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Chapter

Integrating Remote Sensing Data
into Fuzzy Control System for
Variable Rate Irrigation Estimates
Willians Ribeiro Mendes, Fábio Meneghetti U. Araújo

and Salah Er-Raki

Abstract

Variable rate irrigation (VRI) is the capacity to vary the depth of water applica-
tion in a field spatially. Developing precise management zones is necessary to
efficient variable rate irrigation technologies. Intelligent fuzzy inference
system based on precision irrigation knowledge, i.e., a system capable of creating
prescriptive maps to control the rotation speed of the central pivot. Based on the
VRI-prescribed map created by the intelligent system of decision-making, the pivot
can increase or decrease its speed, reaching the desired depth of application in a
certain irrigation zone. Therefore, this strategy of speed control is more realistic
compared to traditional methods. Results indicate that data from the
edaphoclimatic variables, when well fitted to the fuzzy logic, can solve uncertainties
and non-linearities of an irrigation system and establish a control model for high-
precision irrigation. Because remote sensing provides quick measurements and easy
access to crop information for large irrigation areas, images will be used as inputs.
The developed fuzzy system for pivot control is original and innovative. Further-
more, the artificial intelligent systems can be applied widely in agricultural areas, so
the results were favorable to the continuity of studies on precision irrigation and
application of the fuzzy logic in precision agriculture.

Keywords: fuzzy control, variable rate irrigation, center pivot control,
remote sensing, decision support system

1. Introduction

Availability of water is one of the basic conditions for life on planet Earth.
However, it is a limited resource, currently at risk of extinction. Global population
growth, climate change and demand from several economic sectors such as industry
and agriculture put into question the availability of drinking water to all living
beings on planet. In particular, irrigated farming is one of the sectors that consume
more water per day, and can reach 90,000 liters/hectare, while the average
consumption per capita in Brazil is 162 liters per day [1].

The United Nations Food and Agriculture Organization (FAO) predicts that
global demand for food by the year 2050 will increase by at least 60% above 2006
levels, and in order to meet this demand it would need to double or triple agricul-
tural production. However, most of the food production increase must have come
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from yield increases [2]. According to [3], the adoption of irrigated agriculture
makes it possible to increase productivity and diversify agricultural crops.
However, there is a limitation in water resources and, therefore, the use of water in
agriculture needs to be more efficient.

The [4–6] present an overview of precision agriculture. The authors state that
the term can be used in everything that refers to activities performed more accu-
rately by means of electronic systems; however, they make a note regarding the
applications of inputs uniformly, which would be only conventional systems and
not deal with the spatial variability of crops. Automation and instrumentation
solutions are required for better application of inputs, and in order to achieve a
distinct water management in each sector of a planted area, irrigation systems must
perform water application taking into account the spatial variability of the crop and
the soil so that the maximum efficiency of the crop can be reached [7].

Authors such as [8–13] discuss some solutions for water application using spatial
correction and conclude that the central or linear pivot or irrigator are particularly
suited to the precision irrigation condition, especially because of their current levels
of automation and large area reached by the pivot. However, the major limitation
for the adoption of irrigation that complies with spatial and time variability, usually
called variable rate irrigation, is associated with the development of great irrigation
management.

The availability of sensors is currently a constraint to the automation of irriga-
tion control, and it is expected that the requirements of advanced process control
for irrigation also fosters the development of new sensors. In [14] brings a review of
the existing literature on advanced process control in irrigation and its requirements
of sensors and adaptability to the field conditions, besides discussing the obstacles
in area sensing.

In order to deliver detailed spatial and temporal information regarding soil and
crop response to varied management practices and dynamic environmental condi-
tions, and to avoid the time-consuming process for installing and maintaining
sensors over each field, the use of remote sensing techniques has been improving in
precision agriculture [15, 16]. According to the authors, remote sensing images are
already widely used and proved to do a good prediction on required irrigation
amount for each type of crops. Remote sensing by satellite has been very promising
in on-field monitoring, but still presents problems such as accuracy, cloud coverage,
and the high cost to obtain good spatial resolution [17].

The application of process control techniques for variable rate irrigation has
recently been reviewed in [18–24]. Artificial intelligence (AI) can be applied in an
interdisciplinary way, besides bringing about a paradigm shift of how we under-
stand agriculture today. Solutions in AI technology not only enable farmers to do
more with less, but also improve quality and ensure a faster introduction into the
market.

AI technologies assist farmers in soil analysis and crop health, among others,
besides saving time and allowing them to grow the right crop at each season,
thereby maximizing the crop production. In this context, tools with knowledge
representation and reasoning about imprecision present as a feasible alternative.
In this way, fuzzy logic allows intelligent computational systems to “reason”,
considering aspects inherent to uncertainty and realistic processes. Moreover,
it is a very interesting methodology to be applied in decision making, because it is
possible to model perceptions and preferences similar to the style of a human being.

