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Abstract

An excellent face recognition for a surveillance camera system requires remark-
able and robust face descriptor. Binary gradient pattern (BGP) descriptor is one of 
the ideal descriptors for facial feature extraction. However, exploiting local features 
merely from smaller region or microstructure does not capture a complete facial 
feature. In this paper, an extended binary gradient pattern (eBGP) is proposed to 
capture both micro- and macrostructure information of a local region to boost up 
the descriptor performance and discriminative power. Two topologies, the patch-
based and circular-based topologies, are incorporated with the eBGP to test its 
robustness against illumination, image quality, and uncontrolled capture conditions 
using the SCface database. Experimental results show that the fusion between 
micro- and macrostructure information significantly boosts up the descriptor 
performance. It also illustrates that the proposed eBGP descriptor outperforms 
the conventional BGP on both the patch-based topology and the circular-based 
topology. Furthermore, a fusion of information from two different image types, 
orientational image gradient magnitude (OIGM) and grayscale image, attained 
better performance than using OIGM image only. The overall results indicate that 
the proposed eBGP descriptor improves the recognition performance with respect 
to the baseline BGP descriptor.

Keywords: surveillance system, face recognition, binary gradient pattern (BGP), 
facial feature extraction, patch-based topology, circular-based topology

1. Introduction

Face recognition is one of the biometric verification methods that offers a wide 
range of applications such as law enforcement, forensics, biometric authentica-
tion, surveillance, and health monitoring [1]. Face recognition has also been used 
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to authenticate payment using mobile wallet, and the social media company like 
Facebook uses face recognition algorithm for the purpose of image tagging [2]. One 
of the advantages of face recognition is being contactless between the subject and 
camera. Given the advantages offered by face recognition and with the advance-
ment in computing power, significant research and methods have been proposed 
over the years in face recognition domain. In fact, a robust facial recognition system 
must be able to work with various real-life situations or unconstrained conditions, 
such as but not limited to pose, lighting, image or camera quality, occlusion, rota-
tion, and translation. The system must also be able to perform extremely well in a 
domain where limited sample is available. In surveillance monitoring applications, 
a typical approach is to sample face appearing in videos and then match them with 
facial models generated from high-quality target face image [3, 4].

Feature extraction is the process of capturing feature of interest from the face 
and represents it in the form of feature vector. The extraction process is usually 
done by a face descriptor. This descriptor must be able to work with multiple 
variations such as illumination, occlusion, face expression, and image quality [4]. 
Indeed, there is a collection of face descriptors proposed over the years such as 
scale-invariant feature transform (SIFT) [5], speeded up robust feature (SURF) 
[6], local binary pattern (LBP) [7], and histogram of oriented gradient (HOG) 
[8]. In terms of facial feature representation, there are two types of representa-
tions that many descriptors have evolved around over the years. They are global 
and local feature representations. Global-based feature extraction like principal 
component analysis [9], linear discriminant analysis [10], and independent com-
ponent analysis [11] preserves the statistical information of the face by turning 
each face image into a high-dimensional feature vector. Meanwhile, local-based 
feature splits input image into smaller patches and extracts the micro textural 
details from each patch before fusing these features back to form the global shape 
information. Local-based feature extraction has shown to be resilient to multiple 
variations by enforcing spatial locality in both pixel and patch levels. For instance, 
local feature descriptor is robust to local deformation in expression and occlusion. 
LBP [7] is an example of feature extraction method that works on this principle 
which achieved reasonably good performance but heuristic in nature. Recently, 
LBP has drawn great intention as a face descriptor due its reputation as a powerful 
texture descriptor [9]. LBP extracts local-based spatial structure of an image by 
thresholding intensity of center pixel with its neighborhood. The product of this 
operation is characterized as local binary pattern, which then the distribution of 
binary pattern over the whole image is used to form the LBP histogram vector or 
feature vector. Neighborhood pixels are sampled on a circle, and any neighbor 
which does not fall exactly on the center of the pixel has an intensity computed 
from interpolation [7]. Due to some shortcomings of LBP, for instance, LBP 
produces long histogram, and therefore it is memory-consuming [12], LBP is very 
sensitive for image rotation and noise [13], and it only captures microstructure 
and ignores macrostructure of the texture resulting in missing extra discrimina-
tive power [14]. Several variants of LBP have been proposed in the literature, 
for example, rotation-invariant LBP [13], median robust extended local binary 
pattern (MRELBP) [15], and binary gradient pattern (BGP) [14]. This paper 
touches on a number of relevant existing LBP-based descriptors. The rest of this 
paper is organized as follows. In Section 2, two state-of-the-art descriptors (the 
LBP [7] and its variant, the BGP [14]) would be briefly reviewed since we would 
embed the proposed extended BGP (eBGP) into these two descriptors. Section 3 
describes the proposed eBGP descriptor. The evaluating results are analyzed and 
discussed in Section 4. Finally, conclusions are drawn in Section 5.
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2. From local binary pattern (LBP) to binary gradient pattern (BGP)

LBP [7] is one of various texture descriptors and is known for being computa-
tionally efficient [16]. It extracts local-based spatial structure of an image by thresh-
olding intensity of center pixel with its neighborhood pixel P within a radius R. The 
product of this operation is characterized as local binary pattern, which then the 
distribution of binary pattern over the whole image is used to form the LBP histo-
gram vector or feature vector. The original LBP works on 3 × 3 square neighborhood 
and only considers the sign information to form the LBP pattern. Neighborhood 
pixels are sampled on a circle, and any neighbor which does not fall exactly on the 
center of the pixel has an intensity computed from interpolation [7]. Figure 1(a) 
illustrates LBP neighborhoods around the center pixel with R = 1. Assuming all the 
pixels hold values as in Figure 1(b), thresholding all eight neighborhood pixels with 
the center pixel using Eq. (1) will produce the result as in Figure 1(c). This binary 
string is then multiplied with weights, and the sum of these values corresponds 
to the LBP label for that particular pixel. The distribution of LBP labels across the 
entire image is represented in a histogram as a feature vector:

