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Chapter

Stress Urinary Incontinence: A 
Proteomics Overview
Goran Mitulović, Thomas Mohr and Marianne Koch

Abstract

Proteomics research offers one strategy to elucidate the etiology of stress urinary 
incontinence (SUI) by identification of a significant and sufficient number of 
proteins, which provides the ability to avoid a preselection of candidate proteins for 
a possible early detection of the SUI. SUI represents both a psychological as well as 
an economic burden, and prevalence rates are expected to increase in the future, 
due to increasing of life expectancy. The classical epidemiology of SUI is well 
understood, with many environmental and lifestyle risk factors identified, includ-
ing age, obesity, parity, vaginal delivery, and family history. Despite this, much of 
the etiology of SUI remains unclear, and it is difficult to predict which women are 
at risk. This chapter shows some results based on proteomic analysis of the urine 
proteome, which might give the answer to the question on pathways activated in 
SUI. Besides proteins originating from the blood, urine contains proteins secreted 
from the inner wall of the bladder and the urethra, and these proteins might explain 
the processes involved in genesis of SUI.

Keywords: stress urinary incontinence, urinary proteome, proteomics

1. Introduction

Stress urinary incontinence (SUI) is a disorder observed with the female popula-
tion with widely varying prevalence, which is estimated to be 15–80%. The condi-
tion represents both a psychological and an economic burden, and it is expected 
that prevalence rates shall increase in the future, mainly due to increasing of life 
expectancy.

While the classical epidemiology of SUI is understood quite well, many envi-
ronmental and lifestyle risk factors leading to the condition have been identified. 
Among others, these are age, obesity, parity, vaginal delivery, and family history of 
SUI. Despite this much of the etiology of SUI remains unclear, and it is difficult to 
predict which women are at risk.

Proteomic research offers one strategy to elucidate the etiology of SUI by 
identification of a significant and sufficient number of proteins, which provides the 
ability to avoid a preselection of candidate proteins. Many different serum, urine, 
and/or tissue protein markers have been investigated in the context of SUI. Almost 
all studies have targeted specific proteins as putative biomarkers, but with typically 
negative results. Prior studies have investigated a role for serum C-reactive protein, 
serum relaxin, and serum estradiol, without finding significant associations with 
symptoms.
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2. Materials and methods

2.1 Samples

In order to generate valid data and exclude possible false-positive and false-
negative samples being analyzed, urinary and serum samples from patients affected 
by stress incontinence cases and a proven history of symptoms of SUI for at least 
3 months were obtained. This included a specific history of complaint of involun-
tary leakage on effort or exertion or on sneezing or coughing, a positive provocation 
stress test, which was defined as an observed transurethral loss of urine simultane-
ous with a cough or Valsalva maneuver at a bladder volume of minimum 300 ml. 
Furthermore, negative urine dipstick testing was necessary; all patients were older 
than 18 years and capable of independent toileting and having at least one previ-
ous vaginal delivery. In accordance with rules of the Medical University of Vienna, 
written informed consent was obtained from all participants. We excluded patients 
who had previous treatment for SUI (either surgical or pharmacological), a his-
tory of overactive bladder symptoms, and/or urinary incontinence other than SUI 
(tested using the ICIQ-UI Short Form questionnaire) [1]. In addition, a history of 
neurological disorders potentially affecting the urinary tract system, such as mul-
tiple sclerosis, Parkinson’s disease, pelvic organ prolapse stage ≥ II (International 
Continence Society classification), clinically significant bladder outlet obstruction, 
and/or post-void residual volume > 100 ml, was also exclusion criteria. A series of 
other criteria were also observed, as described in Koch et al. [2]: the history of acute 
urinary retention or history of repeated catheterizations; history of bladder cancer 
or previous operation on the urinary tract; acute or recurrent urinary tract infection 
and/or hematuria; history of urinary tract stones, renal insufficiency, and hepatic 
disease; history of alcohol and/or drug abuse; pregnancy or lactation; and finally 
any patient with a serious medical condition.