Decision support systems are tools that can be used in fuzzy set theory [25] to
provide a conceptual framework for representing knowledge and reasoning about
imprecision and consequent uncertainty. The fuzzy set provides adequate tools for
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modeling and dealing with expert rules [26]. By modeling linguistic variables in the
form of fuzzy sets, it was possible to transform expert rules into mathematical
terms, and in addition, fuzzy set theory offers a wide variety of operators that can
aggregate and combine these rules. The application of linguistic variables and fuzzy
conjunction methods provide an adequate method to model the human reflection
process and, in so doing, make the interface of these systems simpler and more
natural as planning tool on the farm by the manager or farmer.

The fuzzy decision support system is considered useful due to its interactive
nature, flexibility in approach and evolution of the graphical characteristics, and
can be adopted for any similar situation to classify the alternatives. More often,
ambiguity in agricultural decision-making is aggravated by inaccuracy and intui-
tion. The ability of fuzzy systems to deal with complex systems can help farmers to
make better decisions in agricultural processes [27]. There is a very significant
advantage in using fuzzy decision-making systems for the variable rate irrigation
process: the advantage of not needing the full amount of relevant information by
simply selecting the variables that play the role of the irrigation calculation
according to [28].

This chapter is organized as follows, the present section aims to contribute to a
refinement of the studies on the application of fuzzy control systems for the explo-
ration of precision irrigation modeling and management. In the next section, we
provide a literature review of the latest related research, divided into three sub-
sections, namely: (a) the most important concepts for understanding the main
characteristics in a central pivot irrigation system; (b) concepts fundamental to the
understanding of fuzzy logic, relevant to the structuring and development of the
intelligent irrigation system and (c) remote sensing. In Section 3, we thoroughly
describe the basic mathematical framework that involves the three techniques.
Finally, a representative case study on the intelligent control of variable rate irriga-
tion systems is presented.

2. Precision agriculture

Available bibliographies give different names to describe the concept of preci-
sion agriculture such as spatially prescriptive agriculture, computer farming, satel-
lite farming, high technology for sustainable agriculture, soil specific crop
management or site-specific crop management. It is considered a revolutionary
approach to improving resource management and sustainable agricultural develop-
ment and is a promising technology. [29–33].

Precision agriculture studies were started in countries such as the USA,
Canada, Australia, and Germany, besides the Western Europe, in the mid-1980s,
and only began to receive great interest as a new experimental tool in the 1990s
[29]. In [34] is define the specific management of a study zone as the electronic
monitoring and control applied to data collection, information processing and
decision support for the temporal and spatial allocation of inputs for agricultural
production. The specific control zone, as shown in Figure 1, is spatially defined
by soil elements, crop type, pests and other elements required for efficient
management of inputs.

Technologies on agricultural production are expected to impact in two areas:
profitability for producers and ecological/environmental for the public. Increased
costs with water, fertilizer and pesticides, coupled with environmental concerns,
lead to a growing acceptance of the concept of specific management of an operating
zone.

3

Integrating Remote Sensing Data into Fuzzy Control System for Variable Rate Irrigation Estimates
DOI: http://dx.doi.org/10.5772/intechopen.87023



2.1 Variable rate irrigation (VRI)

Variable rate irrigation (VRI) is a specific management tool used to apply the
adequate amount of water in the sectors or zones of a planting area, for example
Figure 2, presents control regions where the zones in reddish colors need more
water, and those of bluish colors are with the humidity within the limits that the
plant needs. The development of the prescription of variable rate irrigation is a field
of active research, studied in [13, 14, 35].

Once established, prescriptions can, within a management variability, remain
fixed, or these zones can dynamically change a small number of times during a
growing season. Characteristics of crops and soil type are the main factors that
contribute to determine the space and time variability of a planted area. This
information is incorporated into a geographic information systems (GIS) database
and, therefore, used for interpretation and decision support [36].

2.1.1 Irrigation system

Irrigation systems are a set of techniques aimed to distribute water to crops in
adequate quantities in order to promote appropriate plant development with a

Figure 1.
Different management zones within the same planting area. Source: Embrapa. (https://www.macroprograma1.
cnptia.embrapa.br/redeap2).

Figure 2.
Spatial variability of irrigation water needs. Source: VALLEY. (http://ww2.valleyirrigation.com/valley-irriga
tion/pt/tecnologia-de-comando/rega-de-taxa-vari%C3%A1vel/vri-controle-de-velocidade).
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minimum of water consumption [37]. Irrigation systems can be divided into two
subsystems: catchment and application subsystem. The way the water is applied
depends on different methods of application, and each has its specificities. They are
divided into three groups: surface irrigation, localized irrigation, and sprinkler
irrigation.

• Surface irrigation: the water from the distribution system (channels and pipes)
to any point of infiltration within the area to be irrigated is made directly on
the surface of the soil. They are classified as infiltration furrows and flooding or
submersion;

• Localized irrigation: the water is applied directly on the root area, with small
intensity and high frequency. Classified as: micro-sprinkler and drip;

Sprinkler irrigation is the method of irrigation in which water is sprayed on the
surface of the land, like a rainfall, because the water jet is fractioned in drops. They
are classified as: conventional spraying, central pivot, self-propelled, and linear
system. Since this is the scope of this chapter, central pivot irrigation will be further
detailed.

