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Chapter

Loop-like Solitons
Vyacheslav O. Vakhnenko, E. John Parkes and

Dmitri B. Vengrovich

Abstract

The physical phenomena that take place in nature generally have complicated
nonlinear features. A variety of methods for examining the properties and
solutions of nonlinear evolution equations are explored by using the Vakhnenko
equation (VE) as an example. One remarkable feature of the VE is that it possesses
loop-like soliton solutions. Loop-like solitons are a class of interesting wave
phenomena, which have been involved in some nonlinear systems. The VE can be
written in an alternative form, known as the Vakhnenko-Parkes equation (VPE).
The VPE can be written in Hirota bilinear form. The Hirota method not only gives
the N-soliton solution but enables one to find a way from the Bäcklund transfor-
mation through the conservation laws and associated eigenvalue problem to the
inverse scattering transform (IST) method. This method is the most appropriate
way of tackling the initial value problem (Cauchy problem). The standard proce-
dure for IST method is expanded for the case of multiple poles, specifically, for the
double poles with a single pole. In recent papers some physical phenomena in
optics and magnetism are satisfactorily described by means of the VE. The ques-
tion of physical interpretation of multivalued (loop-like) solutions is still an open
question.

Keywords: nonlinear evolution equations, solutions, Vakhnenko equation,
Hirota method, Bäcklund transformation, inverse scattering problem,
N-soliton solution, spectral data
PACS: 00.30.Lk 02.30.Jr, 05.45.Yv

1. The high-frequency perturbations in a relaxing medium

From the nonequilibrium thermodynamic standpoint, models of a relaxing
medium are more general than equilibrium models. To develop physical models for
wave propagation through media with complicated inner kinetics, notions based on
the relaxational nature of a phenomenon are regarded to be promising. Thermody-
namic equilibrium is disturbed owing to the propagation of fast perturbations.
There are processes of the interaction that tend to return the equilibrium. The
parameters characterizing this interaction are referred to as the inner variables
unlike the macroparameters such as the pressure p, mass velocity u and density ρ.
In essence, the change of macroparameters caused by the changes of inner
parameters is a relaxation process.
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We restrict our attention to barotropic media. An equilibrium state equation of a
barotropic medium is a one-parameter equation. As a result of relaxation, an addi-
tional variable ξ (the inner parameter) appears in the state equation

p ¼ p ρ; ξð Þ (1)

and defines the completeness of the relaxation process. There are two limiting
cases with corresponding sound velocities:

i. Lack of relaxation (inner interaction processes are frozen) for which ξ ¼ 1:

p ¼ p ρ; 1ð Þ � pf ρð Þ, c2f ¼ dpf=dρ; (2)

ii. Relaxation which is complete (there is local thermodynamic equilibrium) for
which ξ ¼ 0:

p ¼ p ρ;0ð Þ � pe ρð Þ, c2e ¼ dpe=dρ: (3)

Slow and fast processes are compared by means of the relaxation time τp.
To analyse the wave motion, we use the following hydrodynamic equations in

Lagrangian coordinates:

∂V

∂t
� 1

ρ0

∂u

∂x
¼ 0,

∂u

∂t
þ 1

ρ0

∂p

∂x
¼ 0: (4)

The following dynamic state equation is applied to account for the relaxation effects:

τp
dp

dt
� c2f

dρ

dt

� �

þ p� pe
� �

¼ 0: (5)

Here V � ρ�1 is the specific volume and x is the Lagrangian space coordinate.

Clearly, for the fast processes ωτp ≫ 1
� �

, we have relation (2), and for the slow ones

ωτp ≪ 1
� �

, we have (3).
The closed system of equations consists of two motion equations (4) and dynamic

state equation (5). The motion equations (4) are written in Lagrangian coordinates
since the state equation (5) is related to the element of mass of the medium.

The substantiation of (5) within the framework of the thermodynamics of irre-
versible processes has been given in [1, 2]. We note that the mechanisms of the
exchange processes are not defined concretely when deriving the dynamic state
equation (5). In this equation the thermodynamic and kinetic parameters appear
only as sound velocities ce and cf and relaxation time τp. These are very common

characteristics and they can be found experimentally. Hence, it is not necessary to
know the inner exchange mechanism in detail.

Combining the relationships (4) and (5), we obtain for low-frequency pertur-
bations (τpω≪ 1) the Korteweg-de Vries-Burgers (KdVB) equation:

∂p

∂t
þ ce

∂p

∂x
þ αec

3
ep

∂p

∂x
� βe

∂
2p

∂x2
þ γe

∂
3p

∂x3
¼ 0,

βe ¼
c2eτp

2c2f
c2f � c2e

� �

, γe ¼
c3e τ

2
p

8c4f
c2f � c2e

� �

c2f � 5c2e

� �

,

(6)

whilst for high-frequency waves ðτpω≫ 1Þ, we have obtained the following
equation:

2
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∂
2p

∂x2
� c�2

f

∂
2p

∂t2
þ αf c

2
f

∂
2p2

∂x2
þ βf

∂p

∂x
þ γfp ¼ 0,

βf ¼
c2f � c2e

τpc2ecf
, γf ¼

c4f � c4e

2τ2pc
4
e c

2
f

:

(7)

Equation (6) with (βe ¼ 0) is the well-known the Korteweg-de Vries (KdV)
equation. The investigation of the KdV equation in conjunctionwith the nonlinear
Schrodinger (NLS) and sine-Gordon equations gives rise to the theory of solitons [4–13].

We focus our main attention on (7). It has a dissipative term βf ∂p=∂x and a

dispersive term γfp. Without the nonlinear and dissipative terms, we have a linear

Klein-Gordon equation.
Let us write down (7) in dimensionless form. In themoving coordinate systemwith

velocity cf , after factorization the equation has the form in the dimensionless variables

~x ¼
ffiffiffi

γf

2

q

x� cf t
� �

,~t ¼
ffiffiffi

γf

2

q

cf t, ~u ¼ αf c
2
f p (tilde over variables ~x,~t and ~u is omitted)

∂

∂x

∂

∂t
þ u

∂

∂x

� �

uþ α
∂u

∂x
þ u ¼ 0: (8)

The constant α ¼ βf=
ffiffiffiffiffiffiffi

2γf
p

is always positive. Equation (8) without the dissipa-

tive term has the form of the nonlinear equation [14, 15]:

∂

∂x

∂

∂t
þ u

∂

∂x

� �

uþ u ¼ 0: (9)

Historically, (9) has been called the Vakhnenko equation (VE), and we will
follow this name.

We note that (9) follows as a particular limit of the following generalized
Korteweg-de Vries equation:

∂

∂x

∂u

∂t
þ u

∂u

∂x
� β

∂
3u

∂x3

� �

¼ γu (10)

derived by Ostrovsky [16] to model small-amplitude long waves in a rotating
fluid (γu is induced by the Coriolis force) of finite depth. Subsequently, (9) was
known by different names in the literature, such as the Ostrovsky-Hunter equation,
the short-wave equation, the reduced Ostrovsky equation, and the Ostrovsky-
Vakhnenko equation depending on the physical context in which it is studied.

The consideration here of (9) has interest from the viewpoint of the investiga-
tion of the propagation of high-frequency perturbations.

