
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

One-Pot-Condensation Reaction 
of Heterocyclic Amine, 
1,3-Diketone and Aldehydes Using 
In Situ Generated Superoxide Ion: 
A Rapid Synthesis of Structurally 
Diverse Drug-Like Complex 
Heterocycles
Sundaram Singh and Savita Kumari

Abstract

A novel, convenient one-pot multicomponent synthesis of tetraheterocy-
clicbenzimidazolo/benzothiazolo quinazolin-1-one derivatives has been reported 
in the presence of tetraethylammonium superoxide under non-aqueous condition. 
The superoxide induced three-component reaction of various aromatic aldehydes, 
2-aminobenzimadazole/2-aminobenzothiazole and dimedone/1,3- cyclohexane-
dione produced tetraheterocyclicbenzimidazolo/benzothiazolo quinazolin-1-one 
derivatives at room temperature under the mild reaction conditions. The tetraethyl-
ammonium superoxide has been generated by phase transfer reaction of potassium 
superoxide and tetraethylammonium bromide in dry DMF at room temperature. 
The present study extended the applicability of tetraethylammonium bromide as a 
phase transfer catalyst for the efficient use of superoxide ion in multi-component 
synthesis of structurally diverse drug-like complex heterocycles (quinazolines).

Keywords: superoxide ion, multicomponent reaction, Tetraethylammonium bromide, 
 phase transfer catalyst, KO2

1. Introduction

The importance of oxygen in sustaining life is unquestionable but the aerobic 
life-style is fraught with danger. However, some recent reports about oxygen toxic-
ity have caused much concern among the whole scientific community. The oxygen 
toxicity is due to various reactive oxygen species (ROS) such as hydroxyl radical 
(HO•), superoxide anion radical O2

• −, and perhydroxyl radical. Hypochlorous acid 
(HOCl), hydrogen peroxide (H2O2), singlet oxygen and ozone are also included in 
this category, although they are not free radicals but can lead to free radical reac-
tion. Out of all the reactive oxygen species, superoxide anion radical is probably 
the most important ROS, which has come to the forefront of current chemical and 
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biochemical research for the two reasons [1–4]. First superoxide ion as a biochemi-
cal species which causes many diseases such as cancer, ageing, inflammation, heart 
attack and lung injury, etc. More recently, it has been implicated to play a key role 
in both aging and cancer. Second superoxide ion as a novel reagent. Further from its 
elementary reactivity pattern, this anion radical has been recognized as a multi-
potent reagent, which acts as a base, nucleophile, oxidant and reductant. In view 
of these two points, superoxide research has become an area of interdisciplinary 
investigation [5–13].

Multi-component reactions (MCRs), in which multiple reactions are combined 
into one synthetic operation, have been used extensively to form carbon-carbon 
bonds in synthetic chemistry. Such reactions offer greater possibilities for molecular 
diversity per step with minimum reaction time, labor, cost, and waste production. 
The rapid assembly of molecular diversity utilizing MCRs has gained a great deal of 
attention, most notably for the construction of ‘drug-like’ libraries [14–20].

Quinazolines are very interesting heterocycles [21–25] as they serve as building 
blocks in numerous natural and synthetic products [26]. They exhibit a wide spec-
trum of biological and pharmacological activities such as propyl hydroxylase inhibi-
tor [27], antidiabetics [28], anti-inflammatory [29], antiviral [30], antimicrobial 
[31], antineoplastic [32] and potent immunosuppressive agents [33]. Moreover, benz-
imidazolo quinazolines have also been an important class of heterocyclic compounds 
in drug research, as they are formed from both biodynamic heterosystems, benz-
imidazole and quinazoline, which have shown significant anticancer activities. Many 
useful methods, have been reported for synthesis of tetrahydrobenzoimidazo [2,1-b] 
quinazolin-1(2H)-ones ring system skeletons, such as the condensation of aminoaz-
oles with benzylidene compounds, or three-component condensation of 2-amino-
benzothiazole or 2-aminobenzimidazole and an aldehyde with cyclic 1,3-diketone.
These reported methodologies produce good results in many cases [34, 35]. However, 
some of them suffer with certain limitations such as expensive catalysts, low yields of 
products, long reaction times, tedious procedures for preparations of catalysts, and 
tedious workup conditions [36–40]. Thus, there is enough room for further investiga-
tion in this direction. With a view to investigate the behavior of the superoxide ion 
in multicomponent organic synthesis, which is of importance in itself and further to 
assess its synthetic scope, the reaction of this novel reagent was studied.