2.1.2 Central pivot

Among the sprinkler systems, the central pivot has been used with relative
success due to the lower labor demand [37, 38]. It was first built in 1948 by Frank L.
Zybach, who sent the invention for analysis, finally patented in 1952 in Colorado,
United States (see Figure 3). In 1954, Zybach sold the manufacturing rights to the
American company Valley, located in the State of Nebraska. In 1968, the Lindsay
Company also started to produce pivots, and currently both companies share the
leadership of the world market of pivots.

The speed of the lateral displacement of a central pivot is controlled in the last
tower, which is established by a timer, installed in the central control box of the
pivot, which controls the time of activation and the stop of the motor of the last
tower. For example, the condition in which the motor standstill time is equal to the
movement time corresponds to the setting of 50% of the maximum speed set by the
timer control percentage. At maximum speed of 100%, the motor of the last tower
is continuously moving [37, 39].

Irrigated agriculture does not allow reductions in crop productivity due to lack
or excess of applied water. The application of little water (deficit irrigation) can be
an obvious waste, since production could not obtain the expected benefit. On the
other hand, the excessive application is much more destructive, because soil satu-
ration occurs, which prevents its aeration and leaches the nutrients, inducing a
higher rate of evaporation and salinization [40]. So, it is important to develop an
irrigation scheduling program for deciding when and how much to irrigate. For this
purpose, we used the fuzzy logic system to simulate the amount and the frequency
of irrigation needed.

2.2 Fuzzy logic

Fuzzy sets theory was introduced in 1965 by the Iranian mathematician Lotfi
Asker Zadeh, a professor at the University of Berkley, USA [41], especially intended
to offer a mathematical treatment to some subjective linguistic terms such as
“approximately” and “around”, among others. This would be a first step in pro-
gramming and storing vague concepts in computers, making it possible to produce
calculations with inaccurate information, such as the human being [42].
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In other words, while decision making in classical theory would be like Eq. (1),
fuzzy logic would be like Eq. (2) [43].

f xð Þ ¼
1 if , and only if , x∈A

0 if , and only if , x∉A

(

(1)

f xð Þ ¼

1 if , and only if , x∈A

0 if , and only if , x∉A

0≤ μ xð Þ≤ 1 if x partial membership to A

8

>

<

>

:

(2)

The most evident characteristic of fuzzy logic is to consider that between two
values (zero and one) there may be intermediate values, and these values are

Figure 3.
Structure of a central pivot. (a) Basic components, and (b) irrigated land. Source: Adapted from [38].
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analyzed according to a degree of pertinence, which indicates the level that the
information belongs to a specific set in a universe of discourse, according to [44].

Fuzzy set theory provides a method for manipulating sets whose boundaries are
imprecise rather than restricted. The uncertainty of an element, that is, its fractional
degree of pertinence, can be conceived as a measure of possibility, in other words,
the possibility that an element is a member of the set [42].

2.2.1 Fuzzy inference systems

In many practical systems, relevant information comes from two sources:
human experts, who describe their knowledge about the system in natural lan-
guages, and sensory measures and mathematical models proposed according to
physical laws. An important task, therefore, is to combine these two types of
information into systems designs [45].

The fuzzy inference system consists of a fuzzification interface, a rule base, a
database, a decision-making unit or inference unit, and finally a defuzzification
interface. The functional blocks are shown in Figure 4.

The function of each block is:

• A rule base containing a number of “if-then” fuzzy rules;

• A database that defines the functions of association of fuzzy sets used in fuzzy
rules;

• A decision unit that performs rule inference operations;

• A fuzzification interface that transforms crisp inputs into degrees of
correspondence with linguistic values;

• A defuzzification interface that transforms the fuzzy results of the inference
into a crisp output.

Based on natural language, a fuzzy logic system is simple to understand and
enables the representation and processing of human knowledge in a computer.
The inputs, outputs, and fuzzy logic rules are easy to modify. These fuzzy logic
features make it particularly well suited for use in a decision support system and is
able to assist in the construction of vague rate-based irrigation control maps based
on results of an imaging system in real time or by prescriptive maps based on the
soil-plant-atmosphere transfer.

