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Chapter

A GIS-Based Approach for 
Determining Potential Runoff 
Coefficient and Runoff Depth for 
the Indian River Lagoon, Florida, 
USA
Philip W. Bellamy and Hyun Jung Cho

Abstract

The Indian River Lagoon system (IRL), spanning ~40% of Florida’s east coast, 
is one of the nation’s biggest and most biodiverse estuaries. In 2011, a super algal 
bloom event occurred in the IRL with total nitrogen and phosphorus levels that 
exceeded historical levels. Scientists suspect that nonpoint source pollution through 
surface runoff may have had a significant impact on the recent recurring algal 
blooms. Digital Elevation Model, land cover/land use, and soil data were used to 
calculate a runoff coefficient for the IRL drainage basin. Rainfall data were used to 
calculate runoff depth for the study area between the years of 2006–2016. When 
the monthly runoff depth data for 2011 were compared to a previous study on the 
2011 super algal bloom in the lagoon, areas with high runoff visually matched the 
areas with higher chlorophyll a concentrations. Land development was a significant 
variable for determining runoff depth (p < 0.0001), and although used to derive 
runoff depths, the influence of precipitation was marginally significant (p = 0.06). 
Significant spatial autocorrelation indicated local trends between land development 
and runoff depth (p < 0.0001). Outputs will aid with decisions on stormwater 
management to more sustainable land development planning.

Keywords: surface runoff, runoff coefficient, stormwater, Indian River Lagoon, 
Halifax River, coastal watershed

1. Introduction

Algae blooms within coastal estuarine systems have been a threat to vital key 
ecosystem components causing the degradation of ecological integrity. With 
non-point source pollution being a primary concern, using geographic information 
system (GIS) approaches to assess the impacts is effective for stormwater manage-
ment. Therefore, with the use of land use/land cover (LC/LU), soil, and elevation 
data, the Potential Runoff Coefficient (PRC) and runoff depth were calculated for 
the IRL and Halifax River watershed. The analysis consisted of manipulating the 
geospatial data to derive the potential runoff coefficients and runoff depths.
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Considering the contributing factors of surface runoff, the overall goal of the 
study is to estimate the quantities of runoff within the Indian River Lagoon (IRL) 
watershed based on a method that encompasses those parameters. The findings 
can also address whether such method and similar approaches can indicate loca-
tions of algae blooms, and aid in stormwater/watershed management. The objec-
tives of this study are listed respectively; Objective 1: to calculate the potential 
runoff coefficients within the IRL watershed. The values will be based on the 
satellite image classification and validation for land cover/land use, elevation 
data, and soil data of the study area. Objective 2: to calculate the runoff depth of 
the IRL watershed over an eleven-year duration (2006–2011) using the derived 
value of the runoff coefficients and rainfall data provided by National Oceanic 
and Atmospheric Administration National Weather Service (NOAA NWS) River 
Forecast Centers (RFCs) collected from the Hydrologic Rainfall Analysis Project 
(HRAP). The outcome will represent the actual quantity of rainfall that was con-
verted to runoff for the year. Objective 3: to visually assess if there is a geographic 
correlation of surface runoff and algae concentrations during months of the 2011 
super algal bloom. The finished products can aid in gaining coastal resilience to 
help adapt to storms, flooding events, and parameters can be used to determine 
suitability for stormwater parks and infrastructure. The data acquired from the 
public GIS databases include ground-truthed information and remotely sensed 
data which were carefully interpreted and validated by professionals.

1.1 The Indian River Lagoon system

The Indian River Lagoon (IRL), spanning ~40% of Florida’s east coast, is one 
of the nation’s biggest and most biodiverse estuaries. The IRL consists of barrier 
islands separating its water from Atlantic Ocean [1]. The exchange of the IRL water 
with the ocean occurs naturally at Ponce De Leon Inlet in New Smyrna Beach, and 
Jupiter Inlet near West Palm Beach. The other man-made inlets include Sebastian 
Inlet, Fort Pierce Inlet, Port Canaveral, and St. Lucie inlet. The estuary stretches 
251 km along the east coast of Florida with numerous tributaries [2]. The IRL 
system is made up of three sub lagoons that include the Mosquito Lagoon, which 
is in the northern section, the Banana River, and the IRL (Figure 1). The natural 
sources of freshwater for the IRL include Crane Creek (Melbourne, FL), Eau Gallie 
River, St. Lucie River, St. Sebastian River, and Turkey Creek. A secondary natural 
source of freshwater in the IRL is the Tomoka River which is located west of the 
lagoon running north connecting to the Halifax River then eventually the Mosquito 
Lagoon. Although the Tomoka River is not directly connected to the IRL or in its 
watershed, the Halifax River (Figure 1) is partially connected to the northern 
lagoon at Ponce Inlet and therefore its watershed is included in this study. The 
IRL and Halifax River watershed contains ~40 cities. The developed urban land 
comprises impervious surfaces and residential communities that primarily contain 
turf grass.

In the summer of 2011, a super algal bloom event occurred in the IRL which 
reached a high biovolume of dinoflagellate Pyrodinium bahamense var. bahamense 
(33.9 × 106 μm3 mL−1) with mean chlorophyll a concentrations (6.2–16.4 μg/L) that 
positively correlated with total nitrogen and total phosphorus levels that exceeded 
historical levels in various locations [3]. Following the massive algae bloom, there 
have been recurrent blooms consisting of green macroalgae such as Chaetomorpha sp. 
since 2013 [4, 5]. As a result of the 2011 super algal bloom, the coverage of seagrass 
within the IRL drastically declined from the loss of photosynthetic light by the surface 
algae [6]. Although fluctuations in seagrass bed percent cover in the lagoon have been 
understood as a part of a natural cycle of decline and recovery as seagrass abundance, 
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scientists suspect that nonpoint source pollution via surface runoff may have had a 
significant impact on the recent recurring algal blooms in the lagoon [7, 8].