Participants in the control group met identical criteria, but with no symptom-
atic SUI (ICIQ-short form score equal to 0) and negative cough stress test. Urine 
samples were obtained once only without requirement for a specific time of day. 
Participants were given a sterile urine cup (maximum 50 ml) and asked to deliver 
the first-void urine. In addition we retrieved blood samples from peripheral veins 
of all participants to determine their creatinine, transaminase, and bilirubin status. 
Urine samples were stored in the refrigerator at 4°C for a maximum of 1 hour before 
they were taken to the Clinical Institute of Laboratory Medicine (Proteomics Core 
Facility) for immediate processing.

2.2 Proteomics sample preparation

Trypsin for protein digestion was purchased from Promega Inc. (Vienna, 
Austria). Solvents for high-performance liquid chromatography (HPLC)—metha-
nol (MeOH), acetonitrile (AcN), 2,2,2-trifluoroethanol (TFE), formic acid (FA), 
heptafluorobutyric acid (HFBA), iodoacetamide (IAA), triethyl bicarbonate 
(TEAB), and dithiothreitol—were purchased from Sigma-Aldrich (Vienna, 
Austria).

Protein precipitation from urine was performed according to the internally 
modified Wessel-Fluege method for protein precipitation, and all solvents were 
kept at −20°C. All working steps were performed on ice and centrifugation in a 
cooled centrifuge at +4°C. A sample volume of 2 ml of each urine sample was mixed 
with 6 ml methanol and 2 ml dichloromethane in a 50 ml Falcon tube, and samples 
were vigorously vortexed. After adding 6 ml of water to each sample, solutions were 
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vortexed another time. Samples were subsequently stored at −20°C for a minimum 
of 20 minutes for enhancement of protein precipitation. Phase separation was 
carried out by subsequent centrifugation for 5 minutes at 4500 rounds per minute 
(rpm). The upper layer of the solution was then carefully discarded while keeping 
the interphase and lower layer, and additional 6 ml of methanol were added prior to 
vigorous vortexing. Final centrifugation was performed for 5 minutes. The resulting 
supernatant was carefully removed, and the remaining protein pellet was dried on 
air. The dried protein pellet was later dissolved in 200 μl of 50 mM triethylammo-
nium bicarbonate (TEAB) at pH 8.5. In cases where the protein pellet could not be 
properly dissolved in 200 μl of 50 mM TEAB, additional 50–1000 μl 50 mM TEAB 
were added, and the sample was sonicated by using the ultrasonic cell disruptor 
(Ultrasonic Cell Disruptor, Branson 5200, Dietzenbach, Germany).

Blood samples were prepared as described by Koch et al. [3]. Briefly, samples 
were immediately centrifuged to separate serum from blood cells and then frozen in 
separate vials at −20°C until further processing and an in-solution enzymatic diges-
tion of all proteins extracted from both urinary and serum samples were achieved 
by applying a combination of Glu-C and trypsin (Promega, Vienna, Austria). This 
combination was selected in order to achieve improved sequence coverage for pro-
teins. All steps for sample preparation were performed using previously published 
protocols [4–6].

2.3 Chromatographic separation and detection

Peptide separation was achieved using nano-high-performance liquid chroma-
tography on a nano-RSLC Ultimate 3000 system (ThermoFisher Scientific, Vienna, 
Austria) using the PepMap C18 column (75 μm ID × 50 cm length, 3 μm ID, 100 Å 
pore size, ThermoFisher Scientific, Vienna, Austria). The separation column was 
mounted in a column oven and operated at 60°C. Prior to the separation on the 
nano-separation column, peptides were loaded onto a trap column (300 μm ID × 
5 mm length, PepMap 300 Å pore size, ThermoFisher Scientific, Vienna, Austria). 
The analysis of biological samples bears the risk of carry-over and contamination 
of subsequent runs in cases where injected samples contained high amounts of 
peptides. Therefore, separation system was flushed between sample injections using 
the method developed earlier and described by Mitulovic et al. [7]. Optimization of 
loading conditions have been described in a number of other publications; however, 
we have used the conditions described in a paper by Schöbinger et al. where loading 
mobile phase was cooled to 3°C in order to enable improved peptide trapping on the 
trap column, which was operated at 60°C.

Details on separation gradient formation and mobile phases used are described 
in publications by Koch et al. [2, 3].