   LBP  R,P   (c)  =   ∑ 
i=0

  
P−1

  s ( g  i   −  g  c  )   2   i , s (x)  =  {  
1, x ≥ 0

  
0, x < 0

    (1)

where   g  i    and   g  c    are the gray values of the center pixel and its neighbors, respec-
tively, P is the number of neighbors, and R is the radius of the neighborhood. LBP 
offers few advantages in terms of low computational complexity, illumination 
invariant, and ease of implementation, but it has significant disadvantages. In LBP 
implementation, the individual operator of particular (P,R) produces different 
histogram length. For instance, in (8,1) neighborhood, LBP generates 2P = 256 
(P = 8) histogram bins, while for (16,2) neighborhood, 216 histogram bins are pro-
duced. This is a significant drawback as LBP produces long histogram and therefore 
memory-consuming. The LBP is also intolerant to image rotation and highly sensi-
tive to noise where noise on the center pixel will dominate local characteristic [12]. 
Furthermore, the LBP only captures microstructure and ignores macrostructure of 
the texture resulting in missing extra discriminative power.

The success of LBP has continued since then. A variety of LBP-based descriptors 
have been proposed recently to overcome all shortcomings toward noise, illumina-
tion, color, and temporal information. Huang and Yin [14] proposed an improved 
version of LBP, called binary gradient pattern (BGP), by introducing structural 
pattern and image gradient orientation (IGO) implementation in multiple direc-
tions rather than on X and Y directions only, as in the conventional manner. The 
implementation of IGO in multiple directions helps to improve discriminative 
power of the proposed descriptor. Figure 2 shows how BGP encodes binary string 

Figure 1. 
LBP neighborhood and thresholding.
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from a region of interest (ROI). Given a set of grayscale intensity value of 9 pixels as 
in Figure 2(a), BGP computes binary correlations between symmetric neighbors of 
central pixel from multiple k directions. With the number of neighbors always twice 
than the number of directions k, in (8,1) spatial resolution, there are four different 
thresholding directions denoted as G1, G2, G3, and G4 as shown in Figure 2(b). 
Principal binary,   B  i  

+ ,  is computed from all directions using Eq. (2), and its associ-
ated binary   B  i  

−   from Eq. (3), where   G  i  
+   and   G  i  

−   are intensity values of the pixels. The 
resulting principal binary numbers and its associated are shown in Figure 2(c):

                                                             B  i  
+  =  {  

1, if  G  i  
+  −  G  i  

−  ≥ 0
   

0, if  G  i  
+  −  G  i  

−  < 0
    (2)

                                           B  i  
−  = 1 −  B  i  

+ , i = 1, 2, … , k  (3)

  L =  ∑ 
i=1

  
k
     2   i−1   B  i  

+   (4)

Binary string for the ROI is constructed from four principal binary numbers 
which is equivalent to 0111, and the label L is computed from Eq. (4). Because the 
principal and associated binary numbers are always complementary, only a single 
bit is required to describe the direction, this allowing for more compact representa-
tion of BGP label by only considering principal binary numbers. The total number 
of BGP label NL is determined by the numbers of principal binary only, which is 
also equivalent to the number of directions k. At any spatial resolution, NL equals 
to 2k. Using Figure 2(b) as an example, features extracted from four directions in 
(8,1), spatial resolution will produce 24 or 16 different labels (i.e., from 0000 to 
111/from 0 to 15). Structural pattern is a binary string which has continuous “1”s 
indicating a stable local change in texture and essentially describes the orientation 
of local edge texture. On the other hand, a nonstructural pattern is a binary string 
with a discontinuous “1”s, which contains arbitrary changes of local texture which is 
likely to indicate noise or outliers. From statistical experiment conducted by Huang 
and Yin [14] on 2600 face images, 95% of the patterns in typical BGP face having 
continuous “1”s.

The number of structural labels Nsp at any spatial resolution equals to the num-
ber of neighbors P. With eight neighbors, there will be 16 different labels where 
eight of it made up a structural label and the remaining belong to nonstructural 
label. For example, 0000, 0001, 0011, 0111, 1000, 1100, 1110, and 1111 are struc-
tural patterns in BGP8,1, and each structural pattern location map is illustrated in 
Figure 3. In BGP implementation, nonstructural patterns are discarded and not 
given a label in contrast to nonuniform pattern in LBP implementation. Location 
map of nonstructural patterns in Figure 3 shows that nonstructural patterns 
contain less meaningful information and are often caused by noise and outliers. 

Figure 2. 
Basic BGP operator with eight neighbors.
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To further enhance discriminative power and robustness of BGP, Huang and Yin 
[14] introduced another descriptor by applying BGP on orientational image gradi-
ent magnitude (OIGM) which is abbreviated as BGPM. The use of image gradient 
magnitude (IGM) enhances the strength of edge information which effectively 
allows BGPM to gain greater discriminant ability with only small increment in 
complexity. The overall process of BGPM descriptor is depicted in Figure 4.