1.2 Surface runoff and runoff models

Surface runoff is water from rain or snowmelt that travels over the land before 
entering nearby waterbodies. Stormwater flowing across surrounding land trans-
ports various pollutants, and ultimately contributes to non-point source pollution. 
Surface runoff negatively affects many aquatic ecosystems as the runoff transports 
pollutants and other substances into waterbodies, which can alter turbidity, phos-
phorus and nitrogen concentrations, and organic matter content in receiving water-
bodies [9]. The effects of surface runoff can also be intensified by climate change 
in specific regions that may have highly developed land and altered hydrology from 
the addition of artificial stormwater structures that modify the flow of water [10]. 
Human activities have been shown to have a stronger impact on runoff than climate 
change, but both stressors significantly impacts runoff quantities [10].

Figure 1. 
A map of Indian River Lagoon and Halifax River, Florida. The Indian River Lagoon is composed of three 
waterbodies: the Mosquito Lagoon, Indian River, and the Banana Lagoon. The inset map provides a reference 
for the location of the lagoon in Florida.
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Hypothetical land cover change scenarios in a simulated hydrological study 
within the Lavrinha watershed in Minas Gerais State, Brazil showed that deforesta-
tion in the Atlantic Forest biome would lead to increases in soil moisture (5%), 
runoff (22%), and decreases in runoff interception (71%) from the loss of roots and 
extensive rhizomes [11]. Impervious surfaces in urban watersheds can influence the 
biogeochemical processes, organism’s abundance, stress, and vulnerability from 
heated surface runoff during hot summers [12]. Incorporation of the contributing 
factors such as vegetative cover that may enhance or influence the effects is effective 
in hydrological modeling for determining the amount of runoff.

The characteristics of the land surrounding waterbodies affect the amount of 
surface runoff. During the process of rainfall becoming runoff, various charac-
teristics of the land’s surface, such as land use, soil type, and topography, will 
heavily impact the quantity of runoff [13]. Vegetative cover of the surrounding 
land can potentially act as a buffer for aquatic systems receiving runoff [14]. 
During rainfall events, impervious surfaces such as roads, parking lots, and other 
pavements increase runoff due to extremely limited infiltration into the ground. 
Areas with 75–100% imperviousness can yield runoff that represents up to 55% 
of any rainfall [15].

The potential runoff coefficient (PRC) represents the portion of rain that 
becomes surface runoff during a rain event, and it is determined by the land use, 
soil texture, and slope [16]. The potential runoff coefficient was derived from 
methods of developing a unit hydrograph (UH) for specific depths of rainfall. The 
hydrograph provided the assumption that discharge at any time is proportional to 
the volume runoff, and the temporal factors for a given duration are constant [17]. 
Runoff coefficients have been widely utilized in the hydrological modeling along 
with other computational factors for research in flood frequency, flood predic-
tion, and storm management [18–20]. Hydrologic simulation model software’s 
have been developed using spatial data and GIS [5]. Another method that includes 
runoff coefficients to hydrological modeling is the runoff curve number (CN) 
method created by the United States Department of Agriculture Natural Resources 
Conservation Service. Unlike the potential runoff coefficient, the CN can be 
calculated for each watershed and encompass the potential maximum retention of 
the soil over a given period of time.

PRC can be determined for land surfaces with different characteristics along 
with the quantity of runoff known as the “runoff depth.” Given the quantity of 
runoff being influenced by the determining conditions, spatial variation in PRC 
can be estimated for a specific time duration within a given estuarine drainage 
area. In order to demonstrate this, runoff coefficients and runoff depths were 
calculated using geographic information systems (GIS) for the drainage basin of 
the Indian River Lagoon (IRL), Florida, which recently had recurring severe algal 
blooms. Nonpoint source pollution from surface runoff may have had been a cause 
for the recurring algal blooms in the lagoon [7, 8]. Use of the spatially contiguous 
PRC across an area of interest provides additional resources and information for 
stormwater research within a coastal watershed. Runoff coefficients of a watershed 
along with other information can be utilized for analytical processes to gain further 
insight of stormwater dynamics on local and regional scales.

Since 2011, IRL experienced severe algal bloom events; and non-point source 
pollution through surface runoff is suspected to be one of the causes for the algal 
blooms. The goal of this study is to calculate the spatially contiguous PRC and 
runoff depth for the drainage basin of IRL and the connected estuary, the Halifax 
River, Florida for an eleven-year period (2006–2016) in order to determine which 
areas and factors contribute to the runoff. The 2011 monthly runoff depth of the 
draining areas was compared with the 2011 monthly algal bloom maps of a previous 
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study in order to see any visible correspondence between the locations of algal 
bloom initiation and the locations with high runoff depth values.

2. Data for model components

The procedure to derive the PRCs and runoff depths for the IRL consisted of 
processing satellite imagery to derive the land cover and land use (LC/LU), col-
lecting the soil textures throughout study area, and calculating slope using terrain 
elevation data within the watershed.

2.1 Land cover/land use

Land cover and land use (LC/LU) is one of the factors for calculating PRC. The 
LC/LU was derived by classifying the European Space Agency (ESA) Sentinel 
2 Level 1C 10 m satellite imagery from November of 2016. Four images were 
downloaded from the ESA Sentinel Scientific Data Hub website to encompass the 
elongated watershed of the IRL (https://scihub.copernicus.eu/dhus/#/home). The 
images were preprocessed with the ESA Sentinel Application Platform (SNAP) 
remote sensing software along with the Sentinel 2 toolbox. Before classifying LC/
LU of the study area, an atmospheric correction was applied to the images using the 
Sen2cor 2.3.2 plugin within ESA SNAP to eliminate the effects of water vapor, aero-
sols, and cirrus clouds when utilizing spectral reflectance data. The preprocessing 
output of the Sentinel 2 data produces Sentinel Level-2A data which includes values 
that represent the radiation at the bottom of the atmosphere (BOA). Once the BOA 
output was produced, the four images were mosaicked to produce a continuous 
raster image of the IRL. By applying a supervised maximum likelihood classifica-
tion in ENVI 5.4, the images were classified into five categories; forest, grass, bare 
soil, crop, and impervious.