2. Loop-like stationary solutions

The travelling wave solutions are solutions which are stationary with respect to
a moving frame of reference. In this case, the evolution equation (a partial
differential equation) becomes an ordinary differential equation (ODE) which is
considerably easier to solve.

For the VE (9) it is convenient to introduce a new dependent variable z and new
independent variables η and τ defined by

z ¼ u� vð Þ=∣v∣, η ¼ x� vtð Þ= vj j1=2, τ ¼ t vj j1=2, (11)
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where v is a nonzero constant [15]. Then the VE becomes begin equation:

zητ þ zzη
� �

η
þ zþ c ¼ 0, (12)

where c ¼ �1 corresponding to v≷0. We now seek stationary solutions of
(12) for which z is a function of η only so that zτ ¼ 0 and z satisfies the ODE:

zzη
� �

η
þ zþ c ¼ 0: (13)

After one integration (13) gives

1

2
zzη
� �2 ¼ f zð Þ,

f zð Þ ¼ � 1

3
z3 � 1

2
cz2 þ 1

6
A ¼ � 1

3
z� z1ð Þ z� z2ð Þ z� z3ð Þ:

(14)

where A is a constant, and for periodic solutions z1, z2 and z3 are real constants
such that z1 ≤ z2 ≤ z3. On using results 236.00 and 236.01 of [17], we may integrate
(14) to obtain

η ¼
ffiffiffi

6
p

z1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z3 � z1
p F φ;mð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6 z3 � z1ð Þ
p

E φ;mð Þ, (15)

sinφ ¼ z3 � z

z3 � z2
, m ¼ z3 � z2

z3 � z1
: (16)

where F φ;mð Þ and E φ;mð Þ are incomplete elliptic integrals of the first and
second kind, respectively. We have chosen the constant of integration in (15) to
be zero so that z ¼ z3 at η ¼ 0. The relations (15) give the required solution in
parametric form, with z and η as functions of the parameter φ.

For c ¼ 1 (i.e., v>0), there are periodic solutions for 0<A< 1 with λ<0,
z2 ∈ �1;0ð Þ and z3 ∈ 0;0:5ð Þ; an example of such a periodic wave is illustrated by
curve 2 in Figure 1. Here we introduce a new independent variable ζ defined by

dη

dζ
¼ z: (17)

A ¼ 1 gives the solitary wave limit:

u ¼ 3

2
v sech2

ζ=2ð Þ, η ¼ �ζ þ 3 tanh ζ=2ð Þ (18)

as illustrated by curve 1 in Figure 1. The periodic waves and the solitary wave
have a loop-like structure as illustrated in Figure 1. For c ¼ �1 (i.e., v<0), there are
periodic waves for �1<A<0 with λ>0, z2 ∈ 0; 1ð Þ and z3 ∈ 1; 1:5ð Þ; an example of
such a periodic wave is illustrated by curve 2 in Figure 2. When A ¼ 0 and λ ¼ 6,
then the periodic wave solution simplifies to

u ηð Þ=∣v∣ ¼ � 1

6
η2 þ 1

2
, � 3≤ η≤ 3, u ηþ 6ð Þ ¼ u ηð Þ: (19)

This is shown by curve 1 in Figure 2. For A≃ � 1 the solution has a sinusoidal
form (curve 3 in Figure 2). Note that there are no solitary wave solutions.

A remarkable feature of the equation (9) is that it has a solitary wave (18) which
has a loop-like form, i.e., it is a multivalued function (see Figure 1). Whilst loop
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solitary waves (18) are rather intriguing, it is the solution to the initial value
problem that is of more interest in a physical context. An important question is the
stability of the loop-like solutions. Although the analysis of stability does not link
with the theory of solitons directly, the method applied in [15] is instructive, since it
is successful in a nonlinear approximation. Stability of the loop-like solutions has
been proved in [15]. From a physical viewpoint, the stability or otherwise of
solutions is essential to their interpretation.

3. The Vakhnenko-Parkes equation

Themultivalued solutions obtained in Section 2 obviously mean that the study
of the VE (9) in the original coordinates x; tð Þ leads to certain difficulties.

Figure 2.
Travelling wave solutions with v< 0.

Figure 1.
Travelling wave solutions with v> 0.
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These difficulties can be avoided bywriting down the VE in new independent coordi-
nates.We have succeeded in finding these coordinates. Historically, working separately,
we (Vyacheslav Vakhnenko in Ukraine and John Parkes in the UK) independently
suggested such independent coordinates in which the solutions become one-valued
functions. It is instructive to present the two derivations here. In one derivation a
physical approach, namely, a transformation between Euler and Lagrange coordinates,
was used, whereas in the other derivation, a puremathematical approachwas used.

Let us define new independent variables X;Tð Þ by the transformation

φdT ¼ dx� udt, X ¼ t: (20)

The function φ is to be obtained. It is important that the functions x ¼ θ X;Tð Þ
and u ¼ U X;Tð Þ turn out to be single-valued. In terms of the coordinates X;Tð Þ, the
solution of the VE (9) is given by single-valued parametric relations. The transfor-
mation into these coordinates is the key point in solving the problem of the
interaction of solitons as well as explaining the multivalued solutions [3]. The
transformation (20) is similar to the transformation between Eulerian coordinates
x; tð Þ and Lagrangian coordinates X;Tð Þ. We require that T ¼ x if there is no
perturbation, i.e., if u x; tð Þ � 0. Hence φ ¼ 1 when u x; tð Þ � 0.

The function φ is the additional dependent variable in the equation system (22),
(24) to which we reduce the original Eq. (9). We note that the transformation
inverse to (20) is

dx ¼ φdT þ UdX, t ¼ X, U X;Tð Þ � u x; tð Þ: (21)

It follows that

∂x

∂X
¼ U,

∂x

∂T
¼ φ,

∂t

∂X
¼ 1,

∂t

∂T
¼ 0:

Hence

∂φ

∂X
¼ ∂U

∂T
(22)

and

∂

∂X
¼ ∂

∂t
þ u

∂

∂x
,

∂

∂T
¼ φ

∂

∂x
: (23)

By using (23), we can write Eq. (9) in terms of φ X;Tð Þ and U X;Tð Þ, namely,

UXT þ φU ¼ 0: (24)

Equations (22) and (24) are the main system of equations. It can be reduced to a
nonlinear equation (27) in one unknown W defined by

WX ¼ U: (25)

From (22), (25) and the requirement that φ ¼ 1 when U � 0, we have

φ ¼ 1þWT : (26)

Then, by eliminating φ and U between (24), (25) and (26), we arrive at a
transformed form of the VE (9), namely,

6
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WXXT þ 1þWTð ÞWX ¼ 0: (27)

Alternatively, by eliminating φ between (22) and (24), we obtain

UUXXT �UXUXT þ U2UT ¼ 0: (28)

Furthermore it follows from (21) that the original independent coordinates x; tð Þ
are given by

x ¼ θ X;Tð Þ ¼ x0 þ T þW, t ¼ X, (29)

where x0 is an arbitrary constant. Since the functions θ X;Tð Þ and U X;Tð Þ are
single-valued, the problem of multivalued solutions has been resolved from the
mathematical point of view.