Figure 4.
Fuzzy inference system. Source: Adapted from Ross [46].
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2.2.2 Mamdani inference method

Developed by Mamdani [47], the inference method is the most common in
practice and literature. To begin the general view of this idea, it is considered a
simple system of two rules, where each rule comprises two antecedents and one
consequent. The graphic procedures herein illustrated can be easily extended and
maintained for fuzzy rule bases or fuzzy systems with any number of antecedents
and consequents. Two different cases of two-input Mamdani systems are consid-
ered, where the inputs to the system are scalar values and a max-min inference
method is used. Thus, the Mamdani inference method for a set of conjunctive rules
for rth rules are given by Eq. (3):

if x1 is A
k
1 and x2 is A

k
2 then yk is Bk fork ¼ 1, 2,…, r (3)

This equation has a very simple graphical interpretation, exemplified in
Figure 5, and illustrates graphical analysis of two rules, where symbols A11 and A12
refer to the first and second fuzzy antecedents of the first rule, respectively, and
symbol B1 refers to the consequent fuzzy of the first rule. The symbols A21 and A22
refer to the first and second fuzzy antecedents, respectively, of the second rule, and
the symbol B2 refers to the consequent fuzzy of the second rule.

2.2.3 Takagi-Sugeno-Kang inference method (TSK)

Although originally proposed by Takagi and Sugeno [48], this method is also
known in the literature as Takagi-Sugeno-Kang (TSK) model. This is due to the
subsequent works by Sugeno and Kang [49] related to methodologies developed to
identify this type of model. The fuzzy TSK model consists of an inference system
capable of describing, in an exact or approximate way, non-linear dynamic systems
through a set of linear, locally valid dynamic systems, smoothly interpolated, non-
linear and convex. A typical rule in a Sugeno model, which has two inputs, x and y,
and one output z, is in the form of Eq. (4).

Figure 5.
Interpretation of the Mamdani method. Source: Adapted from Ross [46].
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if x is A and y is B then z is z ¼ f x; yð Þ (4)

Usually, f (x, y) is a polynomial function at the x and y inputs, but it can be any
general function as long as it describes the output of the system within the fuzzy
region specified in the antecedent of the rule to which it is applied. When f x; yð Þ is a
constant, the inference system is called a zero-order Sugeno model, which is a
special case of the Mamdani system, in which the consequent of each rule is speci-
fied as a singleton fuzzy [50]. Each rule, in Sugeno model has an output given by a
function. Due to this, the result is obtained through a weighted average, thus
avoiding the time spent with the defuzzification process necessary in the Mamdani
model. Figure 6 illustrates the concept of the TSK model.

2.3 Remote sensing

Remote sensing technologies are being used more and more often in the preci-
sion agricultural applications. This is because that the variables (crop stress, soil
type, disease,) to be measured and controlled are very disperse in remote areas with
limited wireless communications or no power supply. Also, the measurements of
each variable at spatial and temporal scale are expensive and time-consuming for
installing and maintaining sensors over each field. Sensors can be multispectral
cameras on Satellites or mounted on Unmanned Aerial Vehicle (UAV, or “drones”).
In this chapter, we focalized on the using of satellites images for agricultural
applications.

Remote sensing imagery can be used for mapping soil properties, classification
of crop species (land use), detection of crop water stress, monitoring of irrigation,
and predicting of crop yield. The use of remote sensing in precision agriculture
depends principally on the spatial, temporal, radiometric and spectral resolution.
Satellite remote sensing has shown a very strong potential for irrigation manage-
ment at large scale through using a different data (optical, thermal and radar)
acquired from different satellites.

Optical reflectances in red and near infrared (0.4–12.5 μm) have the potential to
access the vegetation indices (VI) that are directly related the different crop
parameters like crop coefficient (Kc) used in estimating the crop water require-
ments. Several studies (e.g., [51–59]) have been specifically dedicated for

Figure 6.
Graphic interpretation of the Sugeno method. Source: Adapted from [50].
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estimating Kc from Normalized Difference Vegetation Index NDVI [60] and Soil
Adjusted Vegetation Index SAVI [61].

For thermal data, land surface temperature (LST) derived from thermal infrared
remote sensing data have been used in a variety of applications such as, among
others, climate studies [62, 63], the monitoring of crop water consumption and
water stress detection [64–67], vegetation monitoring [68, 69], soil moisture esti-
mation [70–72]. Canopy temperature has long been recognized as a good indicator
for crop water status and as a potential tool for irrigation scheduling. Stomatal
closure is one of the first responses to plant water stress that causes a decrease in
plant transpiration and thus an increase in plant temperature. An increase in plant
temperature is a sign that the vegetation is undergoing water stress. The crop water
stress index (CWSI) is the most frequently used index to quantify the crop water
stress based on canopy surface temperature [73].

Regarding the radar images, a significant effort has been recently dedicated to
exploit these images to estimate soil moisture (SM) due to (i) the high-spatial
resolution achievable by synthetic aperture radars (SAR) and (ii) the advent of SAR
data available at high-temporal resolution. Especially, the Sentinel-1 (S1) constella-
tion (composed of two satellites S1-A and S1-B) potentially provides SAR data at
20 m resolution every 3 days [74]. Thus, numerous studies have investigated and
exploited the sensitivity of the radar signal to SM [70, 75–80].

3. Methods

The present stage shed light on the form that the construction of the proposed
system is given, presenting as each fundamental characteristic of an irrigation
project is appropriate to be added to the basic elements of fuzzy system.