2.2 Slope

A digital elevation model (DEM) from the United States Geological Survey 
National Elevation Dataset (USGS NED) was used to generate terrain slope at a 
spatial resolution of 10 m (http://viewer.nationalmap.gov/basic/?howTo=true) 
within ESRI ArcMap 10.5 (380 New York Street, Redlands, CA 92373-8100). The 
elevation values were collected with Interferometric Synthetic Aperture Radar, 
and referenced to the North American Vertical Datum of 1988 (NAVD 88). A 
preliminary analysis of the DEM was performed to fill in the low areas or “sinks” 
that are considered to be errors so that modeled runoff would flow smoothly across 
the land’s surface. The filled output map was used to create the slope for the areas 
surrounding IRL. The percent slope was classified into three classes due to the low 
elevation throughout Florida.

2.3 Soil

The soil data used in the analysis were obtained from the Web Soil Survey 
(WSS) (http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx). The 
WSS is operated by the United States Department of Agriculture Natural Resources 
Conservation Service (NRCS) and contains geospatial data and information 
produced by the National Cooperative Soil Survey. The NRCS soil data are produced 
from soil samples collected from NRCS State Soil Scientist for counties throughout 
the United States and are available in tabular and geospatial data. The spatial data 
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are provided in the Geographic Coordinate System and World Geodetic System of 
1984 datum (GCS_WGS_84). The data for soil classification were acquired for six 
Florida coastal counties: Volusia, Brevard, Indian River, St. Lucie, Martin, and Palm 
Beach. Tabular information for the soil texture was extracted from the Web Soil 
Survey Microsoft Access Database file and imported into the ArcMap 10.5 soft-
ware. The data contained a variety of different soil names for classification: muck, 
Myakka fine sand, and Turnbull muck, that are all used for determining the slope 
constant along with LC/LU.

2.4 Precipitation for runoff depth

The runoff depth represents the amount of rainfall that is converted into runoff 
[16]. Therefore, rainfall data for the Halifax River and IRL watershed were col-
lected to calculate the runoff depth using the runoff coefficients. The data were 
acquired from the National Oceanic and Atmospheric Administration (NOAA) 
National Weather Service (NWS) River Forecast Center (RFC) website. The data 
were downloaded in the ArcGIS shapefile format as point data with a projection 
of the Hydrologic Rainfall Analysis Projection (HRAP) grid coordinate system 
that has a North Pole Stereographic projection, and a grid resolution of 4762.5 m 
(https://water.weather.gov/precip/download.php). The rainfall data are acquired in 
a multi-sensor process that uses radar and rain gauge to estimate the precipitation. 
After extracting the point data, the shapefiles were converted into raster data. Due 
to estimation of multi-sensor collected data, the data are first stored in a binary file 
format called XMRG. This file is then read into the HRAP grid coordinate system 
through the NWSRFS Operational Forecast System using the NEXRAD Mean Areal 
Precipitation Preprocessor (MAPX) to associate grid points from XMRG data to 
represent the hourly average precipitation for each area [21].

3. Data analysis

3.1 LC/LU accuracy assessment

Before assessing the PRCs for the study area, the LC/LU image was tested for 
its accuracy. The accuracy assessment test consisted of collecting 600 referenced 
points using a stratified random method that randomly assigns points in each 
class. A 2016 Digital Globe basemap in ArcMap 10.5 of a higher spatial resolution 
(0.62 m) was utilized to visually interpret the land cover for each reference point. 
The output table consisted of a confusion matrix that displays the error of omis-
sion, the error of commission per class, and overall accuracy ranging from 0 to 1. 
Another test for accuracy of the LC/LU classification image included calculating the 
Cohen’s kappa (K) coefficient [22].

3.2 PRC

Potential runoff coefficient (PRC) values were derived to represent ratio of the 
rainfall that would convert to surface runoff per pixel. The PRC for the IRL area 
was determined by combining the soil texture, LC/LU, and the slope data. The PRC 
is calculated from a linear relationship between the runoff coefficients and slope, 
which is shown in Eq. (1) [23].

  𝐶 =  C  0   +  (1 −  C  0  )    S ____ s +  s  o  
    (1)
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slope in reference to the first row of every land use class in PRC values for different 
land use, slope, and soil texture published in [23] which is sourced from published 
material [24–28].   s  o   represents the slope constant for different land use and soil 
textures that were empirically derived over a collection of studies. Following reclas-
sification, classes for both parameters were assigned arbitrary weighted values and 
the soil and LC/LU values for the data were multiplied in the ArcMap 10.5 “Raster 
Calculator” tool. The arbitrary values were assigned to the classes to conveniently 
identify each combination of LC/LU and soil texture per pixel from the products. 
The products of the combinations helped derive the   C  0   and   s  0    per pixel in the image. 
The products for the variables were also used to calculate the PRC (Eq. (1)) using the 
Raster Calculator Tool.

3.3 Runoff depth

The total precipitation values were collected for eleven years (2006–2016), 
and imported into ArcMap 10.5 to be interpolated. The precipitation values (in.) 
for each of the years were interpolated using the Kriging method with a spherical 
semivariogram model. The method assumes that the values are more related when 
in close proximity, and the spatial autocorrelation decreases with distance. After 
the precipitation was interpolated for each year, the data were multiplied (cell-by-
cell) by the PRC raster of the corresponding year using the raster calculator tool 
provided in ArcMap 10.5 toolboxes. The output of the images provided the runoff 
depth (centimeters) for each year, and the average runoff depth for the eleven-year 
period (2006–2016) was calculated per pixel (10 m). The outputs of this image can 
delineate potential sources of runoff for inland waterbodies that may be connected 
to the lagoon through a network of drainage systems.