Alternatively, in a pure mathematical approach, we may start by introducing
new independent variables X and T defined by

x ¼ T þ
ðX

�∞
U X0;Tð ÞdX0 þ x1, t ¼ X, (30)

where x1 is an arbitrary constant. From (30), we obtain (23) but with

φ X;Tð Þ ¼ 1þ
ðX

�∞
UT dX

0: (31)

Now, on introducing (25), (30) and (31) may be identified with (29) and (26),
respectively. The derivation of (27) and (28) proceeds as before.

The transformation into new coordinates, as has already been pointed out, was
obtained by us independently of each other; nevertheless, we published the result
together [18, 19]. Following the papers [20–23] hereafter, Eq. (27) (or in alternative
form (28)) is referred to as the Vakhnenko-Parkes equation (VPE).

The travelling wave solution (15) and (16) for Equation (9) is also a travelling
wave solution when written in terms of the transformed coordinates (X,T). In order
to do this, we need to express the independent variable ζ, as introduced in (17), in
terms of X and T.

From the expressions for z in (11) and (17), we obtain

dη

dζ
¼ U � v

∣v∣
(32)

so that

∣v∣η ¼
ð

Udζ � vζ: (33)

From the definition of η in (17), and the expressions for x and t given by (29),
we obtain

∣v∣η ¼ vj j1=2 W � v X � VTð Þ½ �, where V≔ v�1: (34)

The expressions for ∣v∣η in (33) and (34) are equivalent if

ζ ¼ vj j1=2Z, where Z≔X � VT � X0 (35)
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and X0 is an arbitrary constant, so that

W ¼
ð

UdZ and U ¼ WZ: (36)

Hence, from (34), it follows that

W ¼
ffiffiffiffiffi

∣v∣
p

p
z1 þ cð Þwþ z3 � z1ð ÞE wjmð Þ½ � þW0, (37)

where w ¼ p
ffiffiffiffiffi

∣v∣
p

Z and W0 is an arbitrary constant. Then

U

∣v∣
¼ cþ z3 � z3 � z2ð Þsn2 wjmð Þ, where w ¼ p

ffiffiffiffiffi

∣v∣
p

Z: (38)

Eqs. (37) and (38) give the travelling wave solutions to the VPE in the forms
(27) and (28), respectively. Eq. (38) is also the travelling wave solution of the VE
(9) expressed in terms of the new coordinates (X,T). In the limiting case m ¼ 1,
(38) gives a solitary wave in the following two forms: For v>0

U=v ¼ 3

2
sech2 1

2

ffiffiffi

v
p

Z

� �

(39)

and, for v<0,

U=∣v∣ ¼ �1þ 3

2
sech2 1

2

ffiffiffiffiffi

∣v∣
p

Z

� �

: (40)

These two solutions are illustrated by curve 1 in Figures 3 and 4, respectively.
The other curves illustrate examples of the solution given by (38) when m 6¼ 1.
Curves 1 and 2 in Figure 3 relate to curves 1 and 2, respectively, in Figure 1. Curves
1, 2 and 3 in Figure 4 relate to curves 1, 2 and 3, respectively, in Figure 2.

Figure 3.
Travelling wave solutions with v> 0 in coordinates (X,T).
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There are two important observations to be made. Firstly, all the travelling wave
solutions in terms of the new coordinates are single-valued. Secondly, the periodic
solution shown by curve 1 in Figure 2, i.e., the solution consisting of parabolas, is
not periodic in terms of the new coordinates. Hence, we reveal some accordance
between curve 1 in Figure 3 and curve 1 in Figure 4. These features are important
for finding the solutions by the inverse scattering method [24–30].

4. From Hirota method to the inverse scattering method

The Hirota method gives the N-soliton solution as well as enables one to find a
way from the Bäcklund transformation through the conservation laws and associ-
ated eigenvalue problem to the inverse scattering method [24]. Thus, the Hirota
method allows us to formulate the inverse scattering method which is the most
appropriate way of tackling the initial value problem (Cauchy problem).

In the Hirota method the equation, in our case the VPE (27), under investigation
should be transformed into the Hirota bilinear form [9, 24]:

DTD
3
X þD2

X

� �

f � f ¼ 0, (41)

with

W ¼ 6 ln fð ÞX, (42)

The Hirota bilinear D-operator is defined as (see Section 5.2 in [9])

Dn
TD

m
Xa � b ¼ ∂

∂T
� ∂

∂T0

� �n
∂

∂X
� ∂

∂X0

� �m

a T;Xð Þb T0;X0ð Þ
	

	

	

	

T¼T0,X¼X0
: (43)

Now we present a Bäcklund transformation for VPE (27) written in the bilinear
form (41). This type of Bäcklund transformation was first introduced by Hirota [31]

Figure 4.
Travelling wave solutions with v< 0 in coordinates (X,T).
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and has the advantage that the transformation equations are linear with respect
to each dependent variable. This Bäcklund transformation can be transformed
to the ordinary one [24]:

D3
X � λ

� �

f 0 � f ¼ 0, (44)

3DXDT þ 1þ μDXð Þf 0 � f ¼ 0, (45)

where λ ¼ λ Xð Þ is an arbitrary function of X and μ ¼ μ Tð Þ is an arbitrary
function of T.

The inverse scattering transform (IST) method is arguably the most important
discovery in the theory of solitons. The method enables one to solve the initial value
problem for a nonlinear evolution equation. Moreover, it provides a proof of the
complete integrability of the equation.

The essence of the application of the IST is as follows. The initial equation VPE
(27) is written as the compatibility condition for two linear equations. These equa-
tions are presented in (47) and (48). Then W X;0ð Þ is mapped into the scattering
S 0ð Þ for (47). It is important that since the variable W X;Tð Þ contained in the
spectral equation (47) evolves according to (27), the spectrum λ always retains
constant values. The time evolution of S Tð Þ is simple and linear. From a knowledge
of S Tð Þ, we reconstruct W X;Tð Þ.

The use of the IST is the most appropriate way of tackling the initial value
problem. In order to apply the IST method, one first has to formulate the associated
eigenvalue problem. This can be achieved by finding a Bäcklund transformation
associated with the VPE.

Now we will show that the IST problem for the VPE in the form (27) has a third-
order eigenvalue problem that is similar to the one associated with a higher-order
KdV equation [32, 33], a Boussinesq equation [33–37] and a model equation for
shallow water waves [9, 38].

Introducing the function

ψ ¼ f 0=f , (46)

and taking into account (42), we find that (44) and (45) reduce to

ψXXX þWXψX � λψ ¼ 0, (47)

3ψXT þ 1þWTð Þψ þ μψX ¼ 0, (48)

respectively, where we have used results similar to (X.1)–(X.3) in [9].
From (47) and (48), it can be shown that

3λψT þ 1þWTð ÞψXX �WXTψX þ WXXT þ 1þWTð ÞWX þ μλ½ �ψ ¼ 0 (49)

and

WXXT þ 1þWTð ÞWX½ �Xψ þ 3ψT þ μψð ÞλX ¼ 0: (50)

In view of (27), (49) becomes

3λψT þ 1þWTð ÞψXX �WXTψX þ λμψ ¼ 0, (51)

and (50) implies that λX ¼ 0 so the spectrum λ of (47) remains constant. Con-
stant λ is what is required in the IST problem. Equation (50) yields the equation
WXXT þ 1þWTð ÞWX ¼ h Tð Þ, where h Tð Þ is an arbitrary function of T.

