)
Nopr = (84)

2<W(11) 1 qp(00) _ qp(10) _ W(Ol)> '

where
@) — .
W =S|, €l
We also assume that the initial condition can be presented in the form

ou
U(.’)Cl,xz, O) = ’Uo(xl,xz), ? (Xl,XZ, O) = Vo(xl,xz)

4. Cosserat plate dynamic field equations

The Cosserat plate field equations are obtained by substituting the relations
Egs. (74)—-(83) into the system of Egs. (65)-(70) similar to [10]:

! In the following formulas a subindex = 1if a =2and g =2 ifa = 1.

10
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’U
LU= K?—Fi’:(n), (85)
where
L1y Lip  Liz Liu O Lig kLps 0 Lig T
L1y Ly Ly Ly L O  kLy  Li 0
—Li3 —Ly L3z 0 L3 Lz Ly L3g  L3g
L4 Ly 0 Ly O 0 0 0 0
L=| 0 —Li —Lsz O Lss Lss —kLys Lsg 0 |,
L6 0 —L3y O Ls¢ Le —kLzg O  Lsg
—Li3 —Liu Lzz 0 Lz Ly Ly Lyp Ly
0 —Lyg —Lp O Lgs Lsg —kLss Lgg kLss
| Ly 0 —Lyp O Lss Lss —kLzs kLsg Loy |
)3 )
— 0 0 0 0 0 0 0 0
12’
h3
0 — 0 0 0 0 0 0 0
127
pl)
0 0 ?p 0 0 0 0 0 0
hZ
0 0 0 ZJ 0 0 0 0 0
_ h h
K=109 o o o 5—]11 5—]12 0 0 E
6 6
h h
o o o o X, 2. 0o 0o o
6 6
2h
0 0 0 0 0 0 ?p 0 0
2
0O 0 0 0 0 0 0 %]11 —h]u
3 3
2h 2h
o o o o o o o 24,2y,
i 3 3 J
U: [lP‘lJ lPZu W; 937 9(1)7 937 W*7 Q?, Qg}T;
_ [ 32403y +5ps 302 (3p,, 1 +5p,, 12 (3p, +4p T
f(n) - - go(l+2”) ) )) - go(lizy) ) 2), _pl’ O) O) O, %, O) O >

(
pPr=1mp> Pr= 5 p

11
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The operators L;; are given as follows

2 62
L1 =c¢c1— — — (3,
1 =201 ax% + 3 8x% c3
0
Lot = C1r——
14 ClZa ™
a a
Ly =¢c—+c¢1— —c3,
2 2 ()x% 1 ax% 3
’
L 5
i (6 2t Ox 2)
0
Lhd & —
38 = 010a ™
0
Lo =
42 C120 ™)
02
Lsg = — ,
56 = (c7 —¢3) P
’ 0
Li=c¢cs|—+—],
S <0x% 0x2>
0
Ly = ¢c14—,
79 = C14 P
bia ha
Log = cg—= — — (5.
99 = Cg ax% +¢7 ax% €15

The coefficients ¢; are given as

Wu(d+ )
0=

3(A 4+ 2u)
o= h(50% + 6ap + 5u°)

6(a+ u) ’

o = 10ha?

3a+p)

_ Sha

€13 = 3’

5. Numerical validation

& 0
Ly = — 5 Lis =c¢cy1—,
12 (61 6‘2) EY 13 = C11 ey
0
Lig = c13, Li7 = kicnn pe
0 0
Ly =c11— P Ly = —€1za—x1
0 0
Lis = — Lig = c13—,
35 = —C13 57— o 2 36 = C13 oy
0 0
L3g = c10—, L _
39 = €10 EWY) 41 = —Cnn5— 6x2
02 02 2 02
Las =ce(~5+~5 | — 21, Lss =7~ + cs~—5 — 213,
44 = Cg <0x% + ax%) C12 55 = €7 Py +cs o2 €13
i i
Lsg = —co, Lgg = — 2¢13,
58 C9 66 = C8 Ox% +c7 0x§ 13
? 0 9
L = — Lig = —Cc14 —,
77 = C4 (a 5+ axz) 78 C14 o,
i g 02 @
Lgs = — 2013, Lgg =c7— )
85 6 %4—080 % C13 88 = €7 dx% +cg ax% €15
. :h3(a+y) . _ Sh(a+p) . ZSh(oz—pt2
2 12 > 3 > 4 6((1 +//l >
o hye .- 10hy (B +7) - Sh(y + )
3y +e) 3(+2y) 6
o = Sha(a — u) = Sh(a — ) o — h3_a
3(&—'—//!) > > 6 >
= ha(5a + 3p) = 2ha(S5a + 4u)
3a+p) 3(a+p)

For the validation purposes we provide the algorithm and computation results
for the three-dimensional Cosserat elastodynamics. We also present the analysis of
the numerical results based on the plate theory for the microelements of different
shapes and orientations incorporated into the Cosserat plate.