Concentrations of chlorophyll a in the IRL during the 2011 super algal bloom 
were compared to runoff depth of surrounding areas. Kamerosky et al. [29] 
estimated and mapped the Chi a concentrations using the Medium Resolution 
Imaging Spectrometer (MERIS) platform aboard the European Space Agency 
(ESA) Environmental Satellite (ENVISAT) and calculated Normalized Difference 
Chlorophyll Index (NDCI) [29, 30].

3.4 Linear regression between LDI and runoff depth

In order to meet proper data conditions for linear regression analysis in 
ArcMap 10.5, the raster images were sampled into vector data as a point feature 
class. Land development intensity (LDI) data was collected from the Florida 
Department of Environmental Protection (FDEP) Geospatial Open Data Site 
(http://geodata.dep.state.fl.us/). The LDI serves as a human disturbance gradient 
that incorporates land use and energy used per unit area [31]. It is used in watershed 
modeling to delineate human-dominated areas, and to scale the human induced 
impacts on physiological, biological, and chemical processes. A total of 600 points 
were randomly placed within the Halifax River and IRL watershed via “Create 
Random Points” tool. Points that were placed over large waterbodies were deleted, 
leaving 528 sample points left for the analysis. Values from the LDI and runoff 
depth were extracted to the points.

To adequately assess the relationship between urbanized areas of intense 
impervious coverage and surface runoff, an ordinary least squares (OLS) regres-
sion analysis and geographically weighted regression (GWR) was performed 
in ArcGIS 10.5. These regression analyses use bandwidth methods to find the 
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optimal sampling distances between data points, adding a geospatial component 
to regression analysis. The OLS regression is designed as a “Global Model” with an 
assumption that the explanatory and dependent variables have global trends over a 
particular study area. In simplified context, it is assumed that the data are continu-
ous throughout the area therefore being “stationary” data.

For the OLS analysis, the Jarque-Bera statistic tests for model bias that can arise 
from nonstationary data, misspecification of independent variables, and skewed 
residuals [32]. Due to the positively skewed data for LDI and runoff depth values, 
a logarithmic transformation was applied to data to ensure a normal distribution 
of the datasets while making the variance independent of the mean. The Koenker’s 
Studentized Breusch-Pagan (Koenker BP) statistic tests for nonstationary with a null 
hypothesis that the dependent and independent variables have a consistent relation-
ship in geographic space, thus being stationary [33]. A rejected null hypothesis of this 
test indicates that there are local trends between the variables within the study area.

Presence of significant spatial autocorrelation using the Global Moran’s Index 
(Moran’s I) is based on the assumption of stationary data. In this case there will 
be clustering of standard residuals from heteroscedasticity, thus indicating a local 
model such as GWR is more appropriate. Therefore, the standard residuals pro-
duced from both regression analyses were tested for significant clustering using the 
Moran’s I test. On the other hand, a GWR is a “nonstationary” model that accounts 
for the local trends in relationships between the variables. In OLS analysis, LDI 
data from the FDEP and 11-year mean precipitation were used as the independent 
variable, and the 11-year mean runoff depth as dependent variable. The GWR only 
included the LDI as independent, and runoff depth as dependent variable due to 
collinear relationships with rainfall within clustered locations within the study area.

4. Results

4.1 LC/LU classification

There are six LC/LU classes delineated from the supervised classification. 
The land that mostly consists of agriculture occurs in the southern section of the 
watershed. The overall accuracy of the LC/LU classification image was 0.82, and 
the lowest accuracies were in the impervious (User accuracy of 0.65) and bare soil 
(0.53) classes. This may have been due to the spectral similarity between bare sand 
along the coast and impervious surfaces such as roof tops. The reference points that 
appeared to exist in unhealthy brown vegetation were misclassified as bare soil. The 
kappa coefficient for the LC/LU image was 0.77, with an overall average of 0.82.

4.2 Slope

The slope for the study area was assigned a quantile classification to exclude 
the effects from outliers in the digital elevation map. The elevation in the state of 
Florida is relatively flat with an average slope of ~0.47 m per pixel. The areas of high 
percent slope are manmade structure such as buildings, walls, or homes in devel-
oped areas. Some manmade structures with unusually high slopes were identified as 
the outliers. The other cities have slopes ranging from 0.50 to 1.79 average percent.

4.3 Soil

The soil texture classification for central east Florida consists of mostly fine with 
Myakka Fine Sand as a native soil, covering more than 1.5 million acres of land, and 
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labeled as the Florida Official State Soil [34]. The soil data were reclassified into the 
12 different textures within the USDA Soil Texture Triangle to accurately imple-
ment the values: sand, loamy sand, sandy loam, silt loam, sandy clay loam, silty clay 
loam, sandy clay, silty clay, and clay. The total study area was composed of 67.7% 
sand, 4.5% loamy sand, and 8.7% silty clay.

4.4 PRC

The PRC values range from 3 to 100% (Figure 2). The PRCs are higher in runoff 
values in developed areas that are in close proximity to the coastal waterbodies 
of the IRL and Halifax River. The spatial resolution (10 m) of the image shows a 
detailed delineation of the manmade infrastructure within urban coastal communi-
ties such as roads, buildings, homes, and airports.

4.5 Precipitation

The precipitation data in the IRL watershed from 2006 to 2016 were divided into 
four quarters with each quarter representing the average of three-month intervals: 
January–March, April–June, July–September, and October–December. Although 
the quarterly intervals do not accurately align with seasons, the data are segmented 
to show the temporal shifts of the rainfall pattern in this area. The IRL watershed 
precipitation is usually the lowest within the first quarter averaging ~5.48 cm. As 
the seasonal rainfall increases in spring and summer moving from 10.03 cm in 
second quarter to 15.55 cm in the third quarter. The rainfall decreases towards the 
end of the year with an average of 5.58 cm.