10
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Now, according to (62) and (72), the inverse scattering method restricts the solu-
tions to those that vanish as ∣X∣ ! ∞, so h Tð Þ is to be identically zero. Thus, the pair
of equations (47) and (48) or (47) and (50) can be considered as the Lax pair for the
VPE (27).

Since (47) and (48) are alternative forms of Eqs. (44) and (45), respectively, it
follows that the pair of equations (47) and (48) is associated with the VPE (27)
considered here. Thus, the IST problem is directly related to a spectral equation of
third order, namely, (47). The inverse problem for certain third-order spectral
equations has been considered by Kaup [33] and Caudrey [34, 35]. As expected,
(47) and (48) are similar to, but cannot be transformed into, the corresponding
equations for the Hirota-Satsuma equation (HSE) (see Eq. (A8a) and (A8b) in
[39]). Clarkson and Mansfield [40] note that the scattering problem for the HSE is
similar to that for the Boussinesq equation which has been studied comprehensively
by Deift et al. [37].

5. The inverse scattering method for a third-order equation

5.1 Example of the use of the IST method to find the one-soliton solution

Consider the one-soliton solution of the VPE by application of the IST method.
Let the initial perturbation be

W X;0ð Þ ¼ 6k 1þ tanh ηð Þð Þ, η ¼ kX þ α: (52)

For convenience we introduce new notation ξ1 and β1 instead of parameters k
and α by

k ¼
ffiffiffi

3
p

2
ξ1, α ¼ 1

2
ln β1=2

ffiffiffi

3
p

ξ1

� �

(53)

then

W X;0ð Þ ¼ 6
ffiffiffi

3
p

ξ1
∂

∂X
ln 1þ β1

2
ffiffiffi

3
p

ξ1
exp

ffiffiffi

3
p

ξ1X
� �


 �

(54)

is the initial condition for the VPE.
The first step in the IST method is to solve the spectral equation (47) with

spectral parameter λ for the given initial condition W X;0ð Þ. In our example it is

(54). The solution is studied over the complex ζ-plane, where ζ3 ¼ λ. One can verify
by direct substitution of (55) in (47) that the solution ψ X;0; ζð Þ of the linear ODE
(47), normalized so that ψ X;0; ζð Þ exp �ζXð Þ ! 1 at X ! �∞, is given by

ψ X;0; ζð Þ exp �ζXð Þ ¼ 1� β1 exp
ffiffiffi

3
p

ξ1X
� �

1þ β1
exp

ffiffi

3
p

ξ1Xð Þ
2
ffiffi

3
p

ξ1

ω2

iω2ξ1 � ζ
þ ω3

�iω3ξ1 � ζ


 �

, (55)

where ωj ¼ ei2π j�1ð Þ=3 are the cube roots of 1 (j ¼ 1, 2, 3). The constants β1 and ξ1,
as we will show, are associated with the local spectral data.

The second step in the IST method is to obtain the evolution of β1 and ξ1.
The time dependence of the solution ψ X;Tð Þ is described by Eq. (48). Analysing
Eq. (48), we may assume that
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ξ1 Tð Þ ¼ ξ1 0ð Þ ¼ const:,

β1 Tð Þ ¼ β1 0ð Þ exp � 1
ffiffiffi

3
p

ξ1
T

� �

:
(56)

Below, the assumption of these relationships will be justified. Indeed, we know
that the spectrum λ in (47) remains constant if W X;Tð Þ evolves according to
Eq. (27). Therefore, as will be proved, the spectrum data evolve as in (70). In
notations (77) and (78), from (70) we obtain the relations (56).

The final step in IST method is to select the solution W X;Tð Þ from (55) with
ξ1 Tð Þ, β1 Tð Þ as in (56). According to Eq. (2.7) in [33], we expand ψ X;T; ζð Þ as an
asymptotic series in ζ�1 to obtain

ψ X;0; ζð Þ exp �ζXð Þ ¼ 1� 1

3ζ
W Xð Þ �W �∞ð Þ½ � þ O ζ�2

� �

, (57)

i.e., W Xð Þ �W �∞ð Þ ¼ limζ!∞ 3ζ 1� ψ exp �ζXð Þð Þ½ �. Taking into account the
functional dependence (56), we find the required one-soliton solution of the VPE in
form

W X;Tð Þ ¼ 6
ffiffiffi

3
p

ξ1
∂

∂X
ln 1þ β1

2
ffiffiffi

3
p exp

ffiffiffi

3
p

ξ1X � 1
ffiffiffi

3
p

ξ1
T

� �
 �

þ const: (58)

Thus, for the example of the one-soliton solution, we have demonstrated the IST
method.

5.2 The direct spectral problem

Let us consider the principal aspects of the inverse scattering transform problem
for a third-order equation. The inverse problem for certain third-order spectral
equations has been considered by Kaup [33] and Caudrey [34, 35]. The time evolu-
tion of ψ is determined from (48) or (51).

Following the method described by Caudrey [34], the spectral equation (47) can
be rewritten

∂

∂X
ψ ¼ A ζð Þ þ B X; ζð Þ½ � � ψ (59)

with

ψ ¼
ψ

ψX

ψXX

0

B

@

1

C

A
, A ¼

0 1 0

0 0 1

λ 0 0

0

B

@

1

C

A
, B ¼

0 0 0

0 0 0

0 �WX 0

0

B

@

1

C

A
: (60)

The matrix A has eigenvalues λj ζð Þ and left and right eigenvectors ~vj ζð Þ and
vj ζð Þ, respectively. These quantities are defined through a spectral parameter λ as

λj ζð Þ ¼ ωjζ, λ3j ζð Þ ¼ λ,

vj ζð Þ ¼

1

λj ζð Þ

λ2j ζð Þ

0

B

B

@

1

C

C

A

, ~vj ζð Þ ¼ λ2j ζð Þ λj ζð Þ 1
� �

,
(61)
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where, as previously, ωj ¼ e2πi j�1ð Þ=3 are the cube roots of 1 (j ¼ 1, 2, 3). Obvi-
ously the λj ζð Þ are distinct, and they and ~vj ζð Þ and vj ζð Þ are analytic throughout the
complex ζ-plane.

The solution of the linear equation (47) (or equivalently (59)) has been obtained
by Caudrey [34] in terms of Jost functions ϕj X; ζð Þ which have the asymptotic

behaviour:

Φj X; ζð Þ≔ exp �λj ζð ÞX
� 


ϕj X; ζð Þ ! vj ζð Þ as X ! �∞: (62)

Caudrey [34] showed how Eq. (59) can be solved by expressing it as a Fredholm
integral equation.