2. Results and discussion

In continuation of our ongoing program on superoxide research and the 
synthesis of biologically active compounds, it is our current endeavor to extent 
the applicability of Et4NO2 for the synthesis of tetraheterocyclicBenzimidazolo/
benzothiazolo quinazolin-1-one ring systems 4 by a one-pot three-component 
condensation reaction of various aromatic aldehydes 2 and 1,3-diketones 3 with 
2-aminobenzimidazole/2-aminobenzothiazole 1 using tetraethylammonium super-
oxide under non aqueous conditions (Figure 1).

In order to achieve the optimum yield of the product, the effect of various param-
eters such as effect of solvents (DMF, DMSO, and CH3CN) and molar proportion 
of the reactants were investigated in detail using benzaldehyde 2, dimedone 3 with 
2-aminobenzimidazole 1 as a model reaction.

To investigate the effect of solvents, the model reaction was carried out in dif-
ferent aprotic solvents. The results obtained clearly indicate that DMF was the best 
solvent among all investigated solvents in terms of product yield and the reaction 
time (Table 1).
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In order to establish the reactants molar ratio on the yield of product the model 
reaction was carried out in different concentration of reactants (Table 2).

A perusal of the table clearly indicates the profound effect of the concentra-
tion of KO2 and Et4NBr on the yield of the product 4a. As regards the ratio of 
KO2 and Et4NBr, it is evident from the entries 1, 2 and 3 that with the diminution 
of the concentration of Et4NBr, the yield of product 4a decreases. But as may 
be seen only a little difference in the yield of the product in the case of entries 
1 and 2, the ratio of KO2 and Et4NBr was further kept to be 2:1. Therefore, in 
subsequent studies, the concentration of KO2 has been increased manifold but 
the ratio of KO2 and Et4NBr was all along maintained to be 2:1. Furthermore, in 
case of entries 5 and 6, there is just a 2% increase in the yield of the product and 
for that 2% increase, the concentration of KO2 and Et4NBr have been increased 

Figure 1. 
One-pot synthesis of compounds 4 by the three-component condensation reaction of various aldehydes and 
1,3-diketones with 2-aminobenzimidazole/2-aminobenzothiazole under superoxide ion at room temperature.

Entry Solvents Time %Yield

1 Dichloromethane 12 h Trace

2 Acetonitrile 8 h 70

3 Tetrahydrofuran 14 h 42

4 Dimethylsulfoxide 20 h Trace

5 Dimethylformamide 6 h 88

Table 1. 
Effect of solvents on the yield of the product 4a.

Entry Reactants molar ratio Product yield* (%)

Benzaldehydes:dimidone:2-aminobezimidazole:KO2:Et4NBr

1 1.0 1.0 1.0 1.0 1.0 40

2 1.0 1.0 1.0 1.0 0.5 38

3 1.0 1.0 1.0 1.0 0.25 28

4 1.0 1.0 1.0 2.5 1.25 69

5 1.0 1.0 1.0 4.0 2.00 88

6 1.0 1.0 1.0 6.0 3.00 90

*Isolated yield based on aldehyde.
Optimized condition has been shown by bold letter (entry 5).

Table 2. 
Effect of reactants molar ratio on the yield of product 4a.
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substantially (6 fold and 3 fold respectively). As a result, considering the high 
cost of KO2 and Et4NBr, the entry 5, with the reactants ratio 1:1:1:4:2, has been 
selected as the optimum ratio.