Figure 2. 
Map displaying the potential runoff coefficients (PRC; %) for the Indian River Lagoon and Halifax River 
watersheds, FL.
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4.6 Runoff depth

The runoff depth values for the IRL ranges from 2.51 to 141.48 cm. The monthly 
runoff depth was calculated for 2011, the year of the super algal bloom in the IRL, 
to serve as potential explanation for the contribution of high surface runoff to 
locations of the algal blooms (Figures 3 and 4). The average runoff per sub-basin 
(Figures 3 and 4) was compared to the chlorophyll a concentrations quantified 
from European Space Agency’s Medium Resolution Imaging Spectrometer (MERIS) 
for 2011 [29] (Figures 5 and 6). The maps were all assigned the same symbology to 
aid easier depictions of changes in quantities, and for comparison between months.

4.7 Ordinary least squares regression

For the OLS model, LDI is statistically significant (p < 0.0001) for and robust 
probability. Precipitation determines the runoff depth, however, appears to be 
also significant at the 5%, but not as significant according to the robust p value 
(p = 0.05, robust p = 0.06). The variance inflation factor (VIF) tests for the redun-
dancy amongst the explanatory variables that are added to the model. If two or 
more explanatory variables tell the same story because they are linearly related, the 
error variances are inflated, and the resulting multicollinearity produces a higher 
VIF. Studies suggest that accepting VIFs fewer than 7.5 or 10 is the rule of thumb for 
determining if there is multicollinearity within a dataset [35].

Figure 3. 
The monthly mean runoff depth per sub-basin in the Indian River Lagoon from January 2011 to June 2011.  
The values increase form dark green, to warmer colors.
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Within the OLS diagnostic results, statistical values provide information 
describing the performance of the model along with indicators for choosing an 
alternative model to adequately address the overall question (Table 1). The Akaike’s 
information criterion (AIC) measures the overall model performance, which can be 
used in comparison to other regression analyses [36]. The multiple R2 explains how 

Figure 4. 
The monthly mean runoff depth per sub-basins in the Indian River Lagoon from July 2011 to December 2011. 
The values increase form dark green, to warmer colors.

Figure 5. 
Indian River Lagoon chlorophyll a concentrations for spring 2011. The concentrations are estimated using 
medium resolution imaging spectrometer normalized difference chlorophyll index (image source: [29]).
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much the independent variables explain the variation in the dependent variable. In 
relation to the multiple R2 the Adjusted R2 accounts for the model complexity. The 
multiple R2 the Adjusted R2 for this tests shows a small R2 between the variables 
(R2 = 0.15). The OLS regression also tests for the model significance with the Joint 
F-statistic and Joint Wald statistic to support the significance of R2 values (Table 2).

The Koenker’s BP statistic tests for nonstationary and heteroscedasticity. The 
null hypothesis is that the dependent and independent variables have a consistent 
relationship in geographic space, thus being stationary [33]. The Koenker’s BP statistic 
shows significant existence of nonstationary trends between runoff depth and LDI 
(p = 0.004). Therefore, the model significance was interpreted based on the Joint 
Wald statistic (p < 0.0001) which also indicates that the relationship was statisti-
cally significant. However, the overall measure of how well the explanatory variables 
explained the variation in the runoff depth from the OLS analysis was relatively small 
(R2 = 0.15). The Jarque-Bera statistic tests for model bias that can arise form nonsta-
tionary data, misspecification of independent variables, and skewed residuals [30]. 
In this case, the Jarque-Bera statistic shows no significant model bias (p = 0.064). A 
Global Moran’s Index was performed on the residuals of the output file to test for the 
assumption of no spatial autocorrelation or clustering in the data. The Global Moran’s 
Index showed statistically significant clustering rejecting the null hypothesis that the 
data are randomly distributed spatially within a global assumption (Moran’s I = 0.07, 
p < 0.0001). Therefore, the OLS results should not be used to adequately interpret 
relationship between the explanatory variables and runoff depth.

4.8 Geographically weighted regression

Due to the detection of nonstationary and/or heteroscedasticity in the datasets, a 
GWR was used to adequately assess the relationship. The Global Moran’s Index and 

Figure 6. 
Indian River Lagoon chlorophyll a concentrations for 2011 (September–December 2011). The concentrations are 
estimated using medium resolution imaging spectrometer normalized difference chlorophyll index (image source: [29]).

Variable Coefficient Standard 

error

t-statistic Probability Robust 

SE

Robust 

probability

VIF

Intercept 1.032 0.531 1.943 0.053 0.571 0.071

Precipitation 0.009 0.005 1.967 0.050 0.005 0.060 1.001

LDI 0.692 0.071 9.780 <0.0001 0.085 <0.0001 1.001

Table 1. 
A table of the ordinary least squares model variables.
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Anselin Local Moran’s Index was performed to test for clustering and local patterns 
of spatial association [37]. The Global Moran’s I indicated that the standard residu-
als produced from the GWR were significantly dispersed indicating the absence of 
spatial autocorrelation (Moran’s I = −0.025, p = 0.111). The algorithm calculated 
an index for every feature, and 96% of the local p-values were not significant 
(p > 0.05). The validation for choosing the GWR also can be justified by the smaller 
AICc produced (AICc = 1522.83) compared to the OLS (1573). The R2 for the GWR 
increased (R2 = 0.35) with a lower adjusted R2 of 0.26. As previously stated, the 
GWR accounts for nonstationary data that contain local trends for the relationship 
between the variables. Local trends within the dataset relationships were inevitable 
due to the complexity of different LC/LU within urban communities. The locally 
weighted regression coefficients can be seen on the coefficient raster produced by 
the GWR analysis (Figure 8). The coefficients show that LDI influences runoff 
in locations with more impervious surfaces and higher runoff depths, and for-
ested land cover that consists of low LDI values and low runoff. The coefficients 
increase from blue to yellow to red, indicating higher relationships between the two 
variables.