The development of the intelligent irrigation system follows the structure shown
in Figure 7. The structure of the proposed system enables the elaboration of a
systematic, autonomous and automated management map to control an irrigation
system. The output values of the intelligent system will be the inputs of the central
pivot movement speed control and the sprinkle valve opening control.

Figure 7.
Structure for intelligent irrigation system strategy.
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However, it is important to emphasize that the commercial systems most used by
farmers are not yet capable of elaborating this type of control map in the same way
proposed by this work.

3.1 Geographic information system

Over the last decade, new information technologies, such as the geographic
positioning system (GPS) and the geographic information system (GIS) have been
introduced, which enabled to reduce the scale of management to the field level [81].
There are different software programs available in the market that can create maps
from data point files, such as Surfer (GoldenSoftware, Inc.), ArcView (ESRI) and
Global Mapper (Global Mapper).

The free QGIS1 software will be used in this work for pre-processing and editing
the file provided by the i-ekbase web-tool. QGIS is an open source geographic
information system (GIS), licensed under GNU General Public License. It is an
official open source geospatial foundation (OSGeo) project that runs on Linux,
Unix, Mac OSX, Windows and Android, and supports several formats of vectors,
rasters, databases and functionalities. QGIS has a plug-in infrastructure, and it is
possible to add new features by writing plug-ins in C++ or Python.

3.1.1 Vegetation indices

As mentioned above, vegetation indices generated from remote sensing data are
an important tool for the monitoring of natural or anthropogenic changes in land use
and land cover. These rates have been used to estimate several vegetation parameters
such as leaf area index (LAI) and amount of green biomass, as well as in the evalua-
tion of land use and management and the recovery of degraded areas [82].

In this study, satellite image information was used, and in this case, the reading
values of NDVI—Normalized Difference Vegetation Index—is defined as the dif-
ference between Near infra-red and red reflecatnces divided by its sum. It measures
the vegetative cover and its color on the land surface over wide areas. Dense and
green vegetation absorbs strongly the red wavelengths of sunlight and reflect in the
near-infrared wavelengths resulting high values of NDVI, near to 1. For bare soil
(no vegetation), NDVI values are between 0 and 0.14 depending on the moisture
and roughness of soil. The practice of plant irrigation management has inherent
complexity in visualizing the symptoms of water deficit, which are difficult to
detect. On some occasions, they are discovered very late, that is, when observed,
their effects have already compromised the production or quality of the product.
Usually these symptoms are related to leaves coloring, leaf winding, leaf angle, etc.

However, it is possible to establish a correlation between the values of NDVI and
the crop coefficient (Kc), [83, 84]. The estimated Kc values (Kc-NDVI) and the Kc
values observed in Allen [85] for maize and soybean crops to guide the irrigation
schedule during the season. Another way of relating the development of the plan-
tation by means of remote sensing is the use of canopy temperature and infrared
thermometry. A plant under water stress reduces transpiration and typically
presents a higher temperature than the non-stressed crop [86], which can be a
powerful tool for monitoring and quantifying water stress.

Canopy temperature increases when solar radiation is absorbed [87] but, is
cooled when latent energy or sweating is used to evaporate water instead of heating
plant surfaces. Algorithms based on canopy temperature are strongly correlated

1 http://www.qgis.org/en/site/

11

Integrating Remote Sensing Data into Fuzzy Control System for Variable Rate Irrigation Estimates
DOI: http://dx.doi.org/10.5772/intechopen.87023



with quantifiable crop yields [88], such as productivity, water use efficiency, sea-
sonal evapotranspiration, leaf water potential at noon time, irrigation rates and
damage caused by herbicides.

3.1.2 Satellite images

In order to study satellite images, data will be provided by a specialized com-
pany, by means of its intelligent environmental knowledgebase (i-ekbase), and
made available via web tool, with limited and free use, for research related to the
topic. The web tool will provide data from the area chosen initially for the study.
The intelligent environmental knowledgebase (i-ekbase)2 is an autonomous Big
Data Analytics engine with a CLOUD system, and a fully automated geographic
information system (GIS) [89]. Figure 8 illustrates an example image provided by
the i-ekbase tool, while Table 1 shows the data generated by the web tool in the
CSV (Comma Separated Values) format.

Figure 8.
Land surface temperature image by the i-ekbase web tool. Source: Adapted from the i-ekbase system.

Lat Long Canopy

nitrogen

(%)

Leaf area

index

(m2/m2

NDVI

(%)

Bio-

mass

(tn/ha

Soil

salinity

(dS/m)

Soil

moisture

(%)

Canopy

temp.