Based on a series of results obtained from multiple databases such as Extended 
Yale B [17], AR [18], CMU Multi-PIE [19], FERET [20], and LFW [21] against a 
wide range of descriptors, BGPM is proven to be the best descriptor for each data-
base. The BGPM descriptor has achieved invariance against illumination changes 
and local distortions while reducing the vector dimensionality. BGP compact 
representation makes BGP extremely fast and uses much fewer pattern labels than 
LBP at any spatial resolution. For instance, in a system with spatial resolution of 
(8,1), BGP histogram only needs 9 bins, with 8 bins for structural patterns, and 1 
bin for nonstructural patterns, in contrast to the LBP which requires 59 bins. BGP 
and BGPM have been demonstrated to possess strong spatial locality and orienta-
tion properties which lead to effective discrimination.

Figure 3. 
Face and location maps of eight structural patterns (SP00-SP15) and nonstructural pattern.
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Although BGP has shown to be efficient in processing time and achieving 
outstanding results in several databases, BGP was never being tested with a proper 
surveillance database like [22], which consists of low-resolution non-frontal face 
images taken by different camera quality. Like most of other local-based descrip-
tors, BGP exploits information from microstructure only, however exploiting facial 
feature from macrostructure to complement the microstructure feature resulting in a 
more complete image representation [23–24], especially for surveillance applications 
where noise, occlusion, and head position might impact the descriptor performance. 
In this paper, information from both micro- and macrostructures are captured and 
integrated into the BGP descriptor to boost up its performance for video surveillance 
applications. The new proposed descriptor is termed as an extended BGP (eBGP).

3. Extended binary gradient pattern (eBGP)

An eBGP extends the BGP descriptor by exploiting macrostructure informa-
tion from topology with larger spatial resolution. There are many different types 
of macrostructure topologies that have been proposed for other LBP variants [25]. 
In this paper, the patch-based topology with eight neighborhood patches and the 
circular topology are evolved with the proposed eBGP descriptor. Both topologies 
have been implemented by [24, 26], where each topology has its pros and cons with 
the implementation. Regardless of the topology, the microstructure information is 
always extracted using the same approach as in BGP. Herein, the eBGP is explained 
with the focus on extracting features from macrostructure based on the patch-based 
topology with eight neighborhood patches and the circular-based topology.

3.1 Patch-based topology

Patch-based topology is inspired by multi-scale block local binary pattern 
(MBLBP) [24]. In this topology, macrostructure is made up of nine patches of pixels 
as in Figure 5. All these patches have the same size and width, while the center 
patch represents the ROI microstructure. Thereby, a default BGP operator is applied 

Figure 4. 
Framework of BGPM descriptor [14].
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to the center patch in order to extract the microstructure information, whereas 
the macrostructure information is extracted from the eight neighborhood patches. 
Accordingly, multiple sizes of patches could be selected from this topology, and the 
size of the structure is determined by the spatial resolution of the center patch.

For instance, when exploiting microstructure information from (8,1) spatial resolu-
tion, the size of the center patch will be 3 × 3 pixels as illustrated in Figure 5(b). In this 
implementation, all patches have the same size and do not overlap each other; therefore 
the macrostructure is formed from nine patches of 3 × 3 pixels. Figure 5(a) depicts the 
macrostructure topology formed from 9 patches of 5 × 5 pixels when microstructure 
information is exploited from (16,2) spatial resolution. For comparison purposes, this 
research will evaluate two structures as illustrated in Figure 5(a) and (b), to match 
BGP results exploited from (8,1) and (16,2) spatial resolution. Using Figure 5(a) as an 
example, each neighborhood patch contains 25 pixels with each pixel having its own 
grayscale value. Unlike the center patch, no feature is extracted from the individual 
neighborhood patch. Instead, each neighborhood patch is represented by a single 
intensity value which will be used for thresholding. In this topology, the patch’s mean 
and median will be applied to represent the patch intensity. The patch’s mean (G) of a 
neighborhood patch (P), accounted from 25 pixels in a single 5 × 5 patch, is computed as 
follows:

   G  P   =   1 __ n    ∑ 
i=1

  
n

     x  i    (5)

where x is the intensity value of each pixel and n is the number of pixels in the 
patch P.

On the other hand, the patch median is computed by finding the middle value of 
ordered pixel values. Additional experiments are conducted in this research to find 
the best representation for the patch-based topology. As an example, feature extrac-
tion from macrostructure is illustrated in Figure 6. Figure 6(a) shows the patch-
based topology with the size of 3 × 3 pixels and its intensity value. In each patch, a 
median is calculated from all pixels within the patch, and the median now represents 
the image intensity of the patch as shown in Figure 6(b). The following steps are 
similar to what has been explained in BGP. By thresholding each patch with symmet-
ric neighbors in four directions using Eqs. (2) and (3), four pairs of binary numbers 
are generated as shown in Figure 6(c). Once all the principal bits are computed, the 

Figure 5. 
Topology for macrostructure information extraction. (a) Patch of 5 × 5 pixels for R = 2. (b) Patch of 3 × 3  
pixels for R = 1.
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Figure 7. 
Patch-based feature extraction flow. The center patch represented by the orange box and the neighborhood 
patches by the purple boxes.

label can be calculated using Eq. (4). In general, the flow for macrostructure extrac-
tion is like microstructure except for its representative value used during threshold-
ing. Indeed, the microstructure information is extracted from neighborhood pixels, 
while the macrostructure information is extracted from neighborhood patches.