Table 3 shows statistical values generated from the model according to the 
optimal sampling distance for nearest neighbors (bandwidth). The sampling kernel 
type for the GWR was fixed, and therefore provides the bandwidth in meters. The 
Residual Squares is the sum of squared residuals that represent the distance between 
the observed and estimated values. Therefore, the data are more related when this 
value is smaller. With a strong influence from bandwidth, the Effective Number is 
a measure of the complexity of the model that is used to calculate other variables 
within the GWR model, and it is useful when compared to other models. The sigma 
is the estimated standard deviation for the residual sum of squares, which shows 

Number of observations: 564 AICc 1573.001

Multiple R-squared 0.151 Adjusted R-squared 0.147

Joint Wald statistic 67.250 Prob(>chi-squared), (2) df: <0.0001

Koenker (BP) statistic 10.963 Prob(>chi-squared), (2) df: 0.004

Jarque-Bera statistic 5.500 Prob(>chi-squared), (2) df: 0.064

Table 2. 
Statistical diagnostic results from the ordinary least squares regression.

Variable name Values

Bandwidth 11228.83 m

Residual squares 406.15

Effective number 66.62

Sigma 0.90

AICc 1522.83

R-squared 0.35

Adjusted R-squared 0.26

Dependent field 0.00

Explanatory field 1.00

Table 3. 
Results from the geographic weighted regression analysis.
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that the standard deviation of the observed values for runoff depth were relatively 
close to the predicted values calculated for the regression model (σ = 0.90).

5. Discussion

5.1 Spatially continuous PRC of the IRL and Halifax River watersheds

The goal of this research is to calculate spatially continuous potential runoff 
coefficient (PRC) and runoff depth. In order to demonstrate how spatial and 
temporal variation in PRC can be estimated within a given estuarine drainage area, 
this study calculated PRC as a proportion of rainfall becoming surface runoff and 
calculated the runoff depth that is the amount of rainfall converted to runoff.

The average PRCs increase from forest, grass, agriculture, bare soil, and to 
impervious. Ideally, forested areas would have the highest interception of pre-
cipitation because of high percent cover of vegetation. Forested areas also have 
an increase in absorption from the abundance of extensive rhizome systems in 
the substrate. Areas of grass may have high percent cover of vegetation, but the 
interception of storm water may not as efficient due to the small biomass of plants. 
The classification image shows that forest (27.4%) and grass (24.7%) are the most 
dominant land covers within the IRL watershed. Forests mostly cover the northern 
section of the IRL watershed and the Halifax River watershed westward of coastal 
cities. The higher PRC values are located along the Halifax River and IRL in more 
developed urban communities such as Daytona Beach, Melbourne, and Palm Bay, 
Florida. Throughout the state of Florida, St. Augustine grass (Stenotaphrum secun-
datum [Walt.] Kuntze) is a popular turf grass used for urban lawns. This rhizome 
structure of this grass is dense, but relatively short in length which increases yields 
in runoff and shoreline erosion. Regardless of specific lawn grass, runoff coeffi-
cients are higher than forest cover. The recommended runoff coefficient value table 
for Georgia Stormwater Management also shows different values for grass covered 
lands based on the soil texture and slope [38]. However, there is only one value for 
forested areas despite the slope and texture. Although different from forests PRCs 
used in this study, a change in land cover can impact runoff yields particularly in 
areas of dense vegetation.

Impervious surfaces make up 15.3% of the study area much of which is located 
along the coastlines. Based on the National Atlas of the United States Spatial Data 
collected from the Florida Geographic Data Library (FGDL), there is a total of 40 
cities within the IRL watershed. For this study, the ten coastal communities with 
the highest cover of impervious surface were included: Palm Bay, Port St. Lucie, 
Melbourne, West Melbourne, Daytona Beach, Port Orange, Ormond Beach, New 
Smyrna Beach, Titusville, and Fort Pierce. The cities of the most impervious 
surfaces are Palm Bay with ~50,554 acres of impervious surfaces, and Port St. Lucie 
with ~73,959 acres of impervious cover.

5.2 Temporal variation in runoff depth

The runoff depth varies with changes in LC/LU and intensity of precipitation. 
The estimated average runoff depth for the IRL ranges from 2.5–141.5 cm for the 
11-year interval. The runoff depth throughout the study area fluctuates among 
the years (Figure 7), due to the changes in precipitation. With PRC values, the 
areas with potential nonpoint source pollution can be used as target locations for 
management or mitigation. Runoff depth values above the 11-year mean varied 
across the area and amongst the years. Runoff deviation from the mean indicated 
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that heavy runoff depth values above the 11-year mean are years of 2008, 2014, 
2015, and 2016. Causes for runoff differences can be contributed to fluctuations in 
climatic and annual weather patterns for rainfalls. Climatic and temporal trends 
have been related to changes in the IRL water quality such as El Niño years linked 
to declines in salinity levels in 1997, and the extended period of La Niña drought 
events that persisted in autumn of 2006 and summer 2007 [3]. The precipitation 
data for the IRL were low quantities in 2006 and 2007, and a gradual increase 
to 2016. The runoff depth appeared to be above the 11-year mean (35.89 cm) 
throughout the watershed for the years of 2014 and 2016. These are the years of 
strong El Niño events during which recurrent algal blooms occurred in IRL. La 
Niña events in Florida have shown nitrate levels to higher in ground water than in 
streams, which results that nutrients in aquifers accumulates from fertilizer, septic 
tank effluent, and animal wastes [39, 40]. The average runoff depth for 2006 was 
the lowest of the years, with 2016 being the highest.