(°C)

�15.2464 �54.0157 0.0 0.0 13.49 0.0 3.35 13.52 36.48

�15.2464 �54.0156 0.09 0.0 15.24 0.14 3.32 13.19 36.81

�15.2464 �54.0155 0.41 0.0 15.36 0.15 3.39 13.93 36.07

�15.2464 �54.0159 3.36 0.0 22.76 0.76 3.16 11.61 38.39

�15.2464 �54.0158 4.96 0.0 26.68 1.09 3.10 11.00 39.00

�15.2463 �54.0162 7.37 0.0 31.78 1.52 2.87 8.65 41.35

�15.2463 �54.0162 9.30 1.0 36.34 1.89 2.80 8.03 38.97

�15.2463 �54.0161 11.59 1.0 41.42 2.32 2.68 6.84 40.16

Table 1.
Data exported by the i-ekbase web tool. Source: Adapted from the i-ekbase system.

2 http://iekbase.com/
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The i-ekbase system services provide larges area-wise resource management
maps, with supporting remote digital scouting for decision support systems and
rapid intervention of issues. For developing the experimental system were
processed 12 months of Data, these remote sensing imageries were acquired by
Landsat (with a spatial resolution of 30 m, but for this experiment the Data was
upscale to 10 m) and Sentinel (with a spatial resolution of 10 m) satellites. Data that
constitute this image have more than 14,000 georeferenced points, containing at
each point or pixel the attributes of the agricultural analysis. Due to the extension of
the data, only a few lines are shown in Table 1.

In order to apply this approach to the commercial field scale, the remote sensing
data required to describe the soil-plant-atmosphere relationship can be acquired
from satellite [90] and aircraft images [91, 92]. However, high costs, spatial resolu-
tion, data frequency and data availability [93, 94], in addition to cloudless satellite
imagery, are a challenge for the correct execution of models based on remote
sensing [95]. These issues can limit the efficiency of real-time variable rate irriga-
tion management.

From the remote sensing data, those that best describe the soil-plant-atmosphere
relationship for the intelligent irrigation system of the plantation site will be
selected. In this phase, the correct selection of these data is fundamental to correctly
calculate the results. A simple but promising approach uses crop coefficients
derived from the normalized difference vegetation index (NDVI) along with local
climate data to infer quantities of evapotranspiration (ETc) from variable crops
almost in real time [57, 83, 96].

Based on the choice of planting site and type of crop to be irrigated, in relation to
plant type data, the crop coefficient will be used along with information from the
satellite images. In this case, the reading values of NDVI, near soil moisture and
vegetative canopy temperature will be used. The latter is an important parameter
for irrigation management and should be adjusted according to local growing con-
ditions.

3.2 Location of the study

The study site is a farm located in the municipality of Primavera do Leste, MT,
latitude 15° 14024.73 “S and longitude 54 ° 0’53.29” W. This site has areas of culti-
vation irrigated by central pivot, and the crops planted are soybean, cotton and
second-crop corn. The delimited area presents a total of 140 ha, in a radius of 667 m,
see Figure 9. The area delimited by the red circle has central pivot irrigation, and
the information used in the case study is from a 2015/2016 second-crop corn cycle.
Irrigation in maize crop means to meet the minimum water requirements for the
development of the crop.

Maize expresses high sensitivity to droughts. Therefore, the incidence of periods
with reduction of the water supply to the plants at critical moments of the devel-
opment of the crop, from flowering to physiological ripeness, can cause a direct
reduction in the final harvest. In order to obtain maximum output, maize planting
requires approximately 650 mm of water during its cycle [97], which can vary from
110 to 140 days in medium-cycle hybrids. For this preliminary analysis, data on
daily average precipitation were used, provided by INMET (National Institute of
Meteorology), from April to September 2016, to the city of Primavera do Leste, in
the State of Mato Grosso, Brazil. Figure 10 shows the data obtained.

These readings recorded during the development of the plantation under study
corroborate the supposition of water stress due to lack of rainfall (from June to
September), which would indicate the possibility of complementing water demand
by irrigation.
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3.3 Fuzzy systems

In this step, a fuzzy system will be used, which in this case will be capable to
infer the variations of linear speeds of the pivot according to the images provided by
the satellite. For the creation of the control map, a system with artificial intelligence
will be developed, capable of manipulating data and knowledge.

Three input variables (NDVI, near-soil moisture and canopy temperature) were
used to infer the speed that the pivot should have to improve the level of irrigation
within the management area, so that an adequate speed could be found for the

Figure 10.
Daily average precipitations obtained in the period of 2016. Fonte: INMET.

Figure 9.
RGB images of the location of study area in in the municipality of primavera do Leste, state of Mato Grosso,
Brazil.
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movement of the pivot in relation to the amount of water sprayed by the sprinklers.
The decision unit or inference machine to perform rule-based inference operations
will be implemented using the Mamdani method, with crisp inputs and crisp output
value3.

In this first stage of development, the water depth that the irrigation system
provides will be considered constant, and the database, which defines the functions
of association of the sets used in the fuzzy rules, will be implemented as shown in
Table 2 and Figure 11.