The complex ζ-plane is to be divided into regions such that, in the interior of
each region, the order of the numbers Re λi ζð Þð Þ is fixed. As we pass from one region
to another, this order changes, and hence, on a boundary between two regions,

Re λi ζð Þð Þ ¼ Re λj ζð Þ
� �

for at least one pair i 6¼ j. The Jost function ϕj is regular

throughout the complex ζ-plane apart from poles and finite singularities on the
boundaries between the regions. At any point in the interior of any region of the
complex ζ-plane, the solution of Eq. (59) is obtained by the relation (2.12) from
[34]. It is the direct spectral problem.

5.3 The spectral data

The information about the singularities of the Jost functions ϕj X; ζð Þ reside in the

spectral data. First let us consider the poles. It is assumed that a pole ζ
kð Þ
i in ϕi X; ζð Þ

is simple, does not coincide with a pole of ϕj X; ζð Þ and j 6¼ i and does not lie on a

boundary between two regions. Then, as proven in [34], the residue is

Res ϕi X; ζ
kð Þ
i

� �

¼ ∑
n

j ¼ 1

j 6¼ i

γ
kð Þ
ij ϕj X; ζ

kð Þ
i

� �

(63)

and it can be found because we know the solution (47) in any regular regions

from solving the direct problem (see Section 5.2). Note that, for ϕj X; ζ
kð Þ
i

� �

, the

point ζ kð Þ
i lies in the interior of a regular region. The quantities ζ kð Þ

i and γ
kð Þ
ij constitute

the discrete part of the spectral data.
Now we consider the singularities on the boundaries between regions. However,

in order to simplify matters, we first make some observations. The solution of the
spectral problem can be facilitated by using various symmetry properties. In view of
(47), we need only consider the first elements of

ϕi X; ζð Þ ¼
ϕi X; ζð Þ
ϕi X; ζð ÞX
ϕi X; ζð ÞXX

0

B

@

1

C

A
, (64)

whilst the symmetry

ϕ1 X; ζ=ω1ð Þ ¼ ϕ2 X; ζ=ω2ð Þ ¼ ϕ3 X; ζ=ω3ð Þ (65)

means we need only to consider ϕ1 X; ζð Þ. In our case, for ϕ1 X; ζð Þ, the complex
ζ-plane is divided into four regions by two lines (see Figure 5) given by
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ið Þ ζ0 ¼ ω2ξ, where Re λ1 ζð Þð Þ ¼ Re λ2 ζð Þð Þ,

iið Þ ζ0 ¼ �ω3ξ, where Re λ1 ζð Þð Þ ¼ Re λ3 ζð Þð Þ,
(66)

where ξ is real (see Figure 5). The singularity of ϕ1 X; ζð Þ can appear only on
these boundaries between the regular regions on the ζ-plane, and it is characterized
by functions Q1j ζ

0ð Þ at each fixed j 6¼ 1. We denote the limit of a quantity, as

the boundary is approached, by the superfix � in according to the sign of
Re λ1 ζð Þ � λj ζð Þ
� �

(see Figure 5).
In [34] (see Eq. (3.14) there) the jump of ϕ1 X; ζð Þ on the boundaries is calculated as

ϕþ
1 X; ζð Þ � ϕ�

1 X; ζð Þ ¼ ∑
3

j¼2
Q1j ζð Þϕ�

j X; ζð Þ, (67)

where, from (66), the sum is over the lines ζ0 ¼ ω2ξ and ζ0 ¼ �ω3ξ given by

ið Þ ζ0 ¼ ω2ξ, with Q
1ð Þ
12 ζ0ð Þ 6¼ 0, Q

1ð Þ
13 ζ0ð Þ � 0,

iið Þ ζ0 ¼ �ω3ξ, with Q
2ð Þ
12 ζ0ð Þ � 0, Q

2ð Þ
13 ζ0ð Þ 6¼ 0:

The singularity functions Q1j ζ
0ð Þ are determined by W X;0ð Þ through the matrix

B X; ζð Þ (60) (see Eq. (3.13) in [34])

Figure 5.
The regular regions for Jost functions ϕ1(X, ζ) in the complex ζ-plane. The dashed lines determine the
boundaries between regular regions. These lines are lines where the singularity functions Q1j(ζ

0) are given.
The dotted lines are the lines where the poles appear.
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Q1j ζð Þ ¼ 1

~v j ζð Þ � vj ζð Þ ~vj ζð Þ �
ð

∞

�∞

exp λ1 ζð Þ � λj ζð Þ
� �

z
� �

B z; ζð Þ � ϕ�
1 X; ζð Þdz:

(68)

The quantities Q1j ζ
0ð Þ along all the boundaries constitute the continuum part of

the spectral data.
Thus, the spectral data are

S ¼ ζ
kð Þ
1 ; γ

kð Þ
1j ;Q1j ζ

0ð Þ; j ¼ 2; 3; k ¼ 1; 2;…;m
n o

: (69)

One of the important features which is to be noted for the IST method is as
follows. After the spectral data have been found from B X;0; ζð Þ, i.e., at initial time,
we need to seek the time evolution of the spectral data from Eq. (48). Analysing
(48) at X ! ∞ together with (62)

ϕi X;T; ζð Þ ¼ exp � 3λi ζð Þð Þ�1T
h i

ϕi X;0; ζð Þ,

the T-dependence is revealed as

ζ
kð Þ
j Tð Þ ¼ ζ

kð Þ
j 0ð Þ,

γ
kð Þ
1j Tð Þ ¼ γ

kð Þ
1j 0ð Þ exp � 3λj ζ

kð Þ
1

� �� ��1
þ 3λ1 ζ

kð Þ
1

� �� ��1

 �

T

� �

,

Q1j T; ζ
0ð Þ ¼ Q1j 0; ζ

0ð Þ exp � 3λj ζ
0ð Þ

� ��1 þ 3λ1 ζ0ð Þð Þ�1
h i

T
n o

:

(70)

The final step in the application of the IST method is to reconstruct B X;T; ζð Þ
from the evaluated spectral data. In the next section, we show how to do this.

5.4 The inverse spectral problem

The final procedure in IST method is that of the reconstruction of the matrix
B X;T; ζð Þ and W X;Tð Þ from the spectral data S.

The spectral data define Φ1 X; ζð Þ uniquely in the form (see Eq. (6.20) in [34]))

Φ1 X;T; ζð Þ ¼ 1� ∑
K

k¼1

∑
3

j¼2
γ

kð Þ
1j Tð Þ

exp λj ζ
kð Þ
1

� �

� λ1 ζ
kð Þ
1

� �h i

X
n o

λ1 ζ
kð Þ
1

� �

� λ1 ζð Þ
Φ1 X;T;ωjζ

kð Þ
1

� �

þ 1

2πi

ð

∑
3

j¼2
Q1j T; ζ

0ð Þ exp λj ζ
0ð Þ � λ1 ζ0ð Þ

� �

X
� 


ζ0 � ζ
Φ

�
1 X;T;ωjζ

0� �

dζ0:

(71)

Eq. (71) contains the spectral data, namely, K poles with the quantities γ kð Þ
1j for

the bound state spectrum as well as the functions Q1j ζ
0ð Þ given along all the bound-

aries of regular regions for the continuous spectrum. The integral in (71) is along all
the boundaries (see the dashed lines in Figure 5). The direction of integration is
taken so that the side chosen to be Re λ1 ζð Þ � λj ζð Þ

� �

<0 is shown by the arrows in

Figure 5 (for the lines (66), ξ sweeps from �∞ to þ∞).