The scope and limitations of this reaction were fully illustrated with various 
ortho-, meta- and para-substituted benzaldehydes in the presence of 2-aminobenz-
imidazole and 2-aminobenzothiazole.

As indicated in Table 3, the reaction proceeded efficiently with both 
electron-withdrawing and electron releasing ortho-, meta- and para-substituted 
benzaldehydes.

The products were identified by their physical and spectral data, which were in 
full agreement with the reported values.

Table 3. 
Synthesis of tetraheterocyclicbenzimidazolo/benzothiazolo quinazolin-1-ones.
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2.1  Mechanism for the synthesis of tetraheterocyclicbenzimidazolo/
benzothiazolo quinazolin-1-ones

The proposed mechanism for the formation of tetraheterocyclicbenzimidazolo/
benzothiazolo quinazolin-1-ones ring system is given in Figure 2. The reaction was 
initiated by the abstraction of proton from 1,3-diketones 3 by tetraethylammonium 
superoxide which was in situ generated by the phase transfer reaction of potassium 
superoxide with tetraethylammonium bromide. Now, Knoevenagel condensa-
tion takes place between benzaldehyde 2 and subsequently, by dehydration, olefin 
3-benzylidene-2,4-hexanedione 5 is produced. Then 2-aminobenzimidazole/2-ami-
nobenzothiazole1 is reacted with compound 5 through a Michael addition to produce 
a product of type 6 and after cyclisation to afford tetraheterocyclicbenzimidazolo/
benzothiazolo quinazolin-1-one ring systems 4.

Potassium superoxide (1.42 g, 0.02 mol) and tetraethylammonium bromide 
(2.10 g, 0.01 mol) were weighed under nitrogen atmosphere using an atmosbag 
and were transferred into a three-necked R. B. flask, dry DMF (20 mL) was added 
to it and the mixture was agitated magnetically for 15 min to facilitate the forma-
tion of tetraethylammoniumsuperoxide. To the stirred reaction mixture, dime-
done (0.70 g, 0.005 mol) 3 were added. After 10 min, benzaldehyde (0.53 g, 0.005 
mol) 2 and 2-aminobenzimidazole (0.665 g, 0.005 mmol) 1 were introduced, 
and the stirring was continued 6 h. After the reaction was over as indicated by 
TLC, mixture was treated with cold brine solution (2 mL) followed by saturated 
sodium hydrogen carbonate solution (2 mL) to decompose the unreacted KO2. The 
mixture was then extracted with dichloromethane (3 × 15 mL) and the combined 
organic phase was dried over anhydrous Na2SO4, filtered, and evaporated to give 
the products 4a, which were purified by column chromatography.

Figure 2. 
Plausible mechanism for the formation of tetraheterocyclicbenzimidazolo/benzothiazolo quinazolin-1-one 
derivatives (4a-o).
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All the products were characterized by IR and 1H NMR (because of low solubil-
ity of compounds 4a-o, 13C NMR was not obtained).

3,3–Dimethyl–12–phenyl–3,4,6,12–tetrahydrobenzo[4,5]imidazo[2,1-b]
quinazolin–1(2H)–one (4a): M.p. > 300°C; IR (KBr, υ = cm−1) 3445, 2885, 1640, 1618, 
1610, 1565 cm−1; 1H NMR (500 MHz, DMSO–d6): δ = 11.16 (br. s, 1H, NH), 7.39–7.30  
(m, 6H), 7.23 (d, J = 8.0 Hz, 1H), 7.07–7.04 (m, 1H), 6.98–6.95 (m, 1H), 6.44  
(s, 1H), 2.26 (d, J = 16.0 Hz, 2H), 2.06 (d, J = 16.0 Hz, 2H), 1.06 (s, 3H), 0.92 (s, 3H).  
Anal. Calcd for C22H21N3O: C, 76.94; H, 6.16; N, 12.24; O, 4.66. Found: C, 76.90; H, 
6.20; N, 12.26; O, 4.64.