With the remote sensing data, it is possible to construct the universes of dis-
course of each input variable and thus transform the database into linguistic vari-
ables, such as those presented in the table above. Each of these inputs was
previously limited in the universe of discourse in question and associated with a
degree of pertinence in each fuzzy set by means of specialist knowledge. In this
manner, in order to obtain the degree of pertinence of a given crisp input, it is
necessary to search for this value in the knowledge base of the fuzzy system. The
fuzzification of the decision-making system is shown in Figure 11, and it is possible

Input variables Linguistic variables

Low Average High

Canopy temperature (°C) <14 14 < ϕ < 27 >24

Upper layer soil moisture (%) <14 12 < ϕ < 24 >21

NDVI (%) <16 12 < ϕ < 27 >27

Table 2.
Fuzzy input set for the fuzzy inference system.

Figure 11.
Corresponding membership functions for each system entry, (a) canopy temperature, (b) upper layer soil
moisture, (c) NDVI.

3 https://www.agritempo.gov.br/agritempo/jsp/Grafico/graficoMicrorregiao.jsp?siglaUF=MT
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to visualize the corresponding membership functions, considering these intervals as
the universe of discourse of these variables.

Triangular membership functions were chosen because they simplify the calcu-
lation of the fuzzy inference mechanism. Well distributed triangular membership
functions transform the input values into fuzzy values (low, medium and high), as
shown in Figure 5, as well as the values of soil moisture and NDVI (Figure 11b and c,
respectively). The fuzzy output set, which represents the rotational speed of the
central pivot, was built on five linguistic variables: very low (VL), low (L), normal
(N), high (H) and very high (VH). These sets were interpreted by means of their
degrees of pertinence, illustrated in Figure 12.

If the center of gravity method is used for defuzzification, the fuzzy set
produced after aggregation will be a numerical output composed of the union of all
rule contributions. This calculation is made according to Eq. (5):

μ
∗ ¼

∑n
i¼1μi ∙ μout μið Þ

∑n
i¼1μout μið Þ

(5)

The values μout μið Þ represent the area of a pertinence function modified by the
result of fuzzy inference, and μið Þ is the position of the centroid of the individual
pertinence function.

Finally, the basis of fuzzy rules IF-THEN was elaborated and presented in
Table 3, the fuzzy rule relating to rotation speed contains 27 rules, thus, the
Mamdani inference method for a set of conjunctive rules is given by Eq. (3),
for example: IF NDVI is Low AND Canopy temperature is Low AND Near-soil
moisture is Low THEN Rotation Speed is Low.

This set of rules is based on the basic knowledge about irrigation, according to a
methodology adopted by [37, 39].

The rules were constructed with the connective “AND”, and are based on the
supposition that where there is little leaf growth, there is soil water deficit. Together
with the characteristic of the high canopy temperature, indicating a lower evapo-
transpiration, that is, water stress of the plants, the values of near-soil moisture
provided by the web tool are readings of the locations where there are few leaves,
and it is possible to estimate their value.

Figure 12.
Function of pertinence of the speed corresponding to the defuzzification of the system.
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4. Control maps of central pivot motion speed

The development of the crop is evidenced captured by the images throughout
the crop, and the information contained in this sensing is the NDVI values. By
analyzing the information contained in Figure 13, it is possible to verify the simi-
larity between the values attributed to Kc. It is noticed that as the crop evolves, the
greater the exposure of the leaf area, and thus it is possible to establish a relation of
NDVI. This process is described in [56], with ratios to calculate the base crop
coefficient (Kcb) for cotton as a function of NDVI. When we look closely at each
stage of the development of the plantation, two distinct areas are noticed: one with

Inputs Output

NDVI Temperature Near-soil moisture Rotation speed

Low

Low Low Low

Medium Low

High Very low

Medium Low Low

Medium Low

High Very low

High Low Low

Medium Low

High Very low

Medium

Low Low Normal

Medium Normal

High High

Medium Low Normal

Medium Normal

High High

High Low Low

Medium Normal

High Normal

High

Low Low High

Medium Very high

High Very high

Medium Low Very high

Medium Very high

High Very high

High Low Very high

Medium Very high

High Very high

Table 3.
Fuzzy rules for central pivot speed control.
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little growth and the other with normal growth. From this type of differentiation, it
is possible to construct water demand maps, as well as speed control maps.

Data contained in this remote sensing are described in Table 4. In this configu-
ration, the table presents the preprocessed data, near-soil temperature, soil mois-
ture, and NDVI, besides latitude and longitude.

4.1 Case study on June 15th, 2016

Canopy temperature, near-soil moisture and NDVI data, analyzed and
processed, will be the set of inputs for the intelligent fuzzy system. The following
are illustrated in Figure 14: (a) NDVI images, (b) temperature images, and (c) soil
moisture images.

The inputs, as shown in Figure 14, are arranged according to the linguistic
variables of the fuzzy system and separated by tonalities for better visualization.