Mass spectrometric detection of digested peptides was performed using the 
maXis Impact time-of-flight (qToF) MS (Bruker, Bremen, Germany) equipped with 
the Captive Spray nano-electrospray source and operated at 1.6 kV; source tem-
perature was set to 180°C for effective desolvatization of the analytes introduced 
from LC. Peptide masses were scanned in the range of m/z 300–m/z 2000, and 20 
most intense signals were selected for MS/MS fragmentation. Fragmentation was 
performed by using collision-induced dissociation with nitrogen in the CID cell. 
Single-charged ions were excluded from MS/MS fragmentation, and those car-
rying charges of +2 to +4 were fragmented. In order to ensure fragmentation of a 
maximum number of ions, already fragmented masses were excluded from further 
fragmentation for 60 seconds but were allowed if the following MS/MS intensity 
was three times higher as compared to the previous MS/MS peak intensity. All 
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measurements were performed in triplicate to provide corrections for technical 
variability of chromatographic separation and the ionization.

2.4 Data analysis

In order to identify proteins in analyzed sample, database search of mass 
spectrometric data was performed using the Human Swiss-Prot Database in its 
actual version at the time of analysis. Details of data search are described by Koch 
et al. [3]. Briefly, all searches were performed using Mascot v. 2.51 (http://www.
matrixscience.com/). For the database search, trypsin and Glu-C were selected as 
enzymes with carbamidomethyl on Cys as fixed modification and oxidation on Met, 
phosphorylation on Ser, Thr, and Tyr as variable modifications.

Protein abundance was estimated by using peptide counts normalized to counts 
per million (cpm). Log2-fold change was estimated based on variance stabilized 
average log2 cpm values using the package edgeR. Resulting p values were corrected 
for multiple testing according to Burden et al. [8].

3. Results

Only proteins identified with at least two detected and identified peptides were 
selected for further analysis.

3.1 Proteins identified in urinary samples

The total number of identified individual proteins in the case group was 1459 
and 2148 in the control group. The median number of identified proteins per urine 
sample was 377 (range 1167) in the case group and 417 (range 1197) in the control 
group.

Only 6 of the 828 proteins showed a significant difference in abundance in urine 
samples. This difference between SUI and controls was observed with a q-value 
<0.25. Out of these six identifications, three known proteins showed a higher 
abundance in SUI samples compared to controls: plasma serine protease inhibitor 
(logFC 1.11), leucine-rich alpha-2-glycoprotein (logFC 3.91), and lysosomal alpha-
glucosidase (logFC 1.24). From three uncharacterized proteins, one protein (gene 
symbol: PPIA) also showed higher abundance in SUI samples (logFC 1.96), whereas 
the other two uncharacterized proteins (gene symbol, UMOD; gene symbol, 
KIAA0586) presented a lower abundance in SUI samples than controls (logFC-4.87; 
logFC-1.99, respectively). Table 1 shows the proteins identified in urinary samples 
with significant difference between the control and the case group.

Protein Gene symbol LogFC q-value

Plasma serine protease inhibitor SERPINA5 1.111 0.029

Leucine-rich alpha-2-glycoprotein LRG1 3.909 0.019

Lysosomal alpha-glycosidase GAA 1.237 0.062

Uromodulin UMOD −4.867 0.002

Peptidyl-prolyl cis-trans isomerase A PPIA 1.962 0.227

TALPID3 (KIAA0586) TALPID3 (KIAA0586) −1.992 0.227

Table 1. 
Proteins identified with a significantly different abundance in urine of patients with stress urinary 
incontinence (SUI) compared to control samples.
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4. Discussion

Current study is not the first one describing the urinary proteome [9–13]. 
However, this study was the first one to address specific clinical problem of 
SUI. The methodology used for both sample preparation and sample analysis was 
kept as simple as possible so that it can be easily reproduced in any proteomic 
laboratory without adaptations of existing hardware.

Figure 1 shows the typical chromatogram for separation of tryptic peptides 
from a patient’s urinary sample. The large number of peaks in the chromatogram 
indicates the presence of a large number of peptides. Database search revealed that 
in almost all cases of urinary proteomic analysis, the major proteins being identi-
fied are serum albumin and uromodulin. This is physiologically normal and com-
mon, although a common knowledge implies that no proteins or, at least, very low 
number of proteins shall be present in the urine.

4.1 Proteins identified

Uromodulin, being the major urinary protein, was a major hit following serum 
albumin.

The study identified six different, putative, probably SUI-specific urinary 
proteins for the first time.