Since there are only eight neighbor patches, regardless of the structures’ size, 
the generated histogram vector which represents the macrostructure information is 
bound to the maximum of 16 bins. Observing only a structural pattern will greatly 
reduce the dimensionality of macrostructure information to eight bins. The total 
length of the histogram vector (Ht) is computed as follows:

   H  t   =  ∑ 
k=1

  
N

      ( P  R   + 8)   k    (6)

where N is the number of blocks and PR is the number of neighborhood pixels 
used for extracting the microstructure information at the center patch and 8 is the 
length of the histogram vector extracted from the macrostructure. Using Figure 6(b) 
as an example, at each kth block, the length of histogram vector is 16, where 8 comes 
from the microstructure and the other 8 from the macrostructure.

Subsequently, information fusion between micro- and macrostructures is con-
ducted through concatenating the feature vectors of both the microstructure and 
the macrostructure, as illustrated in Figure 7. At this point, both feature vectors are 
contributed by the same weight. Figure 8 demonstrates an example of face image 
represented using the patch-based topology. Figure 8 illustrates that eBGP on the 
patch-based topology capable to capture the micro textural details and the macro-
structure provides complementary information to the small details. Moreover, the 
macrostructure information contains less detailed information and may reduce the 
noise or outlier embedded in the image.

Figure 6. 
Feature extraction from the macrostructure using median as the patch intensity.
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3.2 Circular-based topology

Circular-based topology borrows the basic implementation of LBP which identi-
fies a neighborhood as a set of pixels on a circular ring. In this topology, two levels 
of information are extracted from neighborhood at two different spatial resolutions. 
The first level of information is the microstructure information, which is extracted 
from a set of pixels on a circular ring with radius R1. Meanwhile, the macrostruc-
ture information is extracted from neighborhood pixels that lie on a circular ring 
of radius R2. The same BGP operator is used to extract information from the two 
different spatial resolutions with smaller spatial resolution that represents the 
microstructure and larger spatial resolution that represents the macrostructure. 
The visual illustration of circular-based topology implementation is presented in 
Figure 9. Circular rings with R1 and R2 represent the two different spatial resolutions 
(P;R). Assuming R1 is 1, running BGP descriptor on (8,1) neighborhood extracts the 
microstructure information of ROI. In this implementation, R2 is always larger than 
R1, and thus R2 must be set to any number >1.

Figure 10(a) shows a sample of image intensity that falls on circular rings R1 
and R2 with spatial resolution (8,1) and (24,3), respectively. In this example, the 
microstructure information is extracted from 8 pixels, while the macrostructure 
information is extracted from 24 pixels as shown in Figure 10(b). Using the same 
method in BGP, principal and associated bits are calculated using Eqs. (2) and (3) 
by thresholding symmetric neighbors in multiple directions. The computed binary 
pairs are shown in Figure 10(c) with 4 and 12 principal bits generated from 8 and 
24 neighbors, respectively. Finally, label for both micro- and macrostructures is 
computed using Eq. (4).

In BGP scheme, the length of histogram vector is equal to the number of neigh-
bors at any spatial resolution. Similar to the patch-based topology, the generated 
histogram vector which embeds micro- and macrostructure information is concat-
enated to form a final representation of features for each ROI. The total length of 
histogram vector in this scheme can be computed using:

   H  t   =  ∑ 
k=1

  
N

      ( P  1   +  P  2  )   k    (7)

where N is the number of blocks and P1 and P2 are the number of neighborhood 
pixels on the circular rings of radius R1 and R2, respectively. For instance, if R1 = 2 
and R2 = 4, features are exploited from 16 and 32 neighborhood pixels, respectively. 
Thus, the combination of the two spatial resolutions will produce a histogram vec-
tor with a length of 48 at each kth block. Resulting from this observation, R2 is set to 

Figure 8. 
Sample image with 5 × 5 pixel patch-based structure: (a) the original image, (b) the image extracted using the 
microstructure, (c) the image extracted using the macrostructure based on the local median, and (d) the image 
extracted from the macrostructure using the local mean.
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Figure 11. 
Circular-based feature extraction flow with R1 = 1 and R2 = 3.

5 to limit the feature dimensionality of macrostructure to 40 because having larger 
spatial resolution will only increase the feature vector dimensionality. In contrast, 
R1 is limited to 4 because larger spatial resolution will prevent BGP operator from 
capturing micro edge and micro texture features which are mostly exploited from a 
smaller region.

Figure 11 illustrates the general flow of feature extraction in the circular-based 
topology. Overall, this topology employs BGP operator on two different spatial 
resolutions, where the smaller resolution is for the microstructure information 
and the larger resolution is for the macrostructure information. In this research, 
no interpolation has been done to neighboring pixels where the circle does not fall 

Figure 9. 
Circular-based topology.

Figure 10. 
The microstructure information is devised from 8 pixels on the smaller ring, while the macrostructure 
information is devised from 24 pixels on the larger ring without any interpolation.
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exactly on the center of pixels. Figure 12 presents a sample image that is extracted 
from the two spatial resolutions R1 = 2 and R2 = 5.

Similar to the patch-based topology, BGP captures the micro-oriented edges 
from the small structure while capturing less details of information at a much larger 
spatial resolution. But the combination of these two information will complement 
each other in providing a complete face representation.

4. Results, discussion, and analysis

To illustrate a real-world video surveillance system, the effectiveness of the 
proposed eBGP descriptor was evaluated using the Surveillance Camera Face 
(SCface) database [22]. The SCface database consists of low-resolution non-frontal 
face images taken by different camera quality. A series of experiments were planned 
to test all proposed topologies and structures on the SCface database. The perfor-
mance of the proposed eBGP descriptor was evaluated against illumination, image 
quality, single sample per person, and real-world capture condition.