Nutrient loads vary with different land use. For example, golf courses are 
suspected to be a major contribution to nutrient loading in waterways aside from 
agricultural lands. Recorded nitrate and phosphorus concentrations significantly 
increased at the outflow locations from the inflow concentrations for the Morris 
Williams Municipal Golf Course in Austin, TX [41]. Above average runoff depths in 
such locations can be monitored as an indicator for early warnings of algal blooms.

5.3 Linear regression between runoff depth, precipitation, and land development

Developed land within the IRL watershed contains impervious surfaces consist-
ing of roads, parking lots, and also vegetated lots that are highly altered by human 
development. Precipitation undoubtedly contributes to runoff quantities, but LC/
LU, and development can influence runoff yields. The regression analyses were 
used to test the relationship between runoff and development, as well as between 
runoff and precipitation. The OLS regression (Tables 1 and 2), the test to analyze 
if precipitation is an important factor for determining areas and timing with high 
runoff contribution, could not be adequately assessed due to spatial autocorrela-
tion (Moran’s I = 0.07, p < 0.0001). However, the results appear to be marginally 
significant at the 95% confidence interval (p = 0.05; robust p = 0.06). The LDI 

Figure 7. 
The mean of the total runoff depth for each year with standard error bars for standard deviation. The dotted 
line represents the average 11-year runoff depth (μ = 35.89 cm) (created in Microsoft Excel 2010).
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showed to be a significant (p < 0.0001) variable at explaining a significant amount 
of variation in runoff depth. Presence of significant spatial autocorrelation using 
the Global Moran’s I is based on the assumption of stationary data. In this case there 
will be clustering of standard residuals from heteroscedasticity, thus indicating a 
local model such as GWR is more appropriate. The Global Moran’s Index indicated 
no spatial autocorrelation with a negative index and rejecting the null hypothesis at 
with 95% confidence (Global Moran’s I = −0.025, p = 0.111).

Although the runoff depth was determined by precipitation, LC/LU can have a 
higher impact on the quantities of runoff. Empty grass lots within urban communi-
ties can have compacted soil from earlier construction activity which may decrease 
infiltration rates up to 70% in the central Florida region [42]. The runoff coef-
ficients for the agricultural land surfaces include the effects of compacted soil from 
heavy machinery. Based on the coefficient raster generated from the GWR analysis, 
LDI values for forested and impervious areas may account for most of the linear 
relationship between development and runoff (Figure 8). The local trends between 
rainfall and runoff on smaller time intervals may have a strong linear relationship. 
However, the mean rainfall values may have reduced the weights in local rainfall-
runoff relationships. This outcome also can be noticed within the 11-year mean 
runoff OLS regression from the existence of local relationships between runoff and 
the independent variables.

Precipitation estimates along the 251-kilometer IRL estuary and ~ 35-kilometer 
Halifax River varies within locations, with changing LC/LU as a factor. Areas with 
lower rainfall can have a higher runoff yield than areas with higher precipitation 
over forested areas that were assigned lower runoff coefficients. As a result, areas 
consisting of more human disturbance have a linear relationship with more runoff. 
Urban communities are often primary targets for some studies to analyze rainfall-
runoff by enhancing methods to estimate the DCIA in developed catchments [43]. 
Based on the global trends of urbanization within coastal areas, stronger rainfall-
runoff relationships have positive correlations with the increase of impervious 
cover percentages for urban zones within separate countries [44]. The purpose of 
choosing LDI was to indicate the contributions of surface runoff from vegetated 
lands affected by urban development. To further explain this relationship, future 
research should assess stormwater runoff using the impervious percentage images 
created by the USGS. The percentage of imperviousness can also be compared to 
increases in runoff depth.

5.4 Runoff depth during the 2011 super algal bloom

The IRL ecosystem recently suffered from a recurrence of algae blooms since 
2011 which are heavily influenced by anthropogenic stressors within its watershed, 
such as surrounding developed land with possible higher surface runoff [8]. Based 
on a visual comparison; the runoff depth was higher prior to the algal bloom events 
between 2011 and 2016 particularly near the areas of recorded high Chlorophyll 
a concentrations (Figures 3–6). It is important to note that the monthly runoff 
reflects precipitation estimates collected at the end of the month. Therefore, the 
runoff depth map for March should be visually compared to the chlorophyll a 
concentrations in April 2011.

Although there is no available MERIS NDCI calculations collected throughout 
the summer, there was an increase of runoff to 10–18 cm in May and June for the 
Banana River (Figures 5 and 6). The increase may explain the 48.62 μg/L spike in 
chlorophyll a May 2011 from April 2011. Based on the estimated concentrations by 
MERIS NDCI and water quality samples from SJRWMD, the algal bloom became 
higher on the 14 September 2011 with the highest concentrations in October [29]. 
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The runoff depth for October 2011 showed the high runoff with values above 15 cm 
in the southern IRL and Northern IRL. Subsequently, concentrations of chlorophyll 
a gradually decreased throughout October, and further dropped in November 
and December. Results also indicate that there were also smaller contributions of 
runoff during those months with decreasing trends. Visual comparisons between 
the chlorophyll a and runoff depth indicate that there may be a correlation positive 
association between the two variables for 2011. However, further analysis including 
statistical measures should be performed to assess the relationship.

