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Chapter

A Direct Construction of
Intergroup Complementary Code
Set for CDMA
Palash Sarkar and Sudhan Majhi

Abstract

A collection of mutually orthogonal complementary codes (CCs) is said to be
complete complementary codes (CCCs) where the number of CCs are equal to the
number of constituent sequences in each CC. Intergroup complementary (IGC)
code set is a collection of multiple disjoint code groups with the following correla-
tion properties: (1) inside the zero-correlation zone (ZCZ), the aperiodic autocor-
relation function (AACF) of any IGC code is zero for all nonzero time shifts; (2) the
aperiodic cross-correlation function (ACCF), of two distinct IGC codes, is zero for
all time shifts inside the ZCZ when they are taken from the same code groups; and
(3) the ACCF, for two IGC codes from two different code groups, is zero every-
where. IGC code set has a larger set size than CCC, and both can be applicable in
multicarrier code-division multiple access (CDMA). In this chapter, we present a
direct construction of IGC code set by using second-order generalized Boolean
functions (GBFs), and our IGC code set can support interference-free code-division
multiplexing. We also relate our construction with a graph where the ZCZ width
depends on the number of isolated vertices present in a graph after the deletion of
some vertices. Here, the construction that we propose can generate IGC code set
with more flexible parameters.

Keywords: complementary code (CC), code-division multiple access (CDMA),
generalized, Boolean function (GBF), intergroup complementary (IGC) code set,
zero-correlation zone, (ZCZ) sequences

1. Introduction

Code-division multiple access (CDMA) [1] is an important communication tech-
nology where sequence signatures with good correlation properties are used to sepa-
rate multiple users. In CDMA systems, multipath interference (MPI) and multiple
access interference (MAI) degrade the performance where MPI andMAI occur due to
the multipath propagation, non-ideal synchronization, and non-ideal correlation
properties of spreading codes. Spreading code plays a significant role on the overall
performance of a CDMA system. The interference-resist capability and system
capacity are determined by the correlation properties and available number of
spreading codes. Due to ideal auto- and cross-correlation properties, complete com-
plementary codes (CCCs) have been applied to asynchronous multicarrier CDMA
(MC-CDMA) [2] communications in order to provide zero interference performance.
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Golay proposed a pair of sequences in Golay [3] known as Golay complementary
pair (GCP) which is a set of two equal length sequences with the property that the
sum of their aperiodic autocorrelation function (AACF) is zero everywhere except
at the zero shift. Tseng and Liu [4] extended the idea of GCP to complementary
set or complementary code (CC) which contains two or more than two sequences.
Davis and Jedwab [5] proposed a direct construction of GCP called Golay-Davis-
Jedwab (GDJ) pair by using second-order generalized Boolean functions (GBFs) to
reduce peak-to-mean envelope power ratio (PMEPR) for OFDM system. As a gen-
eralization of GDJ pair, Paterson introduced a construction of CC Paterson [6] by
associating each CC with a graph. Recently, a construction of CC has been reported
in Sarkar et al. [7] which is a generalization of Paterson’s CC construction. Later,
Rathinakumar and Chaturvedi extended Paterson’s construction to CCC
Rathinakumar and Chaturvedi [8] which is a collection of mutually orthogonal CCs.
Although CCs have ideal AACF and aperiodic cross-correlation function (ACCF),
they are unable to support a maximum number of users as the set size cannot be
larger than the flock size [9–11], where the flock size denotes the number of
constituent sequences in each CC. The application of CCC has been extended for the
enabling of interference-free MC-CDMA communication by designing a fractional-
delay-resilient receiver in Liu et al. [12].

The binary Z-complementary sequences were first introduced by Fan et al. [13]
and later extended to quadriphase Z-complementary sequences by Li et al. [14].

Recently, a construction of binary Z-complementary pairs has been reported in
Adhikary et al. [15]. A direct construction of polyphase Z-complementary codes has
been reported in Sarkar et al. [16], which is an extension of Rathinakumar’s CCC
construction. Due to favorable correlation properties of Z-complementary codes, it
can be easily utilized for MC-CDMA system as spreading sequences to mitigate MPI
and MAI efficiently [17]. The theoretical bound given in Liu et al. [18] shows that
the Z-complementary codes have a much larger set size than CCCs.

IGC code set was first proposed by Li et al. [19] based on CCCs. Their code
assignment algorithm shows that the CDMA systems employing the IGC codes
(IGC-CDMA) outperform traditional CDMA with respect to bit error rate (BER).
However, the ZCZ width of IGC codes [19] is fixed to the length of the elementary
codes of the original CCCs, which limits the number of IGC codes. Another
improved construction method of IGC codes is proposed in Feng et al. [20] based on
the CCCs, interleaving operation, and orthogonal matrix which provides a flexible
choice of the ZCZ width. However, there is no such construction which can directly
produce IGC code set without having operation on CCCs; it motivates us to give a
direct construction of IGC code set.

This chapter contains a direct method to construct IGC code set by applying
second-order GBFs. This construction is capable of generating IGC code set with
more flexible parameters such as ZCZ width and set size. We also relate our
construction with a graph, and it has been shown that ZCZ width and set size of the
IGC code set obtained by using our method depend on the number of isolated
vertices present in a graph which is achieved by deleting some vertices from
a graph.

2. Preliminary

2.1 Correlations of sequences

The ACCF between two sequences a ¼ a0; a1;…; aL�1ð Þ and b ¼ b0; b1;…; bL�1ð Þ
is defined as follows:
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C a;bð Þ τð Þ ¼
Σ
L�1�τ

i¼0 aiþτb
∗
i , 0≤ τ <L,

Σ
Lþτ�1
i¼0 ajb

∗
i�τJ

�L< τ <0,

0, otherwise,

8

>

<

>

:

(1)

where τ is an integer. The above defined function in Eq. (1) is said to be AACF of
a (or, b) if a ¼ b. The AACF of a at τ is denoted by A að Þ τð Þ.

Definition 1 An ordered set a0; a1,…; aP�1
� �

containing P sequences of equal length

L is called CC lf

∑
P�1

i¼0
A aj
� �

τð Þ ¼
LP, τ ¼ 0,

0, otherwise:

�

(2)

Definition 2 Let C0;C1,…;CK�1
� �

be a set of K CCs where each of the CC contains

P K ≤Pð Þ constituent sequences of length L. The αth constituent sequence of Ci is
Ci,α ¼ Ci,α,0;Ci,α,1 Ci,α,L�1ð Þ where α ¼ 0, 1, …, P� 1, i ¼ 0, 1, …, K � 1. The
ACCF of the CCs is given by

C Ci;C j
� �

τð Þ ¼ ∑
P�1

α¼0
C Ci,αCj,α

� �

τð Þ ¼ 0, ∀τ, i 6¼ j: (3)

The code set is said to be CCC when K ¼ P.
Definition 3 Given an IGC code set I (K,P,L,Z) (Li et al. [19]), K denotes a number

of codes, P denotes the number of constituent sequences in each code, L denotes the length
of each constituent sequence, and Z denotes ZCZ width, where K ¼ PL=Z. The K codes
can be divided into P code groups denoted by Ig g ¼ 0; 1;…;P� 1ð Þ, each group contains
K=P ¼ L=Z codes. The code set I K;P;L;Zð Þ has the following properties:

C Ci;Cj
� �

τð Þ ¼

PL, i ¼ j, τ ¼ 0,

0, i ¼ j,0< ∣τ∣ <Z,

0, i 6¼ j,Ci,Cj ∈ Ig, ∣τ∣ <Z,

0, Ci ∈ Ig1 ,Cj ∈ Ig2 , g1 6¼ g2, ∣τ∣ <L,

others, otherwise:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(4)

2.2 Generalized Boolean functions

Let f : 0; 1f gm ! Zq (q is average number, not less than 2) be a function of m
variables x0, x1,…, xm�1. The product of k distinct variables
χi0χi1…χik�1

0≤ i0 < i1 <⋯< ik�1 ≤m� 1ð Þ is called a monomial of degree k. The

monomials 1, x0,…, xm�1, x0x1,…, xm�2xm�1,…, x0x1…xm�1 are the list of 2
m mono-

mials over the variables x0, x1,…, xm�1. A GBF f can uniquely be presented as a
linear combination of these 2m monomials, where the coefficient of each monomial
belongs to Zq. We denote the complex valued sequence corresponding to the GBF f

by ψ fð Þ and define it as

ψ fð Þ ¼ ω
f0;ω f 1 ;…;ω f 2m�1

� �

, (5)

where f i ¼ f i0; i1;…; im�1ð Þ, ω ¼ exp 2π
ffiffiffiffiffiffi

�1
p

=q
� �

, and i0; i1;…; im�1ð Þ are the
binary representation of the integer i i ¼ ∑m�1

i¼0 ij2
j

� 	

. Let C be an order set of P

Boolean functions given by C ¼ f 0; f 1;…; f P�1

� �

. Then the complex valued code

3

A Direct Construction of Intergroup Complementary Code Set for CDMA
DOI: http://dx.doi.org/10.5772/intechopen.86751



corresponding to the set of Boolean function C is denoted by ψ Cð Þ, given by
ψ Cð Þ ¼ ψ f 0

� �

;ψ f 1
� �

;…;ψ f P�1

� �� �

. The code can also be viewed as a matrix where

ψ f i�1

� �

is the ith row of the matrix.
For any given GBF f of m variables, the function f 1� x0; 1� x1;…; 1� xm�1ð Þ is

denoted by ~f . For a Zq valued vector e ¼ e0; e1;…; eL�1ð Þ, we denote the vector e by

e0; e1;…; eL�1ð Þ where ei ¼ q
2 � ei i ¼ 0; 1; …;L� 1ð Þ. Now, we define the following

notations a and a ∗ , where a is derived from a by reversing it and a ∗ is the complex
conjugate of a.

2.3 Quadratic forms and graphs

In this context, we introduce some lemmas and new notations which will be
used for our proposed construction.

Definition 4 Let f be a GBF of variables x0, x1,…, xm�1 over Zq. Consider a list of

k 0≤ k <mð Þ indices 0≤ j0 < j1 <⋯jk <m, and write x ¼ xj0 ; xj1 ;…; xjk�1

� �

. Consider

c ¼ c0; c1;…; ck�1ð Þ to be a fixed binary vector. Then we define ψ f jx¼c

� �

as a complex

valued vector with ω
f i00 i10⋯0 im�1ð i as a ith component if ij

α
¼ cα for each 0≤ α< k and equal

to zero otherwise. For k ¼ 0, the complex valued vector ψ f jx¼c

� �

is nothing, but the

vector ψ fð Þ is defined before.
Let Q : 0; 1f gm ! Zq be a quadratic form of m variables x0, x1,…, xm�1: A

quadratic GBF is of the form Rathinakumar and Chaturvedi [8]

f ¼ Q þ ∑
m�1

i¼0
gixi þ g0, (6)

where g0, gi ∈Zq are arbitrary.
For a quadratic GBF, f , G fð Þ denotes the graph of f . The G fð Þ is obtained by

joining the vertices xi and xj by an edge if there is a term qi, jxixj 0≤ i< j≤m� 1ð Þ in
the GBF f with qi, j 6¼ 0 qi, j ∈Zq

� 	

. Consider a function f jxj¼c, derived by fixing xj at

c in f . The graph of f jxj¼c is denoted by G f jxj¼c

� 	

which is obtained by deleting the

vertex xj and all the edges which are connected to xj from G fð Þ. Then G f jx¼c

� �

is

obtained from G fð Þ by deleting xj0 , xj1 ,…, xjk�1
: G f jx¼c

� �

represent the same graph

for all c∈ 0; 1f gk. Therefore, for all c in 0; 1f gk; f









x¼c
have the same quadratic

form. Note that the quadratic forms of f and ~f are the same; thus, they have
associated with the same graph.

Lemma 1 Construction of CCC [8].
Let f : 0; 1f gm ! Zq be a GBF and f its reversal. Assume that G f jx¼c

� �

is a path

for each c∈ 0; 1f gk and the edges in the path have the same weight q=2. Let
b0; b1;…; bk�1ð Þ be the binary representation of the integer t. Define the order sets of
GBFs Ct to be

f þ q

2
∑
k�1

α¼0
dαxj

α
þ ∑

k�1

α¼0
bαxj

α
þ dxγ

� �

: d; dα ∈ 0; 1f g
� 


, (7)

and the order set of GBFs ~Ct to be

~f þ q

2
∑
k�1

α¼0
dαxj

α
þ ∑

k�1

α¼0
bαxj

α
þ dxγ

� �

: d; dα ∈ 0; 1f g
� 


, (8)
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where xγ is one of the end vertices in the path. Then

ψ Ctð Þ : 0≤ t < 2k
� �

∪ ψ
∗ ~C

t
� 	

: 0≤ t < 2k
n o

(9)

generates a set of CCC, where ψ ∗ �ð Þ denotes the complex conjugate of ψ �ð Þ.

3. Construction of IGC code set from GBFs

In this section, we propose a direct construction of IGC code set by
using Boolean algebra and graph theory. Before proposing the main theorem
of the construction, we define some sets and vectors and present some
lemmas. First we define some notations which will be used throughout in our
construction:

• x ¼ xj0 ; xj1 ;…xjk�1

� �

∈Z
k
2, x0 ¼ xm�p0xm�pþ1;…; xm�1

� �

∈Z
p
2 .

• b ¼ b0; b1;…; bk�1ð Þ, bi ¼ bi,0; bi,1;…; bi,k�1ð Þ∈Z
k
2 i ¼ 1; 2;…; 2k
� �

.

• d ¼ d0; d1;…; dk�1ð Þ∈Z
k
2, d0 ¼ d01; d

0
2;…; d0p

� 	

and

d0
j ¼ d0j,1; d

0
j,2;…; d0j,p

� 	

∈Z
p
2 j ¼ 1; 2;…; 2pð Þ.

• Γ ¼ gm�pJ
gm�pþ10⋯0gm�1

� 	

∈Z
p
q .

• a�b denotes the dot products of any two vectors a and b which are of the same
length.

• A⊗B denotes the Kronecker product of any two matrices of arbitrary size.

• �ð Þi, j
h i

, i ¼ 0, 1, …, M� 1 and j ¼ 1, 2,…, N denotes a matrix of order

M�N.

Let f be a GBF of m variables x0, x1, …, xm�1 over Zq. For b∈Z
k
2, d0 ∈Z

p
2 , we

define order sets Sbd0 and ~Sbd0 corresponding to the GBF f as follows:

Sbd0 f þ q

2
∑
k

α¼0
dαxj

α
þ ∑

�1

α¼0
bαxj

α
þ ∑

p

α¼1
d0
α
xm�pþα�1 þ dxγ

� �

: d; dα ∈ 0; 1f g
� 


, (10)

or

Sbd0 ¼ f þ q

2
dþ bð Þ � xþ d0 � x0 þ dxγ

� �

: d∈Z2;d∈Z
k
2

n o

, (11)

and

~Sbd0 ¼ ~f þ q

2
dþ bð Þ � xþ d0 � x0 þ dxγ

� �

: d∈Z2;d∈Z
k
2

n o

(12)

From the above expression, it is clear that each of the order sets Sbd0 and ~Sbd0

contains 2kþ1 GBFs.
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Lemma 2 Let f be a GBF of m variables with the property that each c∈ 0; 1f gk,  
G fð jx¼cÞ contains a path over m� k� p 0≤ k <m; p≥0ð Þ vertices and p isolated
vertices labeled m� p, m� pþ 1,…, m� 1 such that 0≤ kþ p≤m� 2 m≥ 2ð Þ.
Further, assume that there was no edges between deleted vertices (as defined before, the
restricted variables in a GBF are considered as the vertices to be deleted in the graph of the
Boolean function) and isolated vertices before the deletion. Let xγ be one of the end vertices

of the path in G f jx¼c

� �

and the weight of each edge in the path be q=2. Let a01, a
0
2,…, a02m�p

be binary vector representations of 0, 1, 2m�p � 1 of length m� p and r1, r2,…, r2p be
binary vector representations of 0, 1, 2p � 1 of length p. Also let l be a positive integer such

that l ¼ Σ
k�1
i¼0di2

j þ d2k. Then for any choice of g0, gj ∈Zq, the codes ψ (Sbd0) and ψ ~Sbd0Þ
�

can be expressed as

ψ Sbd0ð Þ ¼ ψ Fblð Þω Γþq
2d

0ð Þ�rj0
h i

, l ¼ 0, 1,…, 2kþ1 � 1, j0 ¼ 1, 2,…, 2p,

ψ ~Sbd0Þ ¼ ψ F0
bl

� �

ω
Γþq

2d
0ð Þ�rj0

h i

, l ¼ 0, 1,…, 2kþ1 � 1, j0 ¼ 1, 2,…, 2p,
� (13)

where

ψ Fblð Þ ¼ ω
Fbl a01ð Þ; ;ωFbl a02ð Þ;…; ;ωFbl a0

2m�pð Þ
� 	

,

ψ Fbl
0ð Þ ¼ ω

F0
bl a01ð Þ; ;ωF0

bl a02ð Þ;…; ;ωF0
bl a0

2m�pð Þ
� 	

,

Fbl ¼ f 0 þ q

2
dþ bð Þ � xþ dxγ

� �

,

F0
bl ¼ ~f 0 þ q

2
dþ bð Þ � xþ dxγ

� �

,

f 0 ¼ Q þ ∑
m�p�1

i¼0
gixi þ g0:

(14)

Proof 1 Since there are no edges between the deleted and isolated vertices before the
deletion of k vertices xj0 , xj1 ,…, xjk�1

, the quadratic form Q presented in G fð Þ can be

expressed as

Q ¼ q

2
∑

m�k�p�1

α¼0
xπ αð Þxπ αþ1ð Þ þ ∑

0≤ μ< v≤ k�1

b0j
μ
, jv
xj

μ
xjv þ ∑

m�k�p�1

α¼0
∑
k�1

σ¼0
c0
π αð Þj

σ

xπ αð Þxj
σ
,

(15)

where π is a permutation over the set 0; 1; …;m� 1f g∖ j0; j1; …; jk�1

� �

∪

m� p; m� pþ 1; …; m� 1f g, b0j
μ
, jv

∈Zq

� �

which denotes the weight between the

vertices xj
μ
and xjv and c0

π αð Þ, j
σ

∈Zq

� �

denotes the weight between the vertices xπ αð Þ and xjσ .

Therefore, f 0 is a GBF of m� p variables x0, x1,…, xm�p�1, and the GBF f of m variables

can be expressed as.

f ¼ f 0 þ ∑
m�1

i¼m�p
gixi (16)

or

f ¼ f 0 þ Γ � x0: (17)
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Now we define a GBF Fb
l over m variables by

Fb
l ¼ f þ q

2
dþ bð Þ � xþ d0 � x0 þ dxγ

� �

¼ Fbl þ Γþ q

2
d0

� 	

� x0.
(18)

Let a1, a2,…, a2m be binary vector representations of 0, 1, 2m � 1 of length m, given
in Table 1. The truth table given in Table 1 can also be expressed as the truth table
given in Table 2. Table 3 contains a truth table over m� p variables.

From Tables 1–3, it is observed that the code ψ Sbd0ð Þ can be expressed as

ψ Sbd0ð Þ ¼ ω
Fb
l ajð Þ

h i

, l ¼ 0,1, 2kþ1 � 1, j ¼ 1, 2,…, 2m (19)

a1

a2

⋮

a2m

Table 1.
Truth table over m variables.

a01r1

a2 0r1

⋮

a02m�pr1

a01r2

a2 0r2

⋮

a02m�pr2

⋮

a01r2p

a02r2p

⋮

a02m�p r2p

Table 2.
Truth table over m variables.

a01

a02

⋮

a02m�p

Table 3.
Truth table over m� p variables.
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or

ψ Sbd0ð Þ ¼ ψ Fblð Þω Γþq
2d

0ð Þ�rj0
h i

, l ¼ 0, 1,…, 2kþ1 � 1, j0 ¼ 1, 2,…, 2p, (20)

where

ψ Fblð Þ ¼ ω
Fbl a01ð Þ;ωFbl a02ð Þ;…;ω

Fbl a0
2m�0

� 	

 !

, l ¼ 0, 1, 2kþ1 � 1: (21)

Similarly, we can show that

ψ ~Sbd0Þ ¼ ψ F0
bl

� �

ω
Γþq

2d
0ð Þ�rj0

h i

, l ¼ 0, 1, 2kþ1 � 1, j0 ¼ 1, 2,…, 2p:
�

(22)

Example 1 Let f be a GBF of four variables over Z4, given by

f x0; x1; x2; x3ð Þ ¼ 2x1x2 þ 3x0 x1 þ x2ð Þ þ x0 þ x2 þ x3 þ 1: (23)

From the G fð Þ, given in Figure 1, it is clear that after the deletion of the vertex x0, the
resultant graph contains a path over the vertices x1, x2 and an isolated vertex x3. For this

example k ¼ 1 and p ¼ 1. Therefore, the vectors b,d,d0,x,Γ and x0 are of length one
and belong to Z2.

Hence, b ¼ bj0
� �

¼ b0ð Þ ¼ b0, d ¼ d0ð Þ ¼ d0, d0 ¼ d01
� �

¼ d01, x ¼ xj0
� �

¼ x0ð Þ ¼ x0, Γ ¼ gm�p

� 	

¼ g0
� �

¼ 1, and x0 ¼ xm�p

� �

¼ x3ð Þ ¼ x3. The set of

Boolean functions Sb0d01 and
~Sb0d01

are given below:

Sb0d01 ¼ f þ q

2
d0x0 þ b0x0 þ d01 x3 þ dx2
� �

: d; d0 ∈ 0; 1f g
n o

, (24)

and

~sb0d01
¼ ~f þ q

2
d0x0 þ b0x0 þ d01x3 þ dx2
� �

: d; d0 ∈ 0; 1f g
n o

: (25)

The GBFs Fb0l and F0
b0l

are given by

Fb0l ¼ 2x1x2 þ 3x0 x1 þ x2ð Þ þ x0 þ x2 þ 1þ q

2
d0x0 þ b0x0 þ dx2ð Þ (26)

Figure 1.
The graph of the GBF 2x1x2 þ 3x0(x1 þ x2) þ x0 þ x2 þ x3 þ 1.
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and

F0
b0l

¼ 2x1x2 þ 3x0 x1 þ x2ð Þ þ x0 þ x2 þ 1þ q

2
d0x0 þ b0x0 þ dx2
� �

, (27)

where l ¼ 0; 1; 2; 3.
The codes corresponding to the sets of Boolean functions are listed below:

1Þ ψ S00ð Þ ¼

ω
1
ω
2
ω
1
ω
1
ω
2
ω
2
ω
0
ω
3
ω
2
ω
3
ω
2
ω
2
ω
3
ω
3
ω
1
ω
0

ω
1
ω
0
ω
1
ω
3
ω
2
ω
0
ω
0
ω
1
ω
2
ω
1
ω
2
ω
0
ω
3
ω
1
ω
1
ω
2

ω
1
ω
2
ω
1
ω
1
ω
0
ω
0
ω
2
ω
1
ω
2
ω
3
ω
2
ω
2
ω
1
ω
1
ω
3
ω
2

ω
1
ω
0
ω
1
ω
3
ω
0
ω
2
ω
2
ω
3
ω
2
ω
1
ω
2
ω
0
ω
1
ω
3
ω
3
ω
0

2

6

6

6

6

4

3

7

7

7

7

5

¼ ω
0
ψ C0
� �

ω
1
ψ C0
� �� �

(28)

where

ψ C0
� �

¼

ω
1
ω
2
ω
1
ω
1
ω
2
ω
2
ω
0
ω
3

ω
1
ω
0
ω
1
ω
3
ω
2
ω
0
ω
0
ω
1

ω
1
ω
2
ω
1
ω
1
ω
0
ω
0
ω
2
ω
1

ω
1
ω
0
ω
1
ω
3
ω
0
ω
2
ω
2
ω
3

2

6

6

6

4

3

7

7

7

5

:

2Þ ψ ~S00
� �

¼

ω
0
ω
1
ω
3
ω
3
ω
0
ω
0
ω
1
ω
0
ω
3
ω
0
ω
2
ω
2
ω
3
ω
3
ω
0
ω
3

ω
2
ω
1
ω
1
ω
3
ω
2
ω
0
ω
3
ω
0
ω
1
ω
0
ω
0
ω
2
ω
1
ω
3
ω
2
ω
3

ω
0
ω
1
ω
3
ω
3
ω
2
ω
2
ω
3
ω
2
ω
3
ω
0
ω
2
ω
2
ω
1
ω
1
ω
2
ω
1

ω
2
ω
1
ω
1
ω
3
ω
0
ω
2
ω
1
ω
2
ω
1
ω
0
ω
0
ω
2
ω
3
ω
1
ω
0
ω
1

2

6

6

6

6

4

3

7

7

7

7

5

¼ ω
1
ψ ~C

0
� 	

ω
0
ψ ~C

0
� 	h i

(29)

where

ψ ~C
0

� 	

¼

ω
3
ω
0
ω
2
ω
2
ω
3
ω
3
ω
0
ω
3

ω
1
ω
0
ω
0
ω
2
ω
1
ω
3
ω
2
ω
3

ω
3
ω
0
ω
2
ω
2
ω
1
ω
1
ω
2
ω
1

ω
1
ω
0
ω
0
ω
2
ω
3
ω
1
ω
0
ω
1

2

6

6

6

4

3

7

7

7

5

:

3Þ ψ S01ð Þ ¼

ω
1
ω
2
ω
1
ω
1
ω
2
ω
2
ω
0
ω
3
ω
0
ω
1
ω
0
ω
0
ω
1
ω
1
ω
3
ω
2

ω
1
ω
0
ω
1
ω
3
ω
2
ω
0
ω
0
ω
1
ω
0
ω
3
ω
0
ω
2
ω
1
ω
3
ω
3
ω
0

ω
1
ω
2
ω
1
ω
1
ω
0
ω
0
ω
2
ω
1
ω
0
ω
1
ω
0
ω
0
ω
3
ω
3
ω
1
ω
0

ω
1
ω
0
ω
1
ω
3
ω
0
ω
2
ω
2
ω
3
ω
0
ω
3
ω
0
ω
2
ω
3
ω
1
ω
1
ω
2

2

6

6

6

6

4

3

7

7

7

7

5

:

¼ ω
0
ψ C0
� �

ω
3
ψ C0
� �� �

(30)

4Þ ψ ~S01
� �

¼

ω
2
ω
3
ω
1
ω
1
ω
2
ω
2
ω
3
ω
2
ω
3
ω
0
ω
2
ω
2
ω
3
ω
3
ω
0
ω
3

ω
0
ω
3
ω
3
ω
1
ω
0
ω
2
ω
1
ω
2
ω
1
ω
0
ω
0
ω
2
ω
1
ω
3
ω
2
ω
3

ω
2
ω
3
ω
1
ω
1
ω
0
ω
0
ω
1
ω
0
ω
3
ω
0
ω
2
ω
2
ω
1
ω
1
ω
2
ω
1

ω
0
ω
3
ω
3
ω
1
ω
2
ω
0
ω
3
ω
0
ω
1
ω
0
ω
0
ω
2
ω
3
ω
1
ω
0
ω
1

2

6

6

6

6

4

3

7

7

7

7

5

:

¼ ω
3
ψ ~C

0
� 	

ω
0
ψ ~C

0
� 	h i

(31)
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5Þ ψ S10ð Þ ¼

ω
1
ω
0
ω
1
ω
3
ω
2
ω
0
ω
0
ω
1
ω
2
ω
1
ω
2
ω
0
ω
3
ω
1
ω
1
ω
2

ω
1
ω
2
ω
1
ω
1
ω
2
ω
2
ω
0
ω
3
ω
2
ω
3
ω
2
ω
2
ω
3
ω
3
ω
1
ω
0

ω
1
ω
0
ω
1
ω
3
ω
0
ω
2
ω
2
ω
3
ω
2
ω
1
ω
2
ω
0
ω
1
ω
3
ω
3
ω
0

ω
1
ω
2
ω
1
ω
1
ω
0
ω
0
ω
2
ω
1
ω
2
ω
3
ω
2
ω
2
ω
1
ω
1
ω
3
ω
2

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

¼ ω
0
ψ C1
� �

ω
1
ψ C1
� �� �

(32)

where

ψ C1
� �

¼

ω
1
ω
0
ω
1
ω
3
ω
2
ω
0
ω
0
ω
1

ω
1
ω
2
ω
1
ω
1
ω
2
ω
2
ω
0
ω
3

ω
1
ω
0
ω
1
ω
3
ω
0
ω
2
ω
2
ω
3

ω
1
ω
2
ω
1
ω
1
ω
0
ω
0
ω
2
ω
1

2

6

6

6

6

4

3

7

7

7

7

5

:

6Þ ψ ~S10
� �

¼

ω
2
ω
1
ω
1
ω
3
ω
2
ω
0
ω
3
ω
0
ω
1
ω
0
ω
0
ω
2
ω
1
ω
3
ω
2
ω
3

ω
0
ω
1
ω
3
ω
3
ω
0
ω
0
ω
1
ω
0
ω
3
ω
0
ω
2
ω
2
ω
3
ω
3
ω
0
ω
3

ω
2
ω
1
ω
1
ω
3
ω
0
ω
2
ω
1
ω
2
ω
1
ω
0
ω
0
ω
2
ω
3
ω
1
ω
0
ω
1

ω
0
ω
1
ω
3
ω
3
ω
2
ω
2
ω
3
ω
2
ω
3
ω
0
ω
2
ω
2
ω
1
ω
1
ω
2
ω
1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼ ω
1
ψ ~C

1
� 	

ω
0
ψ ~C

1
� 	h i

(33)

where

ψ ~C
1

� 	

¼

ω
1
ω
0
ω
0
ω
2
ω
1
ω
3
ω
2
ω
3

ω
3
ω
0
ω
2
ω
2
ω
3
ω
3
ω
0
ω
3

ω
1
ω
0
ω
0
ω
2
ω
3
ω
1
ω
0
ω
1

ω
3
ω
0
ω
2
ω
2
ω
1
ω
1
ω
2
ω
1

2

6

6

6

4

3

7

7

7

5

:

7Þ ψ S11ð Þ ¼

ω
1
ω
0
ω
1
ω
3
ω
2
ω
0
ω
0
ω
1
ω
0
ω
3
ω
0
ω
2
ω
1
ω
3
ω
3
ω
0

ω
1
ω
2
ω
1
ω
1
ω
2
ω
2
ω
0
ω
3
ω
0
ω
1
ω
0
ω
0
ω
1
ω
1
ω
3
ω
2

ω
1
ω
0
ω
1
ω
3
ω
0
ω
2
ω
2
ω
3
ω
0
ω
3
ω
0
ω
2
ω
3
ω
1
ω
1
ω
2

ω
1
ω
2
ω
1
ω
1
ω
0
ω
0
ω
2
ω
1
ω
0
ω
1
ω
0
ω
0
ω
3
ω
3
ω
1
ω
0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

¼ ω
0
ψ C1
� �

ω
3
ψ C1
� �� �

(34)

8Þ ψ ~S11
� �

¼

ω
0
ω
3
ω
3
ω
1
ω
0
ω
2
ω
1
ω
2
ω
1
ω
0
ω
0
ω
2
ω
1
ω
3
ω
2
ω
3

ω
2
ω
3
ω
1
ω
1
ω
2
ω
2
ω
3
ω
2
ω
3
ω
0
ω
2
ω
2
ω
3
ω
3
ω
0
ω
3

ω
0
ω
3
ω
3
ω
1
ω
2
ω
0
ω
3
ω
0
ω
1
ω
0
ω
0
ω
2
ω
3
ω
1
ω
0
ω
1

ω
2
ω
3
ω
1
ω
1
ω
0
ω
0
ω
1
ω
0
ω
3
ω
0
ω
2
ω
2
ω
1
ω
1
ω
2
ω
1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:

¼ ω
3
ψ ~C

1
� 	

ω
0
ψ ~C

1
� 	h i

(35)

Theorem 1 Let f be a GBF over m variables as defined in Lemma 1 and Lemma 2.

Suppose I0, I1,…, I2
kþ1�1 are a list of 2k þ 1 code groups defined by

10

Coding Theory



It ¼ Its : 0≤ s < 2p
� �

¼ ψ Sbd0ð Þ : d0 ∈ 0; 1f gp
� �

(36)

and

I2
kþt ¼ I2

kþt
s : 0≤ s < 2p

n o

¼ ψ
∗ ~Sbd0Þ : d0 ∈ 0; 1f gp
� �

,
�

(37)

which forms an IGC code set I 2kþpþ1; 2kþ1; 2m; 2m�p
� �

.

Proof 2 Let ψ Sbd0
1

� 	

and ψ Sbd0
2

� 	

be any two codes from a code group It. Then the

ACCF of ψ Sbd0
1

� 	

and ψ Sbd0
2

� 	

at the time shift η2m�p þ τ (where 0≤ η< 2p, η∈Z,

0≤ τ < 2m�p, τ∈Z) is

C ψ Sbd0
1

� 	

;ψ Sbd0
2

� 	� 	

η2m�p þ τð Þ

¼ ∑
2kþ1�1

l¼0

Cðψ Fblð Þ,ψ Fblð Þ τð Þ ∑
2p�η

i¼1
ω

Γþq
2d

0
1ð Þ�riþη� Γþq

2d
0
2ð Þ�ri

þ ∑
2kþ1�1

l¼0

Cðψ Fblð Þ,ψ Fblð Þ τ � 2m�pð Þ ∑
2p�η�1

i¼1
ω

Γþq
2d

0
1ð Þ�riþηþ1� Γþq

2d
0
2ð Þ�ri

¼ C ψ Ctð Þ;ψ Ctð Þð Þ τð Þ ∑
2p�η

i¼1
ω

Γþq
2d

0
1ð Þ�riþη� Γþq

2d
0
2ð Þ�ri

þ C ψ Ctð Þ;ψ Ctð Þð Þ τ � 2m�pð Þ ∑
2p�η�1

i¼1
ω

Γþq
2d

0
1ð Þ�riþηþ1� Γþq

2d
0
2ð Þ�ri

¼ A ψ Ctð Þð Þ τð Þ ∑
2p�η

i¼1
ω

rþq
2d

0
1ð Þ�riþη� Γþq

2d
0
2ð Þ�ri

þ A ψ Ctð Þð Þ τ � 2m�pð Þ ∑
2p�η�1

i¼1
ω

Γþq
2d

0
1ð Þ�riþηþ1� Γþq

2d
0
2ð Þ�ri :

(38)

For d0
1 ¼ d0

2 ¼ d0, the ACCF given in Eq. (38) reduced to AACF as follows:

A ψ Sbd0ð Þð Þ η2m�p þ τð Þ ¼

2mþk�pþ1

�Σ
2p�η

i¼1 ω
Γþq

2d
0
1ð Þ�riþη� Γþq

2d
0
2ð Þ�ri , τ ¼ 0,0≤ η< 2p,

0, 0< ∣τ∣ < 2m�p,

0≤ η < 2p:

8

>

>

>

<

>

>

>

:

(39)

For d0
1 6¼ d0

2, the ACCF given in Eq. (38) can be expressed as

C ψ Sbd0
1

� 	

;ψ Sbd0
2

� 	� 	

η2m�p þ τð Þ ¼

2mþk�pþ1

�Σ
2p�η

i¼1 ω
Γþq

2d
0
1ð Þ�riþη� Γþq

2d
0
2ð Þri , τ ¼ 0,0< η < 2p,

0, τ ¼ 0, η ¼ 0,

0, 0< ∣τ∣ < 2m�p,

0≤ η < 2p:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(40)

The terms in Eqs. (39) and (40) are derived from the autocorrelation properties of
the CCψ Ctð Þ. It is also observed that the codes from the same code group It have ideal
auto- and cross-correlation properties inside the ZCZ width 2m�p. Similarly, we can
show that
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A ψ
∗ ~Sbd0
� �� �

η2m�p þ τð Þ ¼

2mþk�pþ1

�Σ
2p�η

i¼1 ω
Γþq

2d
0
2ð Þ�ri� Γþq

2d
0
1ð Þ�riþη , τ ¼ 0,0≤ η < 2p,

0, 0< ∣τ∣< 2m�p,

0≤ η < 2p,

8

>

>

>

<

>

>

>

:

(41)

and for d0
1 6¼ d0

2,

C ψ
∗ ~Sbd0

1

� 	

;ψ ∗ ~Sbd0
2

� 	� 	

η2m�p þ τð Þ ¼

2mþk�pþ1

�Σ
2p�η

i¼1 ω
Γþq

2d
0
2ð Þ�ri� Γþq

2d
0
1ð Þ�riþη , τ ¼ 0,0< η < 2p,

0, τ ¼ 0, η ¼ 0,

0, 0< ∣τ∣ < 2m�p,

0≤ η < 2p:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(42)

From Eqs. (41) and (42), we get that the codes from the same code group I2
kþt have

ideal auto- and cross-correlation properties inside the ZCZ width 2m�p.
Now we show that the ACCFs between any two codes of any two different code groups

It1 and It2 0≤ t1; t2 < 2
k

� �

are zeros everywhere. Let ψ Sb1d
0
1

� 	

∈ It1 , ψ Sb2d
0
2

� 	

∈ It2 where

b1,b2 are binary vector representations of t1, t2, and d0
1, d

0
2 are any two binary vectors in

Z
p
2 . Then

C ψ Sb1d
0
1

� 	

;ψ Sb2d
0
2

� 	� 	

η2m�p þ τð Þ

¼ ∑
2kþ1�1

l¼0

Cðψ Fb1lð Þ,ψ Fb2lð Þ τð Þ ∑
2p�η

i¼1
ω

Γþq
2d

0
1ð Þ�riþη� Γþq

2d
0
2ð Þ�ri

þ ∑
2kþ1�1

l¼0

Cðψ Fb1lð Þ,ψ Fb2lð Þ τ � 2m�pð Þ ∑
2p�η�1

i¼1
ω

Γþq
2d

0
1ð Þ�riþηþ1� Γþq

2d
0
2ð Þ�ri

¼ C ψ Ctð Þ;ψ Ctð Þð Þ τð Þ ∑
2p�η

i¼1
ω

Γþq
2d

0
1ð Þ�riþη� Γþq

2d
0
2ð Þ�ri

þ C ψ Ctð Þ;ψ Ctð Þð Þ τ � 2m�pð Þ ∑
2p�η�1

i¼1
ω

Γþq
2d

0
1ð Þ�riþηþ1� Γþq

2d
0
2ð Þ�ri

¼ 0 ∀τ, η:

(43)

Similarly, we can also show that the ACCFs between any two codes of any two

different code groups I2
kþt1 and I2

kþt2 0≤ t1; t2 < 2
k

� �

are zeros everywhere, i.e.,

C ψ ~Sb1d
0
1

� 	

;ψ ∗ ~Sb2d
0
2

� 	� 	

η2m�p þ τð Þ

¼ ∑
2kþ1�1

l¼0

Cðψ ∗ F0
b1l

� 	

,ψ ∗ F0
b2l

� 	

τð Þ ∑
2p�η

i¼1
ω

Γþq
2d

0
2ð Þ�ri� Γþq

2d
0
1ð Þ�riþη

þ ∑
2kþ1�1

l¼0

Cðψ ∗ F0
b1l

� 	

,ψ ∗ F0
b2l

� 	

τ � 2m�pð Þ ∑
2p�η�1

i¼1
ω

Γþq
2d

0
2ð Þ�ri� Γþq

2d
0
1ð Þ�riþηþ1

¼ C ψ ∗ ~C
t1

� 	

;ψ ∗ ~C
t2

� 	� 	

τ � 2m�pð Þ ∑
2p�η�1

i¼1
ω

Γþq
2d

0
2ð Þ�ri� Γþq

2d
0
1ð Þ�riþη

þ C ψ ∗ ~C
t1

� 	

;ψ ∗ ~C
t2

� 	� 	

τ � 2m�pð Þ ∑
2p�η�1

i¼1
ω

Γþq
2d

0
2ð Þ�ri� Γþq

2d
0
1ð Þ�riþηþ1

¼ 0 ∀τ, η:

(44)
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The results in Eqs. (43) and (44) are obtained by using the ideal cross-correlation
properties of CCCs. To complete the proof, now we only need to show that the ACCFs

of any code from Itu and I2
kþtv u; v∈Z; 1≤ u; v≤ 2k
� �

are zeros everywhere. In this

case, tu and tv are any two integers in 0; 2k
� �

and may or may not be equal. Let

ψðSbud1 0 ∈ Itu , ψ
∗ ~Sbvd2

0
� �

∈ I2
kþtv where bu, bv are binary vector representations of

tu, tv, respectively. Then

C ψ Sbud
0
1

� 	

;ψ ∗ ~Sbvd
0
2

� 	� 	

η2m�p þ τð Þ

¼ ∑
2kþ1�1

l¼0

Cðψ ∗ F0
bul

� 	

,ψ ∗ F0
bvl

� 	

τð Þ ∑
2p�η

i¼1
ω

Γþq
2d

0
1ð Þ�riþη� Γþq

2d
0
2ð Þ�ri

þ ∑
2kþ1�1

l¼0

Cðψ ∗ F0
bul

� 	

,ψ ∗ Fbvlð Þ τð Þ ∑
2p�η

i¼1
ω

Γþq
2d

0
1ð Þ�riþη� Γþq

2d
0
2ð Þ�ri

¼ C ψ ∗ Ctuð Þ;ψ ∗ Ctvð Þð Þ τ � 2m�pð Þ ∑
2p�η�1

i¼1
ω

Γþq
2d

0
1ð Þ�riþη� Γþq

2d
0
2ð Þ�ri

þ C ψ ∗ Ctuð Þ;ψ ∗ ~C
tv

� 	� 	

τ � 2m�pð Þ ∑
2p�η�1

i¼1
ω

Γþq
2d

0
1ð Þ�riþηþ1� Γþq

2d
0
2ð Þ�ri

¼ 0 ∀τ, η:

(45)

The above result is also obtained by using the ideal cross-correlation properties
of CCCs. From Eqs. (39)-(45), we observed that the AACFs and ACCFs of the codes
of the same group are zeros inside the ZCZ width 2m�p and the ACCFs of the codes
from different code groups are zeros everywhere. Hence, we can conclude that

I0, I1,…, I2
kþ1�1 form an IGC code set I 2kþpþ1; 2kþ1; 2m; 2m�p

� �

.

Example 2 Let f be a GBF of four variables as given in Example 1.
Then the obtained IGC code set I 8;4; 16; 8ð Þ corresponding to the GBF f is given
below:

Code group 1:

I00 ¼ ψ S00ð Þ

¼

ω
1
ω
2
ω
1
ω
1
ω
2
ω
2
ω
0
ω
3
ω
2
ω
3
ω
2
ω
2
ω
3
ω
3
ω
1
ω
0

ω
1
ω
0
ω
1
ω
3
ω
2
ω
0
ω
0
ω
1
ω
2
ω
1
ω
2
ω
0
ω
3
ω
1
ω
1
ω
2

ω
1
ω
2
ω
1
ω
1
ω
0
ω
0
ω
2
ω
1
ω
2
ω
3
ω
2
ω
2
ω
1
ω
1
ω
3
ω
2

ω
1
ω
0
ω
1
ω
3
ω
0
ω
2
ω
2
ω
3
ω
2
ω
1
ω
2
ω
0
ω
1
ω
3
ω
3
ω
0

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

I01 ¼ ψ S01ð Þ

¼

ω
1
ω
2
ω
1
ω
1
ω
2
ω
2
ω
0
ω
3
ω
0
ω
1
ω
0
ω
0
ω
1
ω
1
ω
3
ω
2

ω
1
ω
0
ω
1
ω
3
ω
2
ω
0
ω
0
ω
1
ω
0
ω
3
ω
0
ω
2
ω
1
ω
3
ω
3
ω
0

ω
1
ω
2
ω
1
ω
1
ω
0
ω
0
ω
2
ω
1
ω
0
ω
1
ω
0
ω
0
ω
3
ω
3
ω
1
ω
0

ω
1
ω
0
ω
1
ω
3
ω
0
ω
2
ω
2
ω
3
ω
0
ω
3
ω
0
ω
2
ω
3
ω
1
ω
1
ω
2

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

:

(46)
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Code group 2:

I10 ¼ ψ S10ð Þ

¼

ω
1
ω
0
ω
1
ω
3
ω
2
ω
0
ω
0
ω
1
ω
2
ω
1
ω
2
ω
0
ω
3
ω
1
ω
1
ω
2

ω
1
ω
2
ω
1
ω
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Code group 3:
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Code group 4:
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The correlation properties of I (8, 4, 16, 8) are described in Figure 2 where
Figure 2a presents the absolute value of AACF sum of each code in I 8;4; 16; 8ð Þ,
Figure 2b shows absolute value of ACCF sum between any two distinct codes from
the same code group, and Figure 2c presents the absolute value of ACCF sum
between any two distinct codes from different code groups.

4. Summary

In this chapter, we have presented a direct construction of IGC code set by
using second-order GBFs. The AACF sidelobes of the codes of constructed IGC code
set are zeros within ZCZ width, and the ACCFs of any two different codes of the
same code group are zeros inside the ZCZ width, whereas the ACCFs of any two
different codes from two different code groups are zeros everywhere. We have
shown that there is a relation between our proposed construction and graph. The
ZCZ width of the proposed IGC code set depends on the number of isolated vertices
present in a graph after the deletion of some vertices. We also have shown that
the ZCZ width of the proposed IGC code set by our construction is flexible and it
can extend their applications. It is observed that most of the constructions given
in literature are based on CCCs, whereas our construction can produce IGC code
set directly.

Figure 2.
Correlation plots of I 8;4; 16; 8ð Þ.
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