In fact, the SCface database is the most challenging database for face recogni-
tion, where its images were taken in uncontrolled indoor environment. The SCface 
database consists of 4160 images from 130 subjects. All images were taken at three 
distinct distances from the camera, where the cameras are installed at 2.25 m above 
the floor. Images were captured at distance 1 while the subject position is 4.20 m 
away from the camera, whereas for distances 2 and 3, the subject positions were at 
2.60 and 1.00 m, respectively. The outdoor light was only the source of illumina-
tion, which came through a window on one side. The images were captured from 
five different quality commercial surveillance video cameras and two infrared 
night-vision cameras, in uncontrolled lighting so as to mimic the real-world condi-
tions. Furthermore, full frontal mug shot image for each subject was captured using 
a high-quality photo camera with the capture conditions exactly the same as would 
be expected for any law enforcement. The high-quality photo camera for capturing 
visible light mug shots was installed the same way as the infrared camera but in a 
separate room with the standard indoor lighting, and it was equipped with adequate 
flash. In our experiments, the high-quality mug shot image of each person was used 
as a training gallery, while the remaining images from the five surveillance cameras 
and distances were used as test images, as depicted in Figure 13. With the focus 
of this research toward images in visible spectrum and single sample per person, 
especially for real-world surveillance system, the images taken from IR night-vision 
cameras and mug shot rotation were not used in this research. As preprocessing 

Figure 12. 
Sample image with R1 = 2 and R2 = 5 circular-based topology: (a) the original image, (b) the image extracted 
from the microstructure (R1 = 2), and (c) the image extracted from the macrostructure (R2 = 5).
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steps, all images in the SCface database were aligned based on the provided eye 
coordinates, so that the eyes’ line lies on a straight line. The images were then scaled 
and cropped to 64x64 pixel as has been implemented in [22].

The performance of the proposed eBGP descriptor was evaluated using the 
histogram intersection, where the histogram intersection computes the similarity 
between two discretized probability distributions or histogram vectors. Given HT is 
the histogram vector of a training image reference and HP is the histogram vector of 
a probe image, each one containing n bins, the intersection between them is defined 
as follows:

   H   T  ∩  H   P  =  ∑ 
j=1

  
n
   min  ( H  j  

T ,  H  j  
P )   (8)

where HT and HP are generated from distribution of labels computed from eBGP 
operator and the min function takes as arguments two values and return the small-
est one. Any histogram pair that returns the highest intersection value based on Eq. 
(8) than any other pairs is considered to be matched and assigned to the label. By 
comparing this label against ground truth label, the recognition rate is determined 
by counting the occurrence of the correct label over the number of test images. 
Recognition rate is computed as follows:

  Recognition rate  (%)  =    N  L   ___ 
N

   × 100 % (9)

where NL is the total number of test images which are correctly matched and N 
is the total number of test images.

It is vital to stress that the classifier plays a decisive role in achieving better 
recognition rate. In this research, the experiments were dictated in such a way to 

Figure 13. 
Sample images from the SCface database of distance 3: (a) the high-quality mug shot. (b–f) The images taken 
from five different surveillance cameras. (g and h) The images were taken from IR night-vision cameras.
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focus on recognition rate improvement due to macrostructure information fusion. 
Hence, the recognition rate of the proposed eBGP descriptor and its baseline BGP 
descriptor were computed and compared to verify the recognition rate improve-
ment. For comparative analysis, results of BGP descriptor on the SCface database 
are produced by running the BGP code requested from [14]. This is to ensure 
analysis of the result can be done without any concern on the validity of the results. 
In fact, Huang and Yin [14] do not use the SCface database in their work; thus BGP 
code was altered to work with the SCface database.

4.1 Experiment settings and preprocessing

As a preprocessing step, each image is first transformed into OIGM images using 
the same method used by the BGP descriptor. OIGM images are then divided into N 
numbers of non-overlapped blocks before applying eBGP descriptor, where N is set 
to 16 in this research.

4.2 Results of patch-based topology

For better presentation, several notations are used to describe the experiment 
setup and implementation. BGPM(P;R) is the implementation used in the BGP 
descriptor of spatial resolution (P,R), while eBGPM(P;R) is the implementation 
of the proposed eBGP descriptor with macrostructure information based on the 
patch-based topology. In this experiment, the patch-based topology uses the patch’s 
median as a default scheme for the thresholding between patches.

Table 1 shows the performance of the proposed descriptor on the SCface 
database, where eBGPM(16;2) and eBGPM(8;1) represent the extended BGPM 
(eBGPM) with structures of Figure 5(a) and Figure 5(b), respectively. Results of 
BGPM(16;2) and BGPM(8;1) represent the baseline descriptor. As mentioned before 
in this section, the images of SCface database were captured by five cameras with 
three different distances. Table 1 shows the recognition rate results for each set and 
the average recognition rate over all cameras. The recognition rate for each set was 
calculated based on Eqs. (8) and (9).