15

Loop-like Solitons
DOI: http://dx.doi.org/10.5772/intechopen.86583



It is necessary to note that we should carry out the integration along the lines
ω2 ξþ iεð Þ and �ω3 ξþ iεð Þ with ε>0. In this case condition (62) is satisfied. Passing
to the limit ε ! 0, we can obtain the solution which does not satisfy condition (62).
However, for any finite ε>0, the restricted region on X can be determined where
the solution associated with a finite ε>0 (for which the condition (62) is valid) and
the solution associated with ε ¼ 0 are sufficiently close to each other. In this sense,
taking the integration at ε ¼ 0, we remain within the inverse scattering theory [34],
and so condition (62) can be omitted. The solution obtained at ε ¼ 0 can be
extended to sufficiently large finite X. Thus, we will interpret the solution obtained
at ε ¼ 0 as the solution of the VPE (27) which is valid for arbitrary but finite X.

By choosing appropriate values for ζ, the left-hand side in (71) can be

Φ1 X;T;ωjζ
kð Þ
1

� �

, or by allowing ζ to approach the boundaries from the appropriate

sides, the left-hand side can be Φ�
1 X;T;ωjζ

0� �

. We acquire a set of linear matrix/

Fredholm equations in the unknowns Φ1 X;T;ωjζ
kð Þ
1

� �

and Φ
�
1 X;T;ωjζ

0� �

. The

solution of this equation system enables one to define Φ1 X;T; ζð Þ from (71).
By knowing Φ1 X;T; ζð Þ, we can take extra information into account, namely,

that the expansion of Φ1 X;T; ζð Þ as an asymptotic series in λ�1
1 ζð Þ connects with

W X;Tð Þ as follows (cf. Eq. (2.7) in [33]):

Φ1 X;T; ζð Þ ¼ 1� 1

3λ1 ζð Þ W X;Tð Þ �W �∞ð Þ½ � þ O λ�2
1 ζð Þ

� �

: (72)

Consequently, the solution W X;Tð Þ and the matrix B X;T; ζð Þ can be
reconstructed from the spectral data.

6. The interaction of the loop-like solitons

We will discuss the exact N-soliton solution of the VPE via the inverse scattering
method [24]. To do this we consider (71) with Q1j ζð Þ � 0. Then there is only the

bound state spectrum which is associated with the soliton solutions.
Let the bound state spectrum be defined by K poles. The relation (71) is reduced

to the form

Φ1 X;T; ζð Þ ¼ 1� ∑
K

k¼1

∑
3

j¼2
γ

kð Þ
1j Tð Þ

exp λj ζ
kð Þ
1

� �

� λ1 ζ
kð Þ
1

� �h i

X
n o

λ1 ζ
kð Þ
1

� �

� λ1 ζð Þ
Φ1 X;T;ωjζ

kð Þ
1

� �

:

(73)

Eq. (73) involves the spectral data, namely, the poles ζ kð Þ
1 and the quantities γ kð Þ

1j .

First we will prove that Reλ ¼ 0 for compact support. From Eq. (47) we have

ψXð ÞXXX þ UψXð ÞX � λψX ¼ 0, (74)

and together with Eq. (47), this enables us to write

∂

∂X

∂
2

∂X2 ψXψ
∗ � 3ψXXψ

∗
X þUψXψ

∗

� �

� 2ReλψXψ
∗ ¼ 0: (75)

Integrating Eq. (75) over all values of X, we obtain that, for compact support,
Reλ ¼ 0 since, in the general case,

Ð∞
�∞ ψXψ

∗ dX 6¼ 0.
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As follows from Eqs. (2.12), (2.13), (2.36) and (2.37) of [33], ψX ζð Þ is related to
the adjoint states ψA

X �ζð Þ. In the usual manner, using the adjoint states and Eq. (14)
from [35] and Eq. (2.37) from [33], one can obtain

ϕ1X X; ζð Þ ¼ i
ffiffiffi

3
p ϕ1X X;�ω2ζð Þϕ1 X;�ω3ζð Þ � ϕ1X X;�ω3ζð Þϕ1 X;�ω2ζð Þ½ �: (76)

It is easily seen that if ζ 1ð Þ
1 is a pole of ϕ1 X; ζð Þ, then there is a pole either at

ζ
2ð Þ
1 ¼ �ω2ζ

1ð Þ
1 (if ϕ1 X;�ω2ζð Þ has a pole) or at ζ 2ð Þ

1 ¼ �ω3ζ
1ð Þ
1 (if ϕ1 X;�ω3ζð Þ has a

pole). For definiteness let ζ
2ð Þ
1 ¼ �ω2ζ

1ð Þ
1 . Then, as follows from (76), �ω3ζ

2ð Þ
1

should be a pole. However, this pole coincides with pole ζ 1ð Þ
1 , since �ω3ζ

2ð Þ
1 ¼

�ω3 �ω2ð Þζ 1ð Þ
1 ¼ ζ

1ð Þ
1 . Hence, the poles appear in pairs, ζ 2n�1ð Þ

1 and ζ
2nð Þ
1 , under the

condition ζ
2nð Þ
1 =ζ

2n�1ð Þ
1 ¼ �ω2, where n is the pair number.

Let us consider N pairs of poles, i.e., in all there are K ¼ 2N poles over which the
sum is taken in (76). For the pair n n ¼ 1; 2;…;Nð Þ we have the properties

ið Þ ζ
2n�1ð Þ
1 ¼ iω2ξn, iið Þ ζ

2nð Þ
1 ¼ �iω3ξn: (77)

Since U is real and λ is imaginary, ξk is real. The relationships (77) are in line
with the condition (2.33) from [33]. These relationships are also similar to

Eqs. (6.24) and (6.25) in [34], whilst γ kð Þ
1j turns out to be different from ~γ

kð Þ
1j for the

Boussinesq equation (see Eqs. (6.24) and (6.25) in [34]). Indeed, by considering

(76) in the vicinity of the first pole ζ 2n�1ð Þ
1 of the pair n and using the relation (73),

one can obtain a relation between γ
kð Þ
12 and γ

kð Þ
13 . In this case the functions ϕ1,X X; ζð Þ,

ϕ1 X;�ω2ζð Þ and ϕ1,X X;�ω2ζð Þ also have poles here, whilst the functions
ϕ1 X;�ω3ζð Þ and ϕ1,X X;�ω3ζð Þ do not have poles here. Substituting ϕ1 X; ζð Þ in the

form (73) into Eq. (76) and letting X ! �∞, we have the ratio γ
2nð Þ
13 =γ

2n�1ð Þ
12 ¼ ω2

and γ
2nð Þ
12 ¼ γ

2n�1ð Þ
13 ¼ 0. Therefore, the properties of γ kð Þ

ij should be defined by the

relationships

ið Þ γ
2n�1ð Þ
12 ¼ ω2βk, γ

2n�1ð Þ
13 ¼ 0,

iið Þ γ
2nð Þ
12 ¼ 0, γ

2nð Þ
13 ¼ ω3βk,

(78)

where, as it will be proved below, βk is real when U ¼ WX is real.
By defining

Ψk X;Tð Þ ¼ ∑
3

j¼2
γ

kð Þ
1j Tð Þ exp λj ζ

kð Þ
1

� �

X
n o

Φ1 X;T;ωjζ
kð Þ
1

� �

, (79)

we may rewrite the relationship (73) as (see, for instance, Eqs. (6.33) and (6.34)
in [34])