Figure 13.
Variation of NDVI in one crop cycle.
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The intelligent system gave the result shown in Figure 15, where it is possible to
verify different regions within the area, with different values for the pivot rotation
speed. The indirect relationship between the pivot rotation speed and the level of
the applied water depth implies a smaller applied water depth in a higher speed, and

Lat Long NDVI (%) Near-soil moisture (%) Canopy temperature (°C)

�15.2463 �54.0157 5.96 25.75 30.75

�15.2463 �54.0156 6.49 25.68 30.24

�15.2463 �54.0154 6.67 25.68 30.03

�15.2463 �54.0153 6.85 25.68 30.19

�15.2463 �54.0152 6.66 25.8 30.63

�15.2463 �54.015 6.47 25.92 30.67

�15.2463 �54.0149 6.82 25.84 30.44

�15.2463 �54.0142 7.01 25.77 29.33

�15.2463 �54.0141 6.37 25.88 29.58

Table 4.
Pre-processed data.

Figure 14.
Input data from the fuzzy inference system, (a) NDVI data, (b) canopy temperature data, (c) near-soil
moisture data.
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a higher water application in the soil in a lower rotation speed [98]. When analyzing
the input data, it is possible to identify two large areas with a lower leaf develop-
ment, which may indicate a lack of water for development. After processing this
input data, the intelligent irrigation system indicates that these areas with lower leaf
development, in a redder color, indicate that the pivot should reduce its speed and
thus increase the water depth in that area.

The expected result is the creation of control maps, and in this case, it was
possible to determine the speed reference values for the eight zones initially
programmed. The areas that presented different coloration in Figure 14 are in the
control map result. It is possible to verify well divided zones, and in each one there
is a determined value for the speed that the pivot must develop to decrease or
increase the water depth in the cropped area. The result shown in Figure 15b
corresponds to the reference values that should be sent to the pivot controller, since
the control systems of these devices work with percentage of rotation speed.

4.2 Case study on June 28th, 2016

The data analyzed and processed by the GIS were used as inputs to the intelli-
gent fuzzy system. They are illustrated in Figure 16: (a) NDVI images, (b) temper-
ature images and (c) soil moisture images.

Similar to the previous case study, the study of June 28 presents the values of the
input variables of the fuzzy system with the linguistic definitions necessary for
interpretation. The results of the intelligent irrigation system are shown in
Figure 17, where is also possible to observe different regions within the crop area,
with different values for the pivot rotation speed. A higher speed of rotation implies
a smaller applied water depth, and with a lower speed of rotation, there is a greater
application of water to the soil, if the application flow is kept constant by the
sprinklers.

When comparing satellite images once again, it is seen that NDVI and canopy
temperature are essential for the decision-making of the intelligent irrigation sys-
tem. It is possible to see that there are large areas with a lower leaf development,
which may indicate a lack of water for development. In the case of intelligent
irrigation system output, areas in a redder color indicate that the pivot should slow
down.

The expected result is the creation of the control maps, and for this study it was
possible to find the reference values of the central pivot rotation speed for the eight
irrigation zones initially programmed, shown in Figure 17. In this result, it is also
possible to identify the areas that presented different colors in Figure 16.

Figure 15.
Control map of pivot rotating speed, (a) speed control map, (b) pivot turning speed setpoints.
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The irrigation management zones are fairly divided, and in each one a value is
determined for the pivot rotation speed, decreasing or increasing the water depth
applied to the crop area. The result in Figure 17b corresponds to the reference
values to be sent to the pivot controller.

Figure 16.
Input data from the fuzzy inference system, (a) NDVI data, (b) canopy temperature data, c) near-soil
moisture.

Figure 17.
Pivot rotating speed control map, (a) speed control map, (b) pivot rotation speed setpoints.
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5. Conclusions

The fuzzy control system for irrigation developed is original and ground break-
ing, and there is no literature about a rotation speed control map for center pivot in
the same approach presented in this work. In addition, there is no available infor-
mation that commercial systems can build this type of map autonomously.

The experiments point to the efficiency result for pivot operation, since it is
possible to note differences between the speeds per management zone that could be
employed in the pivot. The system follows the definition of variable rate irrigation,
since when changing the speed, the amount of water applied also changes.

In this context, it was observed that the fuzzy logic can be widely used in
farming, and it is feasible to aggregate precision irrigation knowledge with the
formulation of a decision support system. The implementation was successful for
the application of variable rate water to central pivots. However, a broader com-
mercial application depends on the integration of data collection systems, manage-
ment strategies, and hardware control.

These studies were motivated by a broader research effort on the applications of
fuzzy systems in agriculture. In addition, fuzzy control applied in variable rate
irrigation (VRI) was explored in this domain in order to provide a better under-
standing of the relation between agricultural factors involving complexity and
uncertainty and solutions with A.I. technologies. Future development and applica-
tion of these methodologies in agricultural engineering are required especially in the
context of decision support in precision irrigation. The results are favorable to the
continuity of the studies on precision irrigation and application of the fuzzy logic
for the development of control maps for central pivots irrigation systems.
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