The abundance of all these proteins was found to be higher in SUI samples, and 
these are plasma serine protease inhibitor (SERPINA5), leucine-rich alpha-2-glyco-
protein (LRG1), and lysosomal alpha-glucosidase (GAA).

The results showing the enrichment of mentioned proteins based on KEGG 
pathway analysis are shown in Figure 2.

SERPINA5 is usually present in urine in very low concentrations and serves, 
among other functions, as a pro-inflammatory factor, which might be an explana-
tion for it overexpression in samples of patients with SUI [1, 14–20]. Furthermore, 
SERPINA5 was recently mentioned in a number of publications addressing diverse 
medical conditions, including pediatric leukemia, breast cancer, HIV infection, and 
hepatocellular carcinoma, which have identified a role played by SERPINA5 during 
disease development [21–24].

Figure 1. 
UV Chromatogram trace at 210 nm showing the separation of tryptic peptides from urinary sample.
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Another protein, the leucine-rich alpha-2-glycoprotein, was also found to be 
increased in samples of SUI patients. This protein is secreted and normally present 
in plasma; however, it was also described to be involved in nonspecific inflamma-
tory and cancer processes [25–28]. It has recently been described in the context of 
ulcerative colitis activity, pediatric, invasive bladder cancer, biliary tract cancer, 
lung cancer, pancreatic cancer, heart failure, neutrophilic granulocyte differentia-
tion, and autoimmune diseases [29, 30].

Lysosomal alpha-glucosidase, another protein with increased expression in SUI 
samples, is essential for the degradation of glycogen to glucose in lysosomes, and it 
is present in, basically, all cells. Mutations in the respective gene result in Pompe dis-
ease, a severe and devastating glycogen storage disease caused by a deficiency in acid 
α-glucosidase. This condition is characterized by the lack of lysosomal alpha-glucosi-
dase, which leads to intralysosomal accumulation of glycogen, the final consequence 
of which is the failure of the heart and skeletal muscles. The Pompe disease is being 
treated by enzyme replacement therapy. However, this is not sufficient, although 
it helps preventing assisted patients’ ventilation and ensuring a ventilation-free 
survival. GAA is an enzyme that is essential for lysosomal glycogen hydrolysis, and 
the protein has also been identified as a potential biomarker for gut wall integrity in 
infants with necrotizing enterocolitis, an inflammatory process involving the intes-
tinal tissue [31]. GAA has not been described as a factor for SUI, but the involvement 
of GAA in pathologies of smooth muscle [32] suggests that this protein might have an 
important role for the proper function of the bladder. Niedworok et al. [33] suggested 
that GAA might be involved in bladder cancer as an endogenous inhibitor of bladder 
cancer cell proliferation. The authors concluded that GAA is upregulated in response 
to antiproliferative tyrosine kinase inhibitors. That would mean that high biglycan 
expression is associated with favorable prognosis for patients with bladder cancer.

Alsaikhan et al. [34] investigated the partial bladder obstruction and the 
expression, among other factors, of GAA. Authors describe that small leucine-rich 
proteoglycans, required for collagen fibrillogenesis showed a significant reduction, 
which was consistent with a pro-fibrotic environment and deregulated collagen 
assembly. Although this study did not address the matter of incontinence, it showed 
that leucine-rich proteoglycans have an important role to play for the regulation of 
bladder function.

A similar observation was made by Appunni et al. [35, 36] for the role of 
leucine-rich proteoglycans and the bladder cancer. Leucine-rich proteoglycans are 
not only required in the matrix for structural framework, but they also show to be 
effective in controlling various physiological functions. Among these functions are 
also the cell cycle regulation and the leucine-rich proteoglycans which perform the 
role of the guardians of the cellular matrix.

Figure 2. 
KEGG pathway for the set of proteins with affected expression in SUI samples.
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Upon database search and quantitation, peptidyl-prolyl cis-trans isomerase 
A (PPIA) was found to be overexpressed. This protein has been described to be 
involved in inflammatory processes and immunomodulation and induction of 
interleukin-6 release from macrophages. Recent publications have discussed an 
involvement in type 2 diabetes mellitus, vascular disease, and gastric adenocarci-
noma [31].

Two of the identified uncharacterized proteins, which are encoded by associated 
with the genes UMOD and KIAA0586, showed lower expression in SUI samples.