5.5 Implication for coastal water management

Delineation of PRCs and runoff depths can provide a geographic depiction for 
assessing lands of interest to implement sustainable developmental designs and 
structures. In this study, runoff coefficients were calculated for each pixel regard-
less of surrounding pixel values. Therefore, computational methods used in this 
study to determine runoff depth were not assessed using methods to incorporate 
Directly Connected Impervious Areas (DCIA). DCIAs are areas that are considered 

Figure 8. 
The map above shows the geographically weighted regression locally weighted coefficients throughout the study 
area.
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to be hydraulically connected to the conveyance system according to the Southwest 
Florida Water Management District Resource Regulation Technical Guide [45]. 
Other study estimated runoff volumes in various sub-basins of rivers and tributar-
ies within the IRL watershed using DCIA and non-DCIA methods [46]. Runoff 
from such studies use a measure called the Soil Conservation Survey Runoff Curve 
Number. The overall runoff was calculated from the sum of the DCIA and non-
DCIA runoff, while runoff coefficients were derived by dividing the generated 
runoff by the total rainfall for the stations which was listed as “C values”. While 
this approach can be used to determine Total Maximum Daily Loads (TMDLs) for 
nutrients, PRCs from this study can be used to emphasize exact locations within the 
watershed that are suitable for LC/LU management practices.

Direct surface runoff into waterbodies can be significantly affected by impervi-
ous surfaces in close proximity. In other scenarios, runoff from developed lands 
may travel through vegetation before entering into a waterbody. The harmful 
effects of surface runoff from and on urban communities call for a need of more 
stringent regulations, and more efficient coastal urban planning and management. 
This approach of stormwater management provides a long term adaptation plan to 
be proactive to the future impacts from climate change. Delineation of potential 
runoff coefficients and runoff depths can provide a geographic depiction for 
assessing lands of interest to implement sustainable developmental designs and 
structures. Mean runoff depth and runoff coefficient values can be used to deter-
mine areas of high runoff to apply green infrastructure within a watershed. “Green 
Infrastructure” is the practice of utilizing natural vegetated areas for runoff treat-
ment by mimicking natural stormwater flow paths, and is composed of many low 
impact development (LID) designs [47]. Developed land within the IRL watershed 
contains impervious surfaces consisting of roads, parking lots, and also vegetated 
lots that are highly altered by human development.

Precipitation undoubtedly contributes to runoff quantities, but LC/LU, and 
development can influence runoff yields. The regression analyses were used to 
test the relationship between runoff and development, as well as between runoff 
and precipitation. The OLS regression, the test to analyze if precipitation is an 
important factor for determining areas and timing with high runoff contribution, 
could not be adequately assessed due to spatial autocorrelation (Moran’s I = 0.07, 
p < 0.0001). However, the results appear to be marginally significant at the 95% 
confidence interval (p = 0.05; robust p = 0.06). The LDI showed to be a significant 
(p < 0.0001) variable at explaining a significant amount of variation in runoff 
depth. Presence of significant spatial autocorrelation using the Global Moran’s I is 
based on the assumption of stationary data. In this case there will be clustering of 
standard residuals from heteroscedasticity, thus indicating a local model such as 
GWR is more appropriate. The Global Moran’s Index indicated no spatial autocor-
relation with a negative index and rejecting the null hypothesis at with 95% confi-
dence (Global Moran’s I = −0.025, p = 0.111).

Although the runoff depth was determined by precipitation, LC/LU can have 
a higher impact on the quantities of runoff. Empty grass lots within urban com-
munities can have compacted soil from earlier construction activity which may 
decrease infiltration rates up to 70% in the central Florida region [42]. The runoff 
coefficients for the agricultural land surfaces include the effects of compacted soil 
from heavy machinery. Based on the coefficient raster generated from the GWR 
analysis, LDI values for forested and impervious areas may account for most of 
the linear relationship between development and runoff. The local trends between 
rainfall and runoff on smaller time intervals may have a strong linear relation-
ship. However, the mean rainfall values may have reduced the weights in local 
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rainfall-runoff relationships. This outcome also can be noticed within the 11-year 
mean runoff OLS regression from the existence of local relationships between 
runoff and the independent variables.

Mitigation of stormwater runoff often includes developing more sustainable 
development strategies within urban communities. An aggregation of develop-
mental designs for combating runoff in an urban community showed reductions in 
runoff, and also projected expansions in bare soil, impervious cover, and soil altera-
tion will lead to higher runoff volumes [48]. As with vegetated and undeveloped 
surfaces within riverine systems, the hydrological changes in volume and base flows 
are reduced with this hybrid design. In reference to GIS approaches to correlating 
surface runoff to LCLU, urban areas and bare land also corresponded to the degra-
dation of stormwater quality [49].

6. Conclusion

The PRCs for the IRL were applied to land surfaces based on soil, land cover, 
and slope. These coefficients were used as ratios to determine the runoff depth 
per pixel within the IRL using precipitation data. After calculating the runoff 
depth for an 11-year period (2006–2016), it was found that the recent years (2014, 
2016) were above the average 11-year runoff matched years of strong El Niño. The 
runoff deviation from the 11-year mean was also calculated per pixel for each year 
and highlighted higher runoff quantities closer to the shore of the IRL within the 
watershed. It is well known that impervious surfaces decrease infiltration, thus 
increasing runoff yields. Even with vegetated landscape, highly developed land can 
have poor infiltration from compact soil. The linear regression analysis showed that 
land development has a significant relationship with runoff depth, and there are 
local trends between the variables. During the 2011 super algal bloom, the months 
of March and April 2011 showed increases in runoff, which matched the areas with 
higher chlorophyll a mapped with MERIS in the Mosquito Lagoon in the Northern 
IRL [29]. In October 2011, extremely high concentrations were detected from 
MERIS and sampled from St. Johns River Water Management District; this research 
also calculated high runoff depth concentrations, delineated in the IRL watershed 
for October 2011. Based on these analyses, the output of this research can possibly 
delineate areas within the coastal communities that experience higher runoff, and 
help locate more suitable areas for stormwater parks, green infrastructure, and sus-
tainable stormwater structures. Future research can include using the indices such 
as LDI to further correct the runoff coefficients for a particular watershed. PRCs 
can be applied to other watersheds of coastal ecosystems for as a visual reference, or 
used as a parameter for more advanced hydrologic modeling.
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