Φ1 X;T; ζð Þ ¼ 1� ∑
2N

k¼1

exp �λ1 ζ
kð Þ
1

� �

X
n o

λ1 ζ
kð Þ
1

� �

� λ1 ζð Þ
Ψk X;Tð Þ: (80)

From (72) and (80), it may be shown that (cf. Eq. (6.38) in [34])

W X;Tð Þ �W �∞ð Þ ¼ �3 ∑
2N

k¼1

exp �λ1 ζ
kð Þ
1

� �

X
n o

Ψk X;Tð Þ ¼ 3
∂

∂X
ln detM X;Tð Þð Þ: (81)
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The 2N � 2N matrix M X;Tð Þ is defined as in relationship (6.36) in [34] by

Mkl X;Tð Þ ¼ δkl � ∑
3

j¼2
γ

kð Þ
1j 0ð Þ

exp � 3λj ζ
kð Þ
1

� �� ��1
þ 3λ1 ζ

kð Þ
1

� �� ��1

 �

T þ λj ζ
kð Þ
1

� �

� λ1 ζ
lð Þ
1

� �� �

X

� �

λj ζ
kð Þ
1

� �

� λ1 ζ
lð Þ
1

� � ,

(82)

and

n ¼ 1, 2,…, N,

λ1 ζ
2n�1ð Þ
1

� �

¼ iω2ξn, λ2 ζ
2n�1ð Þ
1

� �

¼ iω3ξn, γ
2n�1ð Þ
12 ¼ ω2βn, γ

2n�1ð Þ
13 ¼ 0,

λ1 ζ
2nð Þ
1

� �

¼ �iω3ξn, λ3 ζ
2nð Þ
1

� �

¼ �iω2ξn, γ
2nð Þ
12 ¼ 0, γ

2nð Þ
13 ¼ ω3βn:

For the N-soliton solution, there are N arbitrary constants ξn and N arbitrary
constants βn.

The final result for the N-soliton solution of the VPE is defined by relationship
(81) with (82).

6.1 Examples of one- and two-soliton solutions of the VPE

In order to obtain the one-soliton solution of the VPE (27)

WXXT þ 1þWTð ÞWX ¼ 0,

we need first to calculate the 2� 2 matrixM X;Tð Þ according to (82) with N ¼ 1.
We find that the matrix is

1� ω2β1
ffiffiffi

3
p

ξ1
exp

ffiffiffi

3
p

ξ1X �
ffiffiffi

3
p

ξ1

� ��1
T


 �

iω3β1

2ξ1
exp 2iω3ξ1X �

ffiffiffi

3
p

ξ1

� ��1
T


 �

�iω2β1

2ξ1
exp �2iω2ξ1X �

ffiffiffi

3
p

ξ1

� ��1
T


 �

1� ω3β1
ffiffiffi

3
p

ξ1
exp

ffiffiffi

3
p

ξ1X �
ffiffiffi

3
p

ξ1

� ��1
T


 �

0

B

B

B

B

@

1

C

C

C

C

A

(83)

and its determinant is

detM X;Tð Þ ¼ 1þ β1

2
ffiffiffi

3
p

ξ1
exp

ffiffiffi

3
p

ξ1 X � T

3ξ21

� �
 �� �2

: (84)

Consequently, from Eq. (81) we have the one-soliton solution of the VPE

U X;Tð Þ ¼ WX X;Tð Þ ¼ 9

2
ξ21sech

2

ffiffiffi

3
p

2
ξ1 X � T

3ξ21

� �

þ α1


 �

, (85)

where α1 ¼ 1
2 ln β1=2

ffiffiffi

3
p

ξ1
� �

is an arbitrary constant. Since U is real, it follows
from (85) that β1 is real. Note that with β1=ξ1 <0 we have the real solution in the
form of the singular soliton [41].
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U X;Tð Þ ¼ 9

2
ξ21sinh

�2η, η ¼
ffiffiffi

3
p

2
ξ1 X � T

3ξ21

� �

þ α1: (86)

Let us now consider the two-soliton solution of the VPE. In this caseM X;Tð Þ is a
4� 4 matrix. We will not give the explicit form here, but we find that

detM X;Tð Þ ¼ 1þ q21 þ q22 þ b2q21q
2
2

� �2
, (87)

where

qi ¼ exp

ffiffiffi

3
p

2
ξi X � T

3ξ2i

 !

þ αi

" #

, b2 ¼ ξ2 � ξ1

ξ2 þ ξ1

� �2
ξ21 þ ξ22 � ξ1ξ2

ξ21 þ ξ22 þ ξ1ξ2
, (88)

and αi ¼ 1
2 ln βi=2

ffiffiffi

3
p

ξi
� �

are arbitrary constants. The two-soliton solution to the
VPE as found by the IST method is given by (81) together with (87).

Finally we note that comparison of (81) withW ¼ 6 ln fð ÞX from (42) shows that

ln detM X;Tð Þð Þ ¼ 2ln fð Þ: (89)

so that detM X;Tð Þ is a perfect square for arbitrary N.

6.2 The two-loop-like solitons of the VE

We discuss the two-loop soliton solution of the VE in more detail. Let us con-
sider what happens in x-t space. The relations (20), (25) and (29) determine the
solutions in x-t throughout the solutions in X-T. In these coordinates x-t, we have
the loop-like solitons.

The shifts, δi, of the two-loop solitons u1 and u2 in the positive x-direction due to
the interaction may be computed as follows. The larger loop soliton is always shifted
forwards by the interaction. However, for smaller u2 with r ¼ ξ1=ξ2, there is a value
rc ¼ 0:88867 in that we have a different form of the phase shift:

a. For rc < r< 1, δ1 <0 so the smaller loop soliton is shifted backwards.

b.For r ¼ rc, where rc ¼ 0:88867 is the root of ln bþ 3=r ¼ 0, δ1 ¼ 0, so the
smaller loop soliton is not shifted by the interaction.

c. For 0< r< rc, δ1 >0 so the smaller loop soliton is shifted forwards.

At first sight it might seem that the behaviour in (b) and (c) contradicts conser-
vation of ‘momentum’. That this is not so is justified as follows. By integrating (9)
with respect to x, we find that

Ð∞
�∞ udx ¼ 0; also, by multiplying (9) by x and

integrating with respect to x, we obtain
Ð∞
�∞ xudx ¼ 0. Thus, in x-t space, the ‘mass’

of each soliton is zero, and ‘momentum’ is conserved whatever δ1 and δ2 may be. In
particular δ1 and δ2 may have the same sign as in (c), or one of them may be zero as
in (b).

Cases (a), (b) and (c) are illustrated in Figures 6–8, respectively; in these
figures u is plotted against x for various values of t. For convenience in the
figures, the interactions of solitons are shown in coordinates moving with speed
v1 þ v2ð Þ=2.
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Figure 6.
The interaction process for two-loop solitons with ξ1 ¼ 0.99 and ξ2 ¼ 1 so that r ¼ 0.99 and δ1 < 0.