Distance Descriptor Camera

1 2 3 4 5 Average

1 BGPM(8;1) 3.08 0.77 3.08 3.08 5.38 3.08

BGPM(16;1) 6.15 4.62 4.62 3.85 5.38 4.92

eBGPM(8;1) 4.62 1.54 4.62 3.85 6.15 4.16

eBGPM(16;1) 3.85 7.69 5.38 5.38 8.46 6.15

2 BGPM(8;1) 16.15 12.31 6.92 11.54 13.85 12.15

BGPM(16;1) 23.85 13.85 7.69 12.31 13.08 14.16

eBGPM(8;1) 20.77 13.85 10.77 16.92 16.15 15.69

eBGPM(16;1) 23.08 17.69 13.85 16.92 16.15 17.54

3 BGPM(8;1) 15.38 19.23 10.00 16.92 11.54 14.61

BGPM(16;1) 18.46 20.00 16.15 14.62 11.54 16.15

eBGPM(8;1) 19.23 17.69 11.54 17.69 13.08 15.85

eBGPM(16;1) 16.15 16.15 15.38 16.15 17.69 16.30

Table 1. 
Recognition rate (%) of the proposed eBGP descriptor on the SCface dataset using the patch-based topology.
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Figure 14. 
Samples of the SCface database: (a) training image mug shot and (b–d) test images captured by camera 2 at 
distances 1, 2, and 3, respectively. The upper row shows the original images, while the lower row shows the 
images after alignment, scaling, and cropping to 64 × 64.

From Table 1, it can be seen that none of the descriptors achieved recognition 
rate higher than 35% over all cameras and distances. Particularly, the images of 
distance 1 recorded the lowest recognition rate with an average of 4.58%, while 
the images of distances 2 and 3 achieved better recognition rates with an aver-
age of 14.89 and 15.73%, respectively. Table 1 also shows that eBGPM(8;1) slightly 
boosted up the performance comparable with BGPM(8;1) for all distances, where 
it attained the highest recognition rate over BGPM(8;1) on the distance 2 with an 
average recognition rate which equals to 3.54%. On the contrary, eBGPM(16;2) has 
a mix result with respect to its baseline BGPM(16;2); the performance drop can be 
observed from camera 1 gallery results, where distance 1, distance 2, and distance 
3 show lower recognition rate comparable with the baseline descriptor. Similar 
to eBGPM(8;1), eBGPM(16;2) presented the highest recognition rate on distance 2 
gallery images compared to those from distance 1 and distance 3. This is because the 
gallery images of distance 1, which have been acquired at 4.20 m distance, are low 
in resolution and small in size. Moreover, the process of scaling and cropping the 
images into 64 × 64 size leads to loss of the quality and some dominant features. On 
the other hand, the images of distance 3 are higher in quality and details. However, 
as the subjects are closer to the camera, which is installed at 2.25 m from the floor, 
in most natural head position, the upper half of the subject face is more dominant 
in the captured images as depicted by Figure 14. Figure 14 demonstrates that the 
images of distance 2 are slightly better in quality than the other two distances, but 
they still suffer from head position. This interprets the superiority of descriptors on 
this distance.

Due to these discouraging results by both the proposed eBGP descriptor and 
its baseline BGP, extra experiments were conducted on the SCface database. Since 
Table 1 illustrated that the recognition rate is improved with increase of the spatial 
resolution, consequently the BGPM descriptor is first extended to larger spatial 
resolution of (24,3). Even though recognition rate increased by including the 
macrostructure in eBGP, the overall recognition rate is still too low for realistic 
applications. It might be because the structural pattern and OIGM image were 
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extracted from low-resolution and deformed images (after scaling and cropping 
have been done). Hence, two additional descriptors were then designed to investi-
gate the effectiveness of structural patterns and OIGM image when exploiting the 
macrostructure information from low-resolution images. These descriptors still 
use BGPM in exploiting information from the microstructure, but they extract the 
macrostructure information in a different way.

The first additional descriptor, denoted as Type IP in Table 2, is equivalent to 
the eBGPM(16;2) descriptor with one exception. The structural pattern concepts are 
ignored, and all labels which are produced by (16,2) spatial resolution are assumed 
to hold some unique features. In this setup, all information from 16 labels are used to 
populate the histogram vector. This descriptor is designed to investigate if there is any 
other feature that may be discarded by the structural patterns when dealing with low-
quality images. The second descriptor, denoted as Type IIP in Table 2, is designed to 
extract information from both OIGM and grayscale intensity images. This descriptor 
extracts the microstructure information from the OIGM image and the macrostruc-
ture information from the grayscale image. Type IIP descriptor is similar to the other 
proposed descriptor, where the local microstructure information is extracted from 
the central patch of ROI using BGPM(16;2). However, instead of using BGP operator 
to assemble histogram vector from the macrostructure, a standard   LBP  8,1  

u2
    operator 

is employed to extract the macrostructure information. The patch median of eight 
neighborhood patches is thresholded with the patch’s median of the center patch, so as 
to produce a string of eight binaries or label.   LBP  8,1  

u2
    descriptor generates over 256 labels, 

but only 58 uniform patterns are kept for histogram fusion and the remaining are 
discarded. Histograms from both domains are concatenated and given equal weights.

Results in Table 2 expose that the Type IIP descriptor achieved better recog-
nition rate than the rest of descriptors. The results also illustrate that Type IIP 
achieved better performance on images of distance 2 than those from distances 1 
and 3. Furthermore, it is notable to mention that employing BGPM(24;3) at larger 
spatial resolution did not help much in improving the recognition rate as much as 
Type IIP has achieved.