UMOD encodes for the protein uromodulin, which is, among other functions, 
involved in the prevention of urinary tract infection, water/electrolyte balance, 
and kidney innate immunity. Uromodulin is usually highly abundant in the urine of 
healthy humans, and, as mentioned previously, it is the most abundant protein in 
normal urine [37]. Interestingly, uromodulin is another glycoprotein identified to 
have different expression patterns in SUI samples as compared to control samples. 
UMOD is a GPI-anchored glycoprotein produced by the kidney but not derived 
from the blood. The function of these proteins is still not well understood, but it is 
taught to be linked to the water/electrolyte balance and kidney innate immunity. 
Hypertension in pregnancy was associated with a decrease in the uromodulin’s 
excretion rate [38], and the results of SUI samples also revealed that the level of 
uromodulin was decreased. Furthermore, UMOD can be used as a predictive factor 
for preeclampsia [39]. UMOD has been described to prevent the binding of the 
IgG light chain to their putative receptors [40]. Da Silva et al. described the role of 
UMOD as an allergen epitope [41] for activation of the allergy-associated T cells in 
mouse. There is no description of causality in humans; however, the lower expres-
sion of this protein in samples of SUI patients might be of importance considering 
the function of the smooth muscle of the urinary bladder.

KIAA0586 encodes for the protein TALPID3, which is required for ciliogen-
esis and sonic hedgehog/SHH signaling [42–48]. Fleming et al. [49] described 
the possible involvement of TALPID3 in kidney damage in patients with Joubert 
syndrome. Interestingly, all patients enrolled in this study and having a mutation 
on KIAA05866 gene, which encodes for TALPID3, showed to have significantly 
better chances of preserving the kidneys, which are, otherwise, affected by the 
Joubert syndrome. It is still unclear why this protein was identified with a decreased 
abundancy in samples of SUI patients.

Another protein that was ubiquitous in all samples was keratin. Keratin is com-
monly identified during proteomics analysis, and it often serves as a quality control 
of the analysis, if not present in high amounts. However, more often, keratin is 
considered being a contaminant and something that shall be kept out of the sample 
by any means.

Therefore, requirements were taken to exclude any possible contamination 
with keratin, but it was still identified in large amount in all samples. Besides being 
considered a contaminant for proteomics experiments, keratin is an important part 
of the urinary proteome which seems to be present in all collected samples.

As for now, no biomarkers have yet been identified for SUI, and it is rather 
improbable that a single protein will be a marker. A more probable scenario is that a 
group of proteins with a significantly different abundance in SUI patients compared 
to controls will be defined as putative markers.

The best chance to identify these proteins will be by investigating the known 
functions, tissue specificities, and interactions of the specific proteins identified in 
samples of SUI patients. It is also important to gain a detailed insight into potential 
mechanisms of the pathophysiology and etiology of SUI, which seem to depend 
on many factors and might be a complex process depending on more physiological 
processes taking place in the urinary bladder. Proteins, which were identified with 
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significantly higher abundance in SUI samples, have been described earlier as active 
participants in inflammatory processes and cancer development. On the other 
hand, proteins that were identified and quantified with a significantly lower abun-
dance usually seem to have a protective effect in the urinary tract system although 
we cannot be explained at the current time.

5. Conclusion

It is important to stress out that one of the most important factors for a success-
ful analysis is the selection of samples to be analyzed. It is very important to include 
urine samples retrieved from a population with very strict inclusion and exclusion 
criteria in order to avoid confounding factors. Urine samples must be processed 
according to a standardized protocol within a short time frame after collection.

Although a thorough map of the human proteome has been described, and made 
available to researchers [50], this map is still not complete and it is prone to errors 
and biases. Therefore, the incomplete “humane proteome mapping” is an additional 
challenge despite efforts of the research community to identify and characterize all 
human proteins.

By investigating the urinary proteome at one time point only, no conclusion can 
be made on whether the significantly differently expressed proteins are a conse-
quence of the pathological process or whether they themselves are directly involved 
in causal processes.

Therefore, due to the characteristics of the identified proteins, it can be said 
that inflammatory processes may be involved in the etiology of SUI. However, the 
relevance of these findings regarding the pathogenesis of SUI needs to be broadly 
investigated, and the results described need to be replicated in a different popula-
tion and at different time points.
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