Figure 7.
The interaction process for two-loop solitons with ξ1 ¼ 0.88867 and ξ2 ¼ 1 so that r ¼ 0.88867 and δ1 = 0.
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7. Discussion on the loop-like solutions

We have already mentioned the important question on stability of loop-like
solutions (Section 2).

7.1 Remarks on the existence and uniqueness theorem

In [42], the existence and uniqueness theorem is formulated for system (one)
differential equations. The loop-like solutions take place on travelling waves. In this
case, the initial equation is reduced to an ordinary differential equation (ODE) (see
Section 2). It has been this equation which we are exploring. Now we note some
important remarks. In particular, in order to investigate the ODE (the solution on
travelling waves), it is still necessary to reconcile this solution with the initial
problem, which is described by the differential equation in partial derivatives (evo-
lution equation). Consequently, the ambiguous solutions for the ODE during their
reconstruction into the initial coordinates should be checked by means of some
restrictive conditions (see 7.2).

It is necessary to note that if the conditions of the existence and uniqueness
theorem break down, then nevertheless, this does not restrict the existence of
solutions. Hence, the solutions can exist, for example, the multivalued solutions.
Here we point out an example: the exact solutions for the Camassa-Holm
equation (CHE) and the Degasperis-Procesi equation (DPE) can be constructed
as the component solutions, through separate parts (branches) of solutions
(see [43]).

The selection of possible multivalued solutions will be discussed in 7.2.

Figure 8.
The interaction process for two-loop solitons with ξ1 ¼ 0.5 and ξ2 ¼ 1 so that r ¼ 0.5 and δ1 > 0.
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7.2 Selection for the loop-like solutions

Solutions must satisfy the following conditions:

1. At the point η ¼ 0, the solution must pass over the ellipse z2 þ 2vη2ð Þηη ¼ 0

(see Eq. (4.3) in [3]);

2. According to the conservation law
Ð�∞
∞ u x; tð Þdx ¼ const � 0 for t>0. The

‘mass’ of individual soliton equals to zero. This condition will be satisfied if
point 1 takes place.

3.As you know [3], taking into account dissipation in the physical process allows
one to select a solution from an array of possible solutions that are inherent to
the equation without dissipation. This condition also selects a solution as in a
point 1 if α ! 0.

4.During the interaction of the solitons [24, 29], you must take into account all
the parts of loop-like soliton (see end of Section 7.3). The soliton has a form
satisfying point 2.

Thus, we cannot arbitrarily combine the solutions at η ¼ 0. The solutions, in
particular, solitons should be specific loop-like form.

7.3 Physical interpretation of the multivalued solutions

From themathematical point of view, an ambiguous solution does not present
difficulties, whereas the physical interpretation of ambiguity always presents some
difficulties. In this connection the problem of ambiguous solutions is regarded as impor-
tant. The problem consists inwhether the ambiguity has a physical nature or is related to
the incompleteness of themathematical model, in particular to the lack of dissipation.

We will consider the problem related to the singular points when dissipation
takes place. At these points the dissipative term α ∂u

∂x tends to infinity. The question

arises: Are there solutions of Eq. (8) in a loop-like form? That the dissipation is
likely to destroy the loop-like solutions can be associated with the following well-
known fact [5]. For the simplest nonlinear equation without dispersion and without
dissipation, namely,

∂u

∂t
þ u

∂u

∂x
¼ 0, (90)

any initial smooth solution with boundary conditions

u x!þ∞ ¼ 0; uj jx!�∞ ¼ u0 ¼ const:>0

becomes ambiguous in the final analysis. When dissipation is considered, we
have the Burgers equation [47]:

∂u

∂t
þ u

∂u

∂x
þ μ

∂
2u

∂x2
¼ 0:

The dissipative term in this equation and in Eq. (6) for low frequency is coinci-
dent. The inclusion of the dissipative term transforms the solutions so that they
cannot be ambiguous as a result of evolution. The wave parameters are always
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unambiguous. What happens in our case for high frequency when the dissipative
term has the form αu (see Eq. (18) in [29])? Will the inclusion of dissipation give
rise to unambiguous solutions?

By direct integration of Eq. (8) (written in terms of the variables (11)) within
the neighbourhood of singular points z ¼ 0 where zη ! �∞ and zτ ≪ zη, it can be
derived (see [3]) that the dissipative term, with dissipation parameter less than
some limit value α ∗ , does not destroy the loop-like solutions. Now we give a
physical interpretation to ambiguous solutions.

Since the solution to the VE has a parametric form (15) and (16), there is a space
of variables in which the solution is a single-valued function. Hence, we can solve
the problem of the ambiguous solution. A number of states with their thermody-
namic parameters can occupy one microvolume. It is assumed that the interaction
between the separated states occupying one microvolume can be neglected in
comparison with the interaction between the particles of one thermodynamic state.
Even if we take into account the interaction between the separated states in accor-
dance with the dynamic state equation (5), for high frequencies, a dissipative term
arises which is similar to the corresponding term in Eq. (7) but with the other
relaxation time. In this sense the separated terms are distributed in space, but
describing the wave process, we consider them as interpenetratable. A similar
situation, when several components with different hydrodynamic parameters
occupy one microvolume, has been assumed in mixture theory (see, for instance,
[48]). Such a fundamental assumption in the theory of mixtures is physically
impossible (see [48], p.7), but it is appropriate in the sense that separated compo-
nents are multi-velocity interpenetratable continua.

Consequently, the following three observations show that, in the framework
of the approach considered here, there are multivalued solutions when we model
high-frequency wave processes: (1) All parts of loop-like solution are stable to
perturbations. (2) Dissipation does not destroy the loop-like solutions. (3) The
investigation regarding the interaction of the solitons has shown that it is
necessary to take into account the whole ambiguous solution and not just the
separate parts.

7.4 Conclusion

Loop-like solitons are a class of interesting wave phenomena, which take place in
some nonlinear systems. This interest consisted not only in the interpretation of the
solutions obtained but also in the explanation of the experimental results. The
ambiguous structure of the loop-like solutions is similar to the loop soliton solution
to an equation that models a stretched rope [44]. Loop-like solitons on a vortex
filament were investigated by Hasimoto [45] and Lamb, Jr. [46]. The loop-like
solutions appear in description of physical phenomena, in particular, electromag-
netic terahertz pulses in asymmetric molecules [49], high-frequency perturbations
in a relaxation medium [3, 50, 51] and soliton in ferrites [52]. As a typical
multivalued structure, loop soliton has been discussed in some possible physical
fields including particle physics [53] and quantum field theory [54].

It must be admitted that we are a long way still from complete awareness of
physical processes which can be described by loop-like solutions. However, the
approach, considered here, will hopefully be interesting and useful in understand-
ing the birth and death process for particles, since the mass and momentum of
individual loop-like soliton are zero. Furthermore, the investigations in optics,
magnetism and hydrodynamics clearly indicate the acceptability of the approach on
loop-like solitons. Indeed, the phase shifts observed at interaction of solitons can be
explained by means of loop-like solutions.
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