12–(4–Methoxyphenyl)–3,3–dimethyl–3,4,6,12–tetrahydrobenzo[4,5]
imidazo[2,1-b]quinazolin–1(2H)–one (4b): M.p. > 300°C; IR (KBr, υ = cm−1) 
3391, 2850, 1670, 1644, 1610, 1590 cm−1;1H NMR (500 MHz, DMSO–d6): δ = 11.06 
(br. s, 1H, NH), 7.36 (d, J = 8.0 Hz, 1H), 7.26–7.24 (m, 3H), 7.04 (t, J = 7.5 Hz, 1H), 
6.95 (t, J = 7.5 Hz, 1H), 6.78 (d, J = 8.5 Hz, 2H), 6.36 (s, 1H), 3.65 (s, 3H), 2.64–2.52 
(m, 2H), 2.25 (d, J = 16.0 Hz, 1H), 2.05 (d, J = 16.0 Hz, 1H), 1.06 (s, 3H), 0.94  
(s, 3H). Anal Calcd for C23H23N3O2: C, 73.97; H, 6.21; N, 11.25; O, 8.57. Found: C, 
73.92; H, 6.26; N, 11.23; O, 8.59.

12–(4–Chlorophenyl)–3,3–dimethyl–3,4,6,12–tetrahydrobenzo[4,5]
imidazo[2,1-b] quinazolin–1(2H)–one (4c): M.p. > 300°C; IR (KBr, υ = cm−1) 
3440, 2934, 1655, 1650, 1613, 1580 cm−1; 1H NMR (500 MHz, DMSO–d6): δ = 11.10  
(br. s, 1H, NH), 7.36 (d, J = 7.5 Hz, 1H), 7.33 (d, J = 6.5 Hz, 2H), 7.24 (s, 2H), 7.15  
(s, 1H), 7.04 (s, 1H), 6.95 (s, 1H), 6.41 (s, 1H), 2.63 (d, J = 16.0 Hz, 2H), 2.26 (d, J = 16.0 Hz, 2H),  
1.06 (s, 3H), 0.93 (s, 3H). Anal. Calcd for C22H20ClN3O: C, 69.93; H, 5.34; Cl, 9.38;  
N, 11.12; O, 4.23. Found: C, 69.90; H, 5.37; Cl, 9.34; N, 11.15; O, 4.24.

12–(4–Bromophenyl)–3,3–dimethyl–3,4,6,12–tetrahydrobenzo[4,5]
imidazo[2,1-b] quinazolin–1(2H)–one (4d): M.p. >300°C; IR (KBr, υ = cm−1) 
3441, 2956, 1645, 1614, 1590, 1566 cm−1; 1H-NMR (500 MHz, DMSO-d6): δ = 10.01 
(br. s, 1H, NH), 6.99–7.89 (m, Ar–H), 6.43 (s, 1H), 2.59–2.67 (m, 2H), 2.20 (d, 
J = 16.00 Hz, 1H), 2.00 (d, J = 16.01 Hz, 1H) 1.05 (s, 3H), 0.94 (s, 3H). Anal. Calcd 
for C22H20BrN3O: C, 62.57; H, 4.77; Br, 18.92; N, 9.95; O, 3.79. Found: C, 62.67; H, 
4.86; Br, 18.80; N, 9.83; O, 3.90.

12–(4–Hydroxyphenyl)–3,3–dimethyl–3,4,6,12–tetrahydrobenzo[4,5]
imidazo[2,1-b] quinazolin–1(2H)–one (4e): M.p. > 300°C; IR (KBr, υ = cm−1) 
3449, 2891, 1642, 1613, 1587, 1566 cm−1; 1H-NMR (500 MHz, DMSO-d6) δ = 11.02 
(br. s, 1H, NH), 9.33 (s, 1H, OH), 6.61–7.36 (m, 8H, Ar–H), 6.18 (s, 1H), 2.51–2.74 
(m, 2H), 2.25 (d, J = 9.24 Hz, 1H), 2.05(d, J = 8.94 Hz, 1H), 1.07 (s, 3H), 0.96 (s, 
3H), Anal. Calcd for C22H21N3O2: C, 73.52; H, 5.89; N, 11.69; O, 8.90. Found: C, 
73.63; H, 5.97; N, 11.80; O, 8.71.

