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Chapter

Gut-Brain Axis: Probiotic, Bacillus 
subtilis, Prevents Aggression via 
the Modification of the Central 
Serotonergic System
Heng-Wei Cheng, Sha Jiang and Jiaying Hu

Abstract

Intestinal bacteria release various neuroactive compounds directly or indi-
rectly regulating brain function to modulate host health and behavior through 
the gut-brain axis. Probiotics have been used as dietary supplements to target 
gut microbiota (microbiome) for prevention or therapeutic treatment of various 
diseases including mental disorders. In our study, chickens were used as an animal 
model to assess, if dietary supplementation of probiotic, Bacillus subtilis, reduces 
aggressive behaviors following social challenge. Chickens of an aggressive line 
were housed in single-hen cages. At 24 weeks of age, the hens were paired with 
similar body weight to identify the dominance rank (day 0). The subordinate 
and dominant of each pair were fed a regular layer diet or the diet mixed with 
250 ppm probiotics for 2 weeks, then the second behavior test was performed 
between the same pair (day 14). The display of aggressive behaviors in the regular 
diet-fed chickens was not affected between the levels at day 0 and day 14, while 
the frequency of threat and aggressive pecking were reduced in the probiotic-fed 
chