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Chapter

Modeling Accumulated
Evapotranspiration Over Time
Omar Cléo Neves Pereira and Altair Bertonha

Abstract

The knowledge of accumulated evapotranspiration by seasonal vegetation crops
throughout their life cycle can be an important tool in decision-making when
considering the economic viability of the crop. This knowledge can help understand
how much the plants, subject to specific management, can evapotranspirate at the
end of their cycle. This information assists in estimating the quantity of a produc-
tion variable, for example, the mass of shoot fresh matter, besides indicating a more
interesting period for its harvest. The objective of this chapter is, from the daily
evapotranspiration estimative throughout the cycle, to model the accumulated
evapotranspiration over the entire growth period of the crop. In order to do so, we
must understand that the behavior of the response variable, i.e., the accumulated
evapotranspiration, over time is not linear and keep in mind that the several obser-
vations performed in the same experimental unit have correlations and these cor-
relations are more intense the closer temporally the measurements are. This
understanding leads us to the analysis of longitudinal data from the nonlinear
mixed effect models perspective.

Keywords: longitudinal data, nonlinear mixed effect model, growth curve,
correlation structure, irrigation

1. Introduction

With available water in the soil, the water flow through the plants depends only
on atmospheric demand. Therefore, physical variables as temperature, relative air
humidity, and wind and solar radiation affect directly the evapotranspiration (ET)
of a vegetated surface [1]. Besides that, the plants development state may also
affect the ET.

Seasonal vegetation crops present a small demand for water, while their root
system is small, reaching maximum rates in full growths and decreasing in the final
stages of development. For these species, the accumulated ET over the plant cycle is
directly related to its productivity. In other words, the greater the accumulated
amount of evapotranspirated water, the greater the quantity of the production
variables as shoot fresh and dry matter masses, number of leaves, and leaf
area [2, 3].

The objective of this chapter is to illustrate the use of nonlinear mixed effect
models to fit accumulated ET over time in seasonal vegetation crops.
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2. Response profile

Figure 1 presents the accumulated ET from a single lettuce plant over 23 con-

secutive days, being the first day equivalent to the 35th day after seeding. Through-
out this period, the plant’s daily ET was measured. Hence, the first day in the graph
presents the ET value from the last 24 h, the second day refers to the last 48 h, and
so on. The daily ET must be understood as the rate at which the accumulated ET
occurs over time. In mathematical terms, the daily ET can be understood as an
approximation of the derivative (rate) of the accumulated ET with respect to time.

We wish to describe the behavior of our variable of interest or response variable,
the accumulated ET over time for seasonal vegetation crops. As the amount of
evapotranspirated water in 1 day is added to the accumulated ET from previous
days, its values over time are equal (in case ET from a whole day is null) or greater
than the immediately preceding value.

Observations from the response variable in more than one moment in the same
experimental unity constitute what we call as response profile. Therefore, Figure 1
presents the response profile of a lettuce plant over time. This profile, apparently,
presents an S-shaped format.

At the first days of observations (Figure 1), the accumulated ET is small because
the plant is at the beginning of its growth. As the days go by, the daily ET values

increase successively approximately until the 20th day. After the 20th day, the daily
ET, i.e., the rate of change of the accumulated ET, begins to decrease. This causes
the accumulated ET, which has been growing exponentially, to have a less vigorous
growth and, therefore, tending slowly to a maximum value.

3. A model for growth data

In order to describe the behavior of the accumulated ET over time, we also need
an S-shaped function. In addition, it is expected that the chosen model will be
interpretable and parsimonious in the parameters. An empirical option is the poly-
nomial model, which has linear parameters. This type of model can promote good

Figure 1.
Response profile of the accumulated ET for a single lettuce plant over 23 consecutive days.
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statistical adjustments and be computationally simpler but does not add any theo-
retical consideration to the physical and/or biological mechanisms that generated
the data. On the other hand, a nonlinear model is associated with some theoretical
knowledge regarding the studied phenomenon. Besides the interpretability, these
models use few parameters when compared to linear models, thus configuring a
more parsimonious description of the data [4].

Regarding the accumulated ET over time, we have some physical and biological
aspects that we can use to choose a proper model. A function that describes this
response variable needs parameters that delimit it between a minimum and a
maximum value. In other words, the minimum value should be really close to zero
and indicate the beginning of the plant’s growth, and the maximum should be a
value to which the accumulated ET tends asymptotically as the end of the life cycle
approaches. Another aspect to highlight is that the model should present an inflec-
tion point, which indicates the day that the accumulated ET rate (daily ET) reaches
its maximum value.

There are several functions capable of characterizing the accumulated ET over
time in the sense we just described. For example, we will use the four-parameter
logistic function (4PL) to describe our response variable. This function is widely
used to fit growth or decay data. There are some parametrizations for this function
in the literature, but we are using the one given by [4]

ET tð Þ ¼ ϕ1 þ
ϕ2 � ϕ1

1þ exp ϕ3 � tð Þ=ϕ4½ �
(1)

with ET tð Þ being the accumulated ET over time and ϕ1�4 the model parameters
(Figure 2). ϕ1 is the inferior horizontal asymptote which gives the accumulated ET
value when t ! �∞. Biologically, this parameter does not have a consistent inter-
pretation, but it is important in the fitting because it ensures the accumulated ET, in
times close to zero, to be very small [2, 3]. ϕ2 is the superior horizontal asymptote
and gives the accumulated ET value when t ! ∞. This parameter can be

Figure 2.
Graphical representation of the 4PL parameters (Eq. (1)). Figure adapted from [4].
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interpreted as the maximum accumulated ET estimative that the plant can reach in
its final life cycle. ϕ3 is the curve’s inflection point and indicates the day (time) in
which the daily ET reaches a maximum value. The corresponding time to ϕ3 results
in an accumulated ET between ϕ1 and ϕ2. More precisely, the accumulated ET until
time ϕ3 is the mean value of both asymptotes, i.e., ϕ1 þ ϕ2ð Þ=2. ϕ4 is the scale
parameter. The day (time) corresponding to ϕ3 þ ϕ4 gives � 0:75 ϕ2 � ϕ1ð Þ of the
accumulated ET. Therefore, ϕ4 indicates how quickly the accumulated ET leaves
the proximity of ϕ1 until it reaches values close to ϕ2. The greater the ϕ4, the slower
this occurs.

To better understand what we have said, let’s observe Figure 3. It brings the
observed data shown in Figure 1 represented by the black dots and two other curves
representing two different fits made from this data. The first is a fifth-degree
polynomial model, and the second is given by Eq. (1). The graph in this figure was

extended until the 40th day in order to present the behavior of these fittings over
time.

Both the fifth-degree polynomial and the nonlinear 4PL models have fitted well

with the data. However, the polynomial model goes to zero after the 30th day, which
physically is impossible. Besides that, this model presents five parameters without
any physical and/or biological explanation for the phenomenon in this study. The
4PL nonlinear model is a strictly increasing function, being compatible with a
variable which is accumulated over time. Nevertheless, this fitting does not allow
the infinite growth of the accumulated ET as time grows larger and larger. It limits
the accumulated ET to a value which can be understood as a maximum amount in
which this plant can evapotranspirate throughout its life cycle.

We also see that, from approximately the 20th day, the accumulation of evapo-
transpiration water is decreasing. This indicates that this day is the inflection point
of the nonlinear 4PL model. For a practical example of the model’s inflection point
regarding seasonal vegetation crops, suppose that the commercial product of a
given crop plant is its leaves. It is known that the production variables present a
positive correlation with the amount of total evapotranspired water throughout the

Figure 3.
Accumulated ET response profile for a single lettuce plant over 23 consecutive days. The graph was extended

until the 40th day to present the behavior of two fittings made for this data, a fifth-degree polynomial and a
nonlinear model given by Eq. (1).
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plants’ life cycle. That is, the larger the total evapotranspiration water, the higher
the values of the production variables [2, 3]. Hence, the inflection point can indicate
the proximity of the harvest day. From this point, the ET rates decrease, and
therefore, the plants start to accumulate less quantities of shoot fresh matter over
time. Thus, this point can be considered when thinking in terms of the economic
viability of the crop.