12–(3–Chlorophenyl)–3,3–dimethyl–3,4,6,12–tetrahydrobenzo[4,5]
imidazo[2,1-b] quinazolin–1(2H)–one (4f ) M.p. > 300°C; IR (KBr, υ = cm−1) 
3400, 2891, 1660, 1652, 1613, 1575 cm−1; 1H NMR (500 MHz, DMSO−d6): δ = 11.18 
(br. s, 1H, NH), 7.46 (s, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.30–7.21 (m, 5H), 7.06 (s, 1H), 
6.98 (s, 1H), 6.46 (s, 1H), 2.58 (d, J = 16.0 Hz, 1H), 2.26 (d, J = 16.0 Hz, 1H), 2.08 
(d, J = 16.0 Hz, 1H), 1.06 (s, 3H), 0.93 (s, 3H). Anal. Calcd for C22H20ClN3O:  
C, 69.93; H, 5.34; Cl, 9.38; N, 11.12; O, 4.23. Found: C, 69.90; H, 5.37; Cl, 9.35; N, 
11.14; O, 4.24.

3,3–Dimethyl–12–(2–nitrophenyl)–3,4,6,12–tetrahydrobenzo[4,5]
imidazo[2,1-b]quinazolin–1(2H)–one (4 g): M.p. > 300°C; IR (KBr, υ = cm−1) 
3398, 2972, 1664, 1645, 1618, 1594 cm−1; 1H NMR (500 MHz, DMSO–d6): δ = 11.18 
(br. s, 1H, NH), 7.46 (s, 1H), 7.31–7.19 (m, 5H), 7.06 (t, J = 7.5 Hz, 1H), 6.98 
(t, J = 7.5 Hz, 1H), 6.46 (s, 1H), 2.62 (d, J = 16.0 Hz, 1H), 2.55 (s, 1H), 2.26 (d, 
J = 16.0 Hz, 1H), 2.08 (d, J = 16.0 Hz, 1H), 1.06 (s, 2H), 0.93 (s, 2H). Anal. Calcd 
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for C22H20N4O3: C, 68.03; H, 5.19; N, 14.42; O, 12.36. Found: C, 68.07; H, 5.15; N, 
14.46; O, 12.32.

3,3–Dimethyl–12–(3–nitrophenyl)–3,4,6,12–tetrahydrobenzo[4,5]
imidazo[2,1-b]quinazolin–1(2H)–one (4 h): M.p. > 300°C; IR (KBr, υ = cm−1) 
3394, 2970, 1660, 1648, 1615, 1598 cm−1; 1H NMR (500 MHz, DMSO–d6): δ = 11.26 
(br. s, 1H, NH), 8.27 (s, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 7.5 Hz, 1H), 
7.56 (t, J = 8.0 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.07 (t, 
J = 7.5 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 6.65 (s, 1H), 2.27 (d, J = 16.0 Hz, 2H), 2.07 
(d, J = 16.0 Hz, 2H), 1.06 (s, 3H), 0.91 (s, 3H). Anal. Calcd for C22H20N4O3: C, 68.03; 
H, 5.19; N, 14.42; O, 12.36. Found: C, 68.08; H, 5.14; N, 14.44; O, 12.34.