5.1 Analysis of Cosserat plate vibrations based on the three-dimensional theory

In our computations we consider the plates made of polyurethane foam—a
material reported in the literature to behave Cosserat like—and the values of the
technical elastic parameters presented in [15]: E = 299.5MPa, v = 0.44,

I, = 0.62mm, [, = 0.327mm, N? = 0.04. Taking into account that the ratio f§/y
is equal to 1 for bending [15], these values of the technical constants correspond

12
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to the following values of Lamé and Cosserat parameters: 1 = 762.616 MPa,
u =103.993MPa, a = 4.333MPa, f§ = 39.975MPa, y = 39.975MPa, ¢ = 4.505MPa.
We consider a low-density rigid foam usually characterized by the densities of
24-50 kg/m?> [16]. In all further numerical computations we used the density value
p = 34 kg/m’> and different values the rotatory inertia J.

Let us consider the plate By being a rectangular cuboid [0,a] x 0,a] x [—%,4]. Let
the sets T and B be the top and the bottom surfaces contained in the planes x3 = % and

x3 = — % respectively, and the curve I' = I'; UT, be the lateral part of the boundary:

AR
2°2)
S
22 J°

We solve the three-dimensional Cosserat equilibrium Egs. (1)-(2) accompanied
by the constitutive Egs. (3)-(4) and strain-displacement and torsion-rotation
relations Eq. (5) complemented by the following boundary conditions:

I = {(xl,xz,xg) :x1€{0,a},x,€(0,a],x3 €

I, = {(xl,X2,X3) X1 € [O,ﬂ],xze {0,01},.9(33 (S

I':uy=0,u3=0,¢9; =0,011 =0, ppp = 0, g3 = 0; (86)
I iur=0,u3=0,0,=0,00 =0, py; =0, uy; = 0; (87)
T :o033 :p(xlaxz)i Haz = 0; (88)
B:o3=0,u3 =0. (89)

where the initial distribution of the pressure is given asp = sin (21) sin (%2) sin wt
and the rotatory inertia tensor J is assumed to have a diagonal form

J. 00
J=10J, 0. (90)
0 0 J;

Using the method of separation of variables and taking into account the bound-
ary conditions Eqs. (86)—(87), we express the kinematic variables in the form:

U1 = cos (”7’“) sin <ﬂ7xz)zl(X3) sin at, (91)
Uy = sin (’%Cl) cos (%xz)zz(ag) sin o, (92)
uz = sin (%) sin <ﬂ7xz>zg(x3) sin wt, (93)
¢, = sin (”7’”) cos (”7’” 24(x3) sin o, (94)
b, = cos (%) sin (% 25(x3) sin o, (95)
¢ = cos (”7’”) cos (”7"2)26@3) sin wt, (96)

where the functions 2;(xx3) represent the transverse variations of the kinematic
variables.

If we substitute the expressions Egs. (91)-(96) into Egs. (3)-(4) and then into
Egs. (1)-(2), we will obtain the following eigenvalue problem