Another important aspect, besides the parameter interpretability, is that the
nonlinear 4PL model is more parsimonious than the linear model. In general,
nonlinear models use a small number of parameters than the linear ones, which
grant them more parsimony. Besides that, as can be observed in Figure 3, in regions
outside the data interval, the nonlinear model gives a more trustworthy prediction
for the response variable [4].

4. Longitudinal data

Clearly, in order to make sense, an experiment must provide data from more
than one experimental unit. In our case, more than one plant should be observed
over time, i.e., we must obtain more than one response profile. Studies in which the
response variable is observed repeatedly throughout time in the experimental units
are called longitudinal studies. This kind of work is common in agriculture when
analyzing the increase or decrease of the response variable over time [2, 3, 5–8].

Measurements performed in the same experimental unit are most likely to be
correlated. Suppose two plants which its ET is registered daily. If all covariables
(fertilization, cultivate, planting season, soil water, and so on) were kept constant
over time, plants with high rates of ET in a given day will most likely also have high
rates of ET in the next day, the same for plants with smaller ET rates. If in a day the
rate is small, probably in the next day it will also be small. In other words, mea-
surements performed in the same experimental unit tend to be similar over time. It’s
the individual expression of each plant.

Besides the correlation between the observations within the same experimental
unit, we must consider that, most likely, these correlations are greater for observa-
tions performed between neighboring times than those performed between more
distant times.

5. Mixed effect model

In a longitudinal study, the monitoring of the experimental units over time
generates correlated dataset. As mentioned, these correlations within the same
experimental unit are stronger among neighboring observations. The greater the
time distance between two measures, the weaker the correlation between them.
Besides that, when we observe experimental units which received the same condi-
tions regarding growth over time and are part of the same treatment, we have a
variability among them that we attribute to chance. The treatment effects, the
correlations, and the variabilities in a longitudinal study indicate that we need a tool
that, in addition to being flexible in specifying a mathematical model, also empha-
sizes each experimental unit.

In mixed effect models, we select an ordinary function to describe the response
variable regarding the studied covariables, that is, the responses of the experimental
units in a population. Besides that, specific coefficients of this function can be
unique for each experimental unit. In a mixed effect model, we assume that the
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experimental units of a population have the same functional form, but the function
parameters may vary among the units.

The namemixed model comes from the fact that this model combines fixed effects
and random effects. A mixed effect model is a parametric model which describes the
relations between the response variable and the covariables (fixed effects) and takes
into account the individual responses of each experimental unit (random effects).
In other words, the fixed effects parameters describe the relations of the response
variable and the covariables in an entire population, and the random effects specify
the contribution of each individual within the population [4, 9–12].

To illustrate how to write a 4PL nonlinear model with mixed effect, let’s assume
that we are studying the accumulated ET regarding four levels of water in the soil,
W1, W2, W3, and W4 (there could be more levels of water in the soil or less, but to
exemplify, let’s assume four treatments). We will consider that the response vari-
able, the accumulated ET, has a normal probability distribution. Consider ETij as
the accumulated ET at the j situation, for plant i, with j ¼ 1, 2,⋯, ni e i ¼ 1, 2,⋯, N,
where ni is the number of observations for the i-th plant and N is the total number
of plants. The nonlinear 4PL mixed effect model can be expressed by [2, 3]

ETij ¼ ϕ1i þ
ϕ2i � ϕ1i

1þ exp ϕ3i � tj
� �

=ϕ4i

� �þ εij (2)

being

ϕi ¼

ϕ1i

ϕ2i

ϕ3i

ϕ4i

2

6

6

6

4

3

7

7

7

5

¼

β1 þ γ1x1i þ δ1x2i þ ζ1x3i

β2 þ γ2x1i þ δ2x2i þ ζ2x3i

β3 þ γ3x1i þ δ3x2i þ ζ3x3i

β4 þ γ4x1i þ δ4x2i þ ζ4x3i

2

6

6

6

4

3

7

7

7

5

þ

b1i

b2i

b3i

b4i

2

6

6

6

4

3

7

7

7

5

(3)