3,3–Dimethyl–12–(4–nitrophenyl)–3,4,6,12–tetrahydrobenzo[4,5]
imidazo[2,1-b]quinazolin–1(2H)–one (4i): M.p. > 300°C; IR (KBr, υ = cm−1) 
3396, 2980, 1662, 1641, 1612, 1594 cm−1; 1H NMR (500 MHz, DMSO–d6): δ = 11.27 
(br. s, 1H, NH), 8.12 (d, J = 8.5 Hz, 2H), 7.61 (d, J = 9.0 Hz, 2H), 7.40 (d, J = 7.5 Hz, 
1H), 7.23 (d, J = 8.0 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.60 
(s, 1H), 2.65 (d, J = 16.0 Hz, 1H), 2.54 (d, J = 16.0 Hz, 1H), 2.27  
(d, J = 16.0 Hz, 1H), 2.06 (d, J = 16.0 Hz, 1H), 1.06 (s, 3H), 0.91 (s, 3H). Anal. 
Calcd for C22H20N4O3: C, 68.03; H, 5.19; N, 14.42; O, 12.36. Found: C, 68.04; H, 
5.18; N, 14.40; O, 12.38.

12–(4–Methoxyphenyl)–3,4,6,12–tetrahydrobenzo[4,5]imidazo[2,1-b]
quinazolin–1(2H)–one (4j): M.p. = 238–240°C; IR (KBr, υ = cm−1) 3398, 2976, 
1666, 1642, 1616, 1575 cm−1; 1H NMR (500 MHz, DMSO–d6): δ = 11.07 (br. s, 1H, 
NH), 7.36 (d, J = 8.0 Hz, 1H), 7.26–7.22 (m, 3H), 7.06–7.01 (m, 1H), 6.95  
(t, J = 7.2 Hz, 1H), 6.78 (d, J = 8.0 Hz, 2H), 6.37 (s, 1H), 3.65 (s, 3H), 2.68 (d, 
J = 5.0 Hz, 2H), 2.29 (dd, J = 10.5, 5.0 Hz, 1H), 2.22 (dd, J = 16.0, 5.0 Hz, 1H), 
2.02–1.93 (m, 1H), 1.88–1.80 (m, 1H). Anal. Calcd for C21H19N3O2: C, 73.03; H, 5.54; 
N, 12.17; O, 9.26. Found: C, 73.01; H, 5.56; N, 12.14; O, 9.29.

12–(3–Nitrophenyl)–3,4,6,12–tetrahydrobenzo[4,5]imidazo[2,1-b]quin-
azolin–1(2H)–one(4 k): M.p. > 300°C; IR (KBr, υ = cm−1) 3412, 2872, 2855, 1670, 
1640, 1617, 1601 cm−1;1H NMR (500 MHz, DMSO–d6): δ = 11.28 (br. s, 1H, NH), 
8.26 (s, 1H), 8.03 (d, J = 8.5 Hz, 1H), 7.70 (d, J = 7.5 Hz, 1H), 7.54 (t, J = 8.0  
Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 7.5 Hz, 1H), 7.06 (t, J = 7.4 Hz, 1H), 
6.96 (t, J = 7.5 Hz, 1H), 6.66 (s, 1H), 2.40–2.18 (m, 2H), 1.93 (dd, J = 16.0, 2H);. 
Anal. Calcd for C20H16N4O3: C, 66.66; H, 4.48; N, 15.55; O, 13.32. Found: C,  
66.64; H, 4.50; N, 15.53; O, 13.34.

3,3–Dimethyl–12–phenyl–2,3,4,12–tetrahydro–1H–benzo[4,5]thiazolo[2,3–b] 
quinazolin–1–one (4 l): M.p. = 208–210°C; IR (KBr, υ = cm−1) 3428, 2965, 1680, 
1655, 1589, 1516, 1370 cm−1; 1H NMR (500 MHz, DMSO–d6): δ = 7.79 (d, J = 10.0  
Hz, 1H), 7.43 (dd, J = 17.5, 7.7 Hz, 3H), 7.28 (dd, J = 16.0, 3H), 7.20 (dd, J = 16.0,  
8.0 Hz, 2H), 6.51 (s, 1H), 2.47–2.36 (m, 2H), 2.24 (d, J = 16.0 Hz, 1H), 2.05  
(d, J = 16.0 Hz, 1H), 1.02 (s, 3H), 0.86 (s, 3H). Anal. Calcd for C22H20N2OS: C, 73.30; 
H, 5.59; N, 7.77; O, 4.44; S, 8.89. Found: C, 73.33; H, 5.56; N, 7.79; O, 4.41; S, 8.88.