13
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Bz = w’Az (97)
where
_ble + szo b3L0 b4L1 0 —175L1 —b6L0 ]
b3L0 b1L, + b,yLg bl b5L1 0 beLg
B— —b4L1 b4L1 b7L2 heLo —b6L0 0
a 0 —bsL, b¢Lo  boLr + bioLo buLo b1Ly ’
bsLy 0 —beLo buLo byL; + b1oLo b1ala
L —beLo bsLo 0 —b12L4 —b12L4 b13Ly + boLas |
(98)
[ —a’p 0 0 0 0 0 ]
0 -a’p O 0 0 0
0 0  —ap 0 0
A=1 0 0 —a, O o |’ (99)
0 0 0 0 —a’, 0
| 0 0 0 0 0 —a?],
z2= |21 2, 23 24 25 Z6]T: (100)
and the differential operators L; are defined as
d d’
Lo=I, Li=—, Ly=—
° P dxs ? dx%
and the coefficients b; are defined as
by = a*(u + a), by = —n*(a+ A+ 3p), by = —m*(A+pu — a),
by =arn(A+p— ), bs = 2a’a, be = 2ana,
by = a?(2u + A), bg = —27*(a + u), by = a*(y + e),
bio = —m*(f+e+3y), bu=-7(f+r—e), by = —an(p+vy —e),
b3 = ﬂlz(ﬁ + 27/), b1y = —271'2(}/ + 8) — 4a’a
The system of differential Eq. (97) is complemented by the following boundary
conditions Dz = Dg for x3 = % and Dz = 0 forxz = — %
[ dlLl 0 dzLo 0 —dgLo 0 7
0 diLy d)Lo dsLg 0 0
dsLog dsLo dsL 0 0 0
D — 4540 4L0 51 , (101)
0 0 0 dglq 0 d7Lo
0 0 0 0  deLy dyLo
L 0 0 0 dgly dglo dol ]
Do=1[0, 0, a 0, 0, 0], (102)

and the coefficients d; are defined as

dl = a(,u + 6(), dz = —ﬂ(,bl — a), d3 = Zaa,
ds = ﬂ(’1 + 2/"): ds = —7nk, de = 0[(}/ + 8):
d;=aly —e), dg=nrp, do=a(f+2y).
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The idea for the solution of the eigenvalue problem Eq. (97) is based on the
following algorithm:

Step 1. Fix certain frequency value.

We fix certain value of the frequency w and force the Cosserat body to vibrate at
this frequency.

Step 2. Solve the three-dimensional Cosserat system of equations.

Mathematically, fixing certain value of @ implies that three-dimensional system
of Eq. (97) has a constant right-hand side and therefore can be solved for the
kinematic variables as a static system of equations. We solve the system Eq. (97)
using the high-precision Runge-Kutta method incorporated in Mathematica
software similar to how it was done in [7].

Step 3. Find large amplitudes of the kinematic variables.

We run w through an interval of positive real values and take note where the solution
changes its sign and the amplitude of the solutions starts to grow indefinitely. This
corresponds to the oscillation of the Cosserat body at its resonant frequency. Thus,
when the frequency w coincides with the natural frequency of the plate the resonance
will occur and the large amplitude linear vibrations can be observed (Figure 1).

The comparison of the eigenfrequencies of the Cosserat plate with the eigenfre-
quencies of the three-dimensional Cosserat elasticity is given in the Table 1. The
rotatory inertia principle moments used are J, = 0.001, J, = 0.001, J, = 0.001,
which represent a ball-shaped microelement (Figure 2). The relative error of the
natural macro frequencies associated with the rotation of the middle plane and the
flexural motion is less than 1%.

400

200

Vertical Deflection (m)

-200

-400 |-

1 L L 1 1 L L L 1 1 | 1 1 L 1 1
0.304 0.306 0.308 0.310 0.312

Figure 1.
Large amplitude linear vibrations of the Cosserat body forced to vibrate close to its natural frequency w.

W1, W2 w3, W7 Wy s, Wg We, W9
Plate theory 0.310 17.881 501.13 205.62 338.95
D Cosserat elasticity 0.309 17.763 530.82 211.98 317.87

Table 1.
Comparison of the eigenfrequencies w; (Hz) with the exact values of the 3D Cosserat elasticity.
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Figure 2.
Ball-shaped micro-elements: ], = 0.001, ], = 0.001, ], = 0.001 (left) and horizontally stretched ellipsoid
micro-elements: ], = 0.002, J, = 0.001, J, = 0.0001(right).