¼ βþ γx1i þ δx2i þ ζx3i þ bi, (4)

with the parameters β, γ, δ, ζ representing the fixed effects and bi the random
effects in the model. xki with k ¼ 1; 2; 3 are indicative covariables of treatments or
groups and may have values zero or one. The parameter β is the reference level in
the study. When x1i ¼ x2i ¼ x3i ¼ 0, thus, ϕi ¼ βþ bi and the i-th plant belongs to
the treatment W1. When x1i ¼ 1 and x2i ¼ x3i ¼ 0, ϕi ¼ βþ γ þ bi and the i-th
plant belongs to the treatment W2. If x2i ¼ 1 and x1i ¼ x3i ¼ 0, ϕi ¼ βþ δþ bi and
the i-th plant belongs to the treatment W3. And lastly, if x3i ¼ 1 and x1i ¼ x2i ¼ 0,
ϕi ¼ βþ ζ þ bi and the i-th plant belong to the treatment W4. The random effects
bi are considered independent among the plants and are normally distributed with
mean zero and covariance matrix Ψ (bi � N 0;Ψð Þ). In this case, the covariance
matrix is given by

Ψ ¼

σ21 σ12 σ13 σ14

σ12 σ22 σ23 σ24

σ13 σ23 σ23 σ34

σ14 σ24 σ34 σ24

2

6

6

6

4

3

7

7

7

5

(5)

with σ21, σ
2
2, σ

2
3, and σ24 being the variances of random effects b1i, b2i, b3i, and b4i,

respectively, and σ12, σ13, σ14, σ23, σ24, and σ34 are the covariances between them.
The variances of the random effects indicate how a model parameter varies between
the experimental units. Frequently, we suppose that the errors within the groups εij
are independent between the observations of the same experimental unit and that
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they are distributed the same way among the experimental units. For a given sample
unit i, we can describe the error εij as the time j indexed vector, i.e.,

εi ¼

ε1i

ε2i

⋮

εnii

2

6

6

6

4

3

7

7

7

5

,

where each vector εi has ni observations throughout time and we assume that
they follow a normal multivariate distribution with mean zero and covariance
matrix Λi, i.e.,

εi � N 0;Λið Þ: (6)

Most of the times, we consider Λi ¼ σ2I, being σ2 a constant variance for all j
times.

By using nonlinear mixed effect models, we must consider the technical diffi-
culty in the parameter estimation. In a mixed effects linear model, the derivative of
the logarithmic of the likelihood function allows, in a simple way, the algorithm
implementation, like Newton-Raphson, to obtain the estimative of the models
parameters. Nonlinear models can, however, present nonlinear random coefficients
which make it impossible to directly explain the parameters from the likelihood
function. Methods that depend on linear approximations such as the first-order
Taylor approximation can be used to estimate the model.

Nonlinear mixed effect model analysis can be, preferably, made by the R soft-
ware [13] with the package name [14], also, at the SAS software using PROC
NLMIXED. An excellent text to learn how to use these skills is given in [4].

6. Covariance structure of Λi

Mixed effect model allows the dependence between the observations to
be specified in the model parameters through random effects. In other words,
the experimental unit responses from a population tend to follow a nonlinear
growth path; however, each experimental unit has its own growth path, and the
mixed effect model allows the inclusion of specific coefficients to obtain fitted
growth curves that align better with the individual responses of these
experimental units.

Thus, mixed models allow relevant flexibility for the specification of the random
effects correlation structure. However, the dependence structure of the observa-
tions within the experimental units Λi until now has been considered independent,
identically distributed with mean zero and constant variance. Depending on the
chosen model, the growth responses can be explained just by including specific
coefficients for the experimental units. However, this may not be enough, and, in
this case, modeling the residual dependence of the data becomes important.

There are cases where dependence on observations not accommodated by the
growth function is not well understood or, sometimes, additional covariables that
could explain this dependences are absent from the model. Thus, an important
resource to model this dependence is to identify the covariance structure that allows
correlation between the residuals in different occasions. Then, let us relax on the
assumption that the errors are independent and allow them to have heterosce-
dasticity and/or are correlated within the experimental units.
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There are several covariance structures for the residues available in the software
to help model longitudinal data. However, in our text, we will highlight only two
that we consider more important for these studies, the covariance structure with
heterogeneous variance and the first-order auto-regressive.