3,3–Dimethyl–12–(4-methylphenyl)–2,3,4,12–tetrahydro–1H–benzo[4,5]
thiazolo[2,3–b]quinazolin–1–one(4 m):

M.p. = 203–205°C. 1H NMR (500 MHz, DMSO–d6): δ = 7.49–7.47 (m, 1H), 7.34 
(d, J = 8 Hz, 2H), 7.28–7.22 (m, 1H), 7.18–7.15 (m, 2H), 7.06 (d, J = 8 Hz, 2H), 6.47 
(s, 1H), 2.49 (s, 2H), 2.28–2.17 (m, 5H), 1.09 (s, 3H), 0.97 (s, 3H). Anal. Calcd for 
C23H22N2OS: C, 73.77; H, 5.92; N, 7.48; O, 4.27; S, 8.56. Found: C, 73.68; H, 5.71; N, 
7.60; O, 4.35; S, 8.70.

3,3–Dimethyl–12–(4-bromophenyl)–2,3,4,12–tetrahydro–1H–benzo[4,5]
thiazolo[2,3–b]quinazolin–1–one (4n): M.p. 182–184°C. 1H NMR (500 MHz, 
DMSO–d6): δ = 7.47 (d, J = 8 Hz, 1H), 7.37–7.28 (m, 5H), 7.19 (d, J = 8 Hz, 1H), 7.06 
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(d, J = 8 Hz, 1H), 6.45 (s, 1H), 2.47 (s, 2H), 2.29–2.20 (m, 2H), 1.07 (s, 3H), 0.91  
(s, 3H), Anal. Calcd for C22H19BrN2OS: C, 60.14; H, 4.36; Br, 18.19; N, 6.38; O, 3.64; 
S, 7.30. Found: C, 60.35; H, 4.49; Br, 18.37; N, 6.50; O, 3.80; S, 7.45.

3,3–Dimethyl–12–(4-methoxyphenyl)–2,3,4,12–tetrahydro–1H–benzo[4,5]
thiazolo[2,3–b]quinazolin–1–one (4o): M.p. 87–88°C. 1H NMR (500 MHz, 
DMSO–d6): δ = 7.49–7.46 (m, 2H), 7.38 (d, J = 8 Hz, 2H), 7.23–7.07 (m, 2H), 6.74  
(d, J = 8 Hz, 2H), 6.44 (s, 1H), 3.62 (s, 3H), 2.48 (s, 2H), 2.31–2.17 (m, 2H), 1.06  
(s, 3H), 0.93 (s, 3H). Anal. Calcd for C23H22N2O2S: C, 70.74; H, 5.68; N, 7.17; O, 8.19; 
S, 8.21. Found: C, 70.89; H, 5.80; N, 7.35; O, 8.39; S, 8.40.

3. Conclusion

In conclusion, the reaction of in situ generated O2
•− with imidazoles is able to 

mimic the in vivo biochemical reactions involved and corroborate the role of O2
•− in 

living cells. Since the investigation has been performed at an ambient temperature in 
the presence of in situ generated O2

•−, the results may be easily correlated with those 
occurring at physiological temperatures in more complex biological counterparts.

A novel synthetic route has been developed for the synthesis of tetraheterocyclic 
benzimidazolo/benzothiazolo quinazolin-1-one ring systems using tetraethylam-
monium superoxide under non aqueous condition at room temperature (mild 
reaction condition) within 6 h. The yield of the products was obtained up to 88% 
without using any tedious purification process. The applicability of tetraethylam-
monium bromide as an inexpensive alternative to 18-crown-6 for superoxide ion 
generation has been extended in present report.
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