4.3 Results of circular-based topology

As described in Section 3.2, the macrostructure information are exploited 
from the outer circle which always has larger spatial resolution (P;R2) than 

Distance Descriptor Camera

1 2 3 4 5 Average

1 BGPM(24;3) 5.38 2.31 4.62 4.62 5.38 4.62

Type IP 3.85 6.92 4.62 6.92 3.85 6.00

Type IIP 10.77 6.92 6.92 5.38 10.77 8.31

2 BGPM(24;3) 21.54 16.15 13.08 16.15 15.38 16.46

Type IP 23.85 20.00 13.85 19.23 15.38 18.46

Type IIP 34.62 25.38 20.00 25.38 21.54 25.38

3 BGPM(24;3) 20.00 18.46 14.62 16.15 11.54 16.15

Type IP 16.92 16.92 14.62 16.92 16.15 16.31

Type IIP 22.31 23.08 15.38 23.85 16.92 20.31

Table 2. 
Recognition rate (%) of BGPM(24;3). Type IP and Type IIP descriptors on the SCface database.
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(P;R1). In other words, more points are used for thresholding when extracting the 
macrostructure information. For the presentation purpose,   S   (P,R)   

i
    and   S   (P,R)   

o
    nota-

tions are used to represent the spatial resolution of inner circle and outer circle, 
respectively. In the circular-based topology, two types of descriptors are designed 
to evaluate the performance of this topology. Type Ic descriptor is similar to what 
has been discussed in Section 3.2. Learning from the results obtained based on 
the patch-based topology, Type IIc descriptor is designed to explore a fusion of 
texture extracted from grayscale image and OIGM image. This descriptor extracts 
the local microstructure information from the OIGM image and the macrostruc-
ture information from the grayscale image. The histograms generated from these 
two types of images are concatenated and given equal weights. In this topology, 
multiple combinations of spatial resolution of inner and outer circles are tested. 
By limiting R2 to 5, there are 10 combinations of descriptors at different spatial 
resolutions. Overall, there are 20 different combinations of descriptors that were 
put to the test.

Performance of Type Ic and Type IIc descriptors on the SCface dataset at distance 
1, distance 2, and distance 3 is presented in Tables 3, 4, and 5, respectively. Similar 
to the results obtained by the patch-based topology, the average recognition rate 
of the images that belong to distance 1 from all cameras is the lowest compared to 

Circular eBGP Camera

  S   (P,R)   
i     S   (P,R)   

o   Type 1 2 3 4 5 Average

(8,1) (16,2) Ic 5.38 3.85 3.85 3.08 4.62 4.12

IIc 6.92 6.92 6.92 6.15 7.69 6.92

(24,3) Ic 5.38 4.62 4.62 3.08 5.38 4.62

IIc 7.69 5.38 6.92 7.69 6.92 6.92

(32,4) Ic 5.38 6.15 5.38 6.15 6.15 5.84

IIc 6.92 6.15 6.92 8.46 6.15 6.92

(40,5) Ic 5.38 7.69 4.62 6.15 6.15 6.00

IIc 9.23 7.69 6.92 7.69 6.15 7.54

(16,2) (24,3) Ic 5.38 4.62 6.15 3.85 6.15 5.23

IIc 6.92 6.92 5.38 6.15 7.69 6.61

(32,4) Ic 6.15 6.92 7.69 4.62 6.15 6.31

IIc 10.00 6.92 3.85 7.69 7.69 7.23

(40,5) Ic 5.38 6.92 3.85 6.15 6.15 5.69

IIc 8.46 7.69 6.15 8.46 6.92 7.54

(24,3) (32,4) Ic 5.38 3.85 6.92 3.85 6.15 5.23

IIc 12.31 7.69 7.69 9.23 6.92 8.77

(40,5) Ic 6.15 6.15 5.38 2.31 6.92 5.38

IIc 10.77 8.46 9.23 9.23 4.62 8.46

(32,4) (40,5) Ic 4.62 5.38 6.15 2.31 7.69 5.23

IIc 9.23 7.69 10.00 10.77 5.38 8.61

Baseline BGPM(8;1) 3.08 0.77 3.08 3.08 5.38 3.08

BGPM(16;2) 6.15 4.62 4.62 3.85 5.38 4.92

Table 3. 
Circular-based topology on the SCface dataset at distance 1.
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those from distance 2 and distance 3 as shown in Table 3. One noteworthy observa-
tion is that most of Type IIc descriptors at any spatial resolution achieved better 
recognition rate than Type Ic descriptors. Taking a closer look at the descriptor’s 
performance in Table 5, Type IIc descriptor with spatial resolution of   S   (16,2)   

i
    and   

S   (24,3)   
o
    recorded the best results for all cameras on the test gallery of distance 3. On the 

other hand, for distance 2 test gallery, Type IIc descriptor with spatial resolution of   
S   (24,3)   

i
    and   S   (32,4)   

o
    achieved the best result against other combinations.

For further evaluation, Table 6 demonstrates results of the proposed eBGP 
descriptor compared with state-of-the-art descriptors such as PCA [27], SIFT and 
sparse representation-based classification (SRC) [28], and edge-preserving super-
resolution (SR) [29], on the SCface database at distance 2. All descriptors applied the 
same test conditions, where only one mug shot image per subject is used for train-
ing, while the remaining low-resolution images from all cameras are used as probe 
images. The results show that the proposed descriptors based on eBGP achieved the 
highest recognition rates compared to all other descriptors, especially eBGPM(16;2) 
(Type IIP) which has the best recognition rate over all camera images. Exploiting 
information from the macrostructure raised the BGPM results from the fifth highest 
to first. This indicates the importance of the macrostructure information in shaping 
a complete face representation in single-reference face recognition problem.

Circular eBGP Camera

  S   (P,R)   
i     S   (P,R)   

o   Type 1 2 3 4 5 Average

(8,1) (16,2) Ic 20.77 12.31 10.00 11.54 14.62 13.85

IIc 25.38 19.23 15.38 17.69 14.62 18.46

(24,3) Ic 24.62 15.38 11.54 15.38 16.92 16.77

IIc 25.38 21.54 16.15 19.23 14.62 19.38

(32,4) Ic 26.92 17.69 15.38 17.69 13.85 18.31

IIc 23.85 19.23 16.92 18.46 15.38 18.77

(40,5) Ic 29.23 19.23 13.08 19.23 13.85 18.92

IIc 23.08 19.23 15.38 17.69 16.92 18.46

(16,2) (24,3) Ic 26.15 16.15 11.54 13.08 15.38 16.46

IIc 25.38 22.31 16.15 21.54 19.23 20.92

(32,4) Ic 25.38 18.46 13.85 13.85 13.85 17.08

IIc 24.62 21.54 17.69 21.54 20.00 21.08

(40,5) Ic 25.38 20.00 13.08 20.77 15.38 18.92

IIc 24.62 20.77 16.92 20.00 17.69 20.00

(24,3) (32,4) Ic 20.77 18.46 12.31 13.85 14.62 16.00

IIc 28.46 24.62 16.92 20.77 20.77 22.31

(40,5) Ic 22.31 17.69 14.62 16.15 14.62 17.08

IIc 28.46 23.85 15.38 16.15 16.92 20.15

(32,4) (40,5) Ic 22.31 16.92 13.85 17.69 13.85 16.92

IIc 25.38 25.38 16.92 20.00 16.15 20.77

Baseline BGPM(8;1) 16.15 12.31 6.92 11.54 13.85 12.15

BGPM(16;2) 23.85 13.85 7.69 12.31 13.08 14.16

Table 4. 
Circular-based topology on the SCface dataset at distance 2.
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5. Conclusion

In this paper, an extended BGP (eBGP) descriptor, which incorporates mac-
rostructure information into BGP descriptor, has been proposed to improve the 
overall descriptor performance in single-reference face recognition problem. 

Circular eBGP Camera

  S   (P,R)   
i     S   (P,R)   

o   Type 1 2 3 4 5 Average

(8,1) (16,2) Ic 20.77 21.54 13.85 15.38 13.85 17.08

IIc 25.38 26.15 20.00 23.85 13.85 21.85

(24,3) Ic 23.08 20.77 13.08 20.00 11.54 17.69

IIc 23.08 24.62 20.00 23.85 16.92 21.69

(32,4) Ic 20.00 21.54 14.62 17.69 11.54 17.08

IIc 20.77 24.62 17.69 21.54 14.62 19.85

(40,5) Ic 19.23 17.69 15.38 18.46 10.77 16.31

IIc 23.85 23.85 15.38 20.77 13.85 19.54

(16,2) (24,3) Ic 20.77 20.77 13.08 17.69 13.08 17.08

IIc 26.15 25.38 20.77 24.62 19.23 23.23

(32,4) Ic 20.77 18.46 16.15 19.23 10.00 16.92

IIc 24.62 22.31 16.15 22.31 16.92 20.46

(40,5) Ic 19.23 19.23 15.38 18.46 12.31 16.92

IIc 26.15 21.54 16.15 22.31 11.54 19.54

(24,3) (32,4) Ic 17.69 16.15 13.85 17.69 9.23 14.92

IIc 23.08 20.77 19.23 21.54 15.38 20.00

(40,5) Ic 20.00 16.15 13.85 19.23 10.77 16.00

IIc 23.85 21.54 16.92 18.46 16.15 19.38

(32,4) (40,5) Ic 16.15 15.38 13.08 18.46 10.00 14.61

IIc 20.77 20.77 16.92 21.54 10.77 18.15

Baseline BGPM(8;1) 15.38 19.23 10.00 16.92 11.54 14.61

BGPM(16;2) 18.46 20.00 16.15 14.62 11.54 16.15

Table 5. 
Circular-based topology on the SCface dataset at distance 3.

Descriptor Camera

1 2 3 4 5 Average

PCA [27] 7.70 7.70 3.90 3.90 7.70 6.18

SIFT [28] 13.08 12.31 8.46 15.38 9.23 11.69

BGPM(16;2) 23.85 13.85 7.69 12.31 13.08 14.16

SRC [28] 29.23 16.15 12.31 25.38 13.08 19.23

Edge-preserving SR [29] 26.92 21.54 15.38 24.61 15.38 20.77

eBGPM(24;3)(32;4) (circular) 28.46 24.62 16.92 20.77 20.77 22.31

eBGPM(16;2) (Type IIP) 34.62 25.38 20.00 25.38 21.54 25.38

Table 6. 
Comparison of recognition rate (%) of the proposed eBGP descriptor with state-of-the-art descriptors on the 
SCface database at distance 2.
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Results obtained from a series of experiments on the SCface database showed that 
a fusion of information extracted from micro- and macrostructures is capable 
of boosting up the performance of BGP descriptor. The proposed eBGP descrip-
tor was tested with the patch-based and circular-based topologies; in overall, 
the circular-based topology outperformed the patch-based topology in terms of 
recognition rate. In patch-based topology, 5 × 5 structure recorded better hike 
in recognition rate than 3 × 3 structure, while in circular-based topology, larger 
spatial resolution showed better hike in the recognition performance. Moreover, 
a fusion of micro- and macrostructure information extracted from OIGM and 
grayscale image, respectively, raised the recognition rate higher. In fact, Type IIc 
setup always illustrated a better performance boost than Type Ic. With regard to 
thresholding implementation, it is worth to mention that local mean is on par 
with the local median for the descriptor and does not offer additional boost in the 
patch-based topology.
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