5.2 Analysis of Cosserat plate vibrations based on the plate theory

We consider a plate a x a of thickness # with the boundary G = G, UG,

G1 = {(x1,x2) : x1€{0,a},x,€10,a]}
G, = {(xl,xz) 1X) € {0,%},.%'16 [O,&l]}

and the following hard simply supported boundary conditions [7]:

~ 0

* A 0¥, 0QY oQ
G:W=0W"=0,%=0,Q) =0,Q) =0,Q; =0, -—-=0, anzzo, 0142:0;

A0

. R ¥, 0Q? 0Q
G:W=0W*=0,%=0,Q) =0,Q) =0,Q3 =0, pw -0, anlzo’ anlzo‘

Similar to [12] we apply the method of separation of variables for the eigenvalue
problem Eq. (85) to solve for the kinematic variables ¥,, W, Qs, Qg, W* and Qg.
The kinematic variables can be further expressed in the following form

nwx max nix
R :Alcos( 7;1) sin( Z 2) sin (a)t)+Blsin( 7;1>

S
=
IN)

(@)
o
7}

e
= o
N
S
I
N
w
2
=
/N
N
x&
R
N—
(@)
@]
7]
/N
S
<
N
N—
“.
=3
e
=
_|_
os}
wu
(@)
@)
]
N
X&
R
N—
) @,
=)
/\/\/\/\/EA/\/\/\
S
S
N N N T T N~ N~ N~ 0
wn
=3
)
-

§&
x
N

Yo" = A, sin (mrxl) cos (mmcz) sin (wt) + B; cos (nﬂxl) sin

S s
=
N)

N
[
o
w
@
=
N
3
E
any
N———
|2}
=
N
N
=
N
N———
@,
=
S
St
_|_
v}
W
(@)
o
wn
N
E
any
N———
(@)
o
wn

§I&
<
N

a a a a
nIX1 muxy\ . . (MAX1 MTX7
QY™ — Ag cos sin sin (wt) + Bg sin cos sin (wt),
2 a a a a
nIX1 MaX7\ . nx1 MTTX7
W™ = A;sin < > sin ( ) sin (wt) + By cos ( ) cos sin (wt),
a a a a
~ 0,nm . nmwx, mrx) . nmwxq mimXx-)
Q = Agsin cos sin (wt) + Bg cos sin sin (wt),
! a a a a
~ 0, nm nmwx, mnx) . . nrx1 minxo
Q,  =Agcos ( ) sin < ) sin (wt) + By sin ( ) cos sin (wt),
a a a a

where A; and B; are constants.
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w1, W2 W3, @7 w4 Ws, Wg W, W9
Shape T Iy J- w1, W @3, ®7 W4 Ws, Mg We, W9y
Ball 0.001 0.001 0.001 17.88 0.31 501.13  205.62  338.95
Vertical ellipsoid 0.001 0.001 0.0001 17.88 0.31 501.13  650.22  338.95

Horizontal ellipsoid ~ 0.0001  0.001 0.001 17.88 0.31 1363.01  205.62  394.08

Table 2.
Eigenfrequencies w}* (Hz) for different shapes of micro-elements.

We solve an eigenvalue problem by substituting these expressions into the
system of Eq. (85). The obtained nine sequences of positive eigenfrequencies w}™”
are associated with the rotation of the middle plane (@} and w4™), flexural motion
and its transverse variation (5" and @5"), micro rotatory inertia (07", @z” and
w}™) and its transverse variation (wg” and w§™) [12].

We perform all our numerical simulations fora = 3.0 mand 2 = 0.1 m. We
consider different forms of micro elements: ball-shaped elements, horizontally and
vertically stretched ellipsoids (see Figure 2). For simplicity we will use the notation
w; for the first elements w;' of the sequences w?™. The results of the computations
are given in the Table 2. The shape of the micro-elements does not effect the
natural macro frequencies w; and w, associated with the rotation of the middle
plane and w3 and wy associated with the flexural motion and its transverse variation.
The ellipsoid elements have higher micro frequencies associated with the micro
rotatory inertia (w4, ws and wg) and its transverse variation (wg and wg), than the
ball-shaped elements.