6.1 Heterogeneous variance

The first covariance structure we will consider for Λi is the one that admits
heterogeneity of the ni residual variances. In this structure, which has ni parame-
ters, we assume that the residuals associated with the observed values at the ni
occasions for the i-th experimental unit are independent:

Λi ¼

σ21 0 ⋯ 0

0 σ22 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ σ2ni

2

6

6

6

4

3

7

7

7

5

: (7)

Other variables, besides time, can also be considered with heterogeneous vari-
ance in the model. For example, there are cases in which it is important to model the
heterogeneity of the treatments, and we can do it by using mixed models.

6.2 First-order auto-regressive

Another covariance structure for Λi which is widely used for longitudinal data is
the first-order auto-regressive, also called AR 1ð Þ:

Λi ¼ σ2

1 ρ ⋯ ρni�1

ρ 1 ⋯ ρni�2

⋮ ⋮ ⋱ ⋮

ρni�1 ρni�2
⋯ 1

2

6

6

6

4

3

7

7

7

5

: (8)

This structure has only two parameters, the variance parameter σ2, always
positive, and the covariance parameter ρ, which may vary between �1 and 1. This
kind of structure allows the residues associated with the observations in neighbor-
ing occasions to be more correlated than those whose observations are further apart.
The AR 1ð Þ is preferred for datasets in which the longitudinal observations are
equally spaced.

7. Real data example

To exemplify what we have done so far, let’s work with some real data of the ET
from lettuce plants grown in pots. A total of N ¼ 12 were completely randomized
into three levels of water in the soil. At the first treatment, W1, the water level for
the plant were kept between 50.0 and 75.0% of the substrate’s retention capacity. In
the other two treatments, W2 and W3, the water level in the substrate was kept
between 50.0 and 87.5% and between 50.0 and 100.0%, respectively. When the
retention capacity of the substrate reached 50.0%, the pots were irrigated until their
maximum level regarding each treatment.

The profile graphs from the accumulated ET for all pots in each treatment are
shown in Figure 4. Note that the inferior asymptote, when t ! �∞, is apparently
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the same for all plants, i.e., the individual and treatment effects do not seem to be
important for this parameter.

We model this data using Eq. (2) and considering treatment W1 as baseline. The
random effects were added to the parameters ϕ2i, ϕ3i, and ϕ4i, and the treatments
were important to explain the parameters ϕ2i e ϕ3i. Besides that, we consider the
heterogeneity in the treatments and an AR(1) correlation structure for Λi. The
parameter estimative of the model is presented in Table 1.

The parameter ϕ2i seems to be influenced by the other treatments, and its value
was estimated in � 2:44 kg for W1, � 2:44þ 0:94 ¼ 3:38 kg for W2, and
� 2:44þ �0:27ð Þ ¼ 2:17 kg for W3. The inflection point, i.e., the day the accumu-
lated ET rate was maximum, also seems to be influenced by the treatments.W1 and
W2 were not statistically different for the parameter ϕ3i, butW3, with estimative of
� 14 days, appears to be statistically different from W1 (� 17 days).

The first graph presented in Figure 5 brings the accumulated ET mean in each
day of the four plants in each treatment. The solid lines are fitting for the treatments

Figure 4.
Response profile for the accumulated ET of the lettuce plants over 23 consecutive days for the soil water levels
W1, W2, and W3.

Parameters β̂ (W1) γ̂ (W2) δ̂ (W3)

ϕ1 �0.133363 — —

ϕ2 2.439746 0.935210 �0.272847

ϕ3 16.648272 0:405882NS �2.302124

ϕ4 5.765065 — —

The only nonsignificant parameter NS
� �

was ϕ3i for the treatment W2 with p-value >0:34. The other parameters

presented p-value <0:001.

Table 1.
Estimative for the models fixed effects parameters.
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made by Eq. (2). The other graphs present all values observed for the four plants in
each treatment, and the solid lines indicate the individual model for each plant.
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Figure 5.
Response profile of the accumulated ET by the lettuce plants over 23 consecutive days for the water soil levels
W1, W2, and W3.
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