Let ], ], and ], be the principal moments of inertia of the microelements
corresponding to the principal axes of their rotation. We assume that the quantities J,,
J, and J, are constant throughout the plate Bo. If the microelements are rotated

around the z-axis by the angle 6 the rotatory inertia tensor J can be expressed as

J cos*60 + ], sin %0 < . —]y> sin20 0

J= (x —]y> sin20 ], sin0 +J,cos?0 0 (103)
0 0 Jx

Angle 0 w1 Wy w3 w7 w4 ws wg we w9

0° 17.88 17.88 0.31 0.31 650.221 265.37 265.37 450.61 450.61
10° 17.88 17.88 0.31 0.31 650.221 255.59 279.40 429.89 469.93
20° 17.88 17.88 0.31 0.31 650.221 247.75 295.33 406.70 484.79
30° 17.88 17.88 0.31 0.31 650.221 242.57 313.65 382.94 495.14
40° 17.88 17.88 0.31 0.31 650.221 239.99 333.10 360.57 500.46
45° 17.88 17.88 0.31 0.31 650.221 239.68 338.95 354.35 501.13
50° 17.88 17.88 0.31 0.31 650.221 239.99 333.10 360.57 500.46
60° 17.88 17.88 0.31 0.31 650.221 242.57 313.65 382.94 495.14
70° 17.88 17.88 0.31 0.31 650.221 247.75 295.33 406.70 484.79
80° 17.88 17.88 0.31 0.31 650.221 255.59 279.40 429.89 469.93
90° 17.88 17.88 0.31 0.31 650.221 265.37 265.37 450.61 450.61

Table 3.
Eigenfrequencies o' (Hz) for different angles of rotation of horizontal ellipsoid micro-elements.
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700

600 -

500 - L eemmmmmm———
- oz —— micro frequency w;y

N
L
)
Ly o
3 - i micro frequency w
g 300 I -~ q y We
L - "-~\__‘§_~
e ——] —— microfrequency wg
200 - .
————— micro frequency wq
100
O 1 | | | | | L | 1 1 | 1 L ]
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Angle 8 (degrees)
Figure 3.

Micro frequencies w4, Ws, Wg, Wg ANd wy.

The eigenfrequencies for different angles of microrotation of the microelements
are given in the Table 3 and the Figure 3. The rotatory inertia principle moments
used are /, = 0.002, ], = 0.001, J, = 0.0001, which represent a horizontally
stretched ellipsoid microelement. The case when the microelements are not aligned
with the edges of the plate the model predicts some additional natural frequencies
related with the microstructure of the material.

6. Conclusions

In this chapter, we presented a mathematical model of Cosserat plate vibrations.
The dynamic model of the plates has been developed as a dynamic extension of the
Reissner plate theory. The equations has been presented in both tensorial and the
matrix forms. We also described the validation of the model, which is based on the
comparison with the three-dimensional Cosserat elastodynamics exact solutions.
Based on the presented results of the computer simulations we were able to detect
and classify the additional high resonance frequencies of a plate. We have shown
that the frequencies depend on the shape and orientation of microelements (ball-
shaped elements, horizontally and vertically stretched ellipsoids) incorporated into
the Cosserat plates. We also have been able to identify that micro frequencies
associated with the micro rotatory inertia and its transverse variation of the ellip-
soid elements have higher micro frequencies than the ball-shaped elements. We also
showed the dependence of the eigenfrequencies on the angles of rotation of the
horizontal ellipsoid micro-elements. These results can be used to identify the char-
acteristics of the plate micro-elements.
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Appendix A: conventions and notations

A.1 Conventions
We use the following notation convention:
1. the values of the Latin subindex i take values in the set {1,2, 3}
2.the values of the Greek indices a and f take values in the set {1,2}

3.the Einstein summation notation is used throughout the chapter

A.2 Notations

{x:} artesian coordinates

P Cosserat thin plate

h plate thickness

U, A Lamé parameters

a f, v, € Cosserat elasticity parameters

p material density

Jjior] rotatory inertia

0j; OT G the stress tensor

M O the couple stress tensor

vjiory strain tensor

Xji OTX bend-twist tensor

u;oru displacement vector

¢p;org microrotation vector

p,;orp linear momentum

g,0orq angular momentum

Eil Levi-Civita tensor

Uc strain stored energy

Uk stress energy

Tc stored kinetic energy

Tw work of inertia forces

S Cosserat plate stress set

u Cosserat plate displacement set

& Cosserat plate strain set

n splitting parameter

p pressure

® natural frequency of plate vibration

0 angle of microelement orientation

My bending and twisting moments

Q, shear forces

Qr,Q, transverse shear forces

Rup micropolar bending moments
o micropolar twisting moments

S, micropolar couple moments
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¥, rotations of the middle plane around x,, axis

w, w* vertical deflections of the middle plate

Q? microrotations in the middle plate around x,, axis
Q3 rate of change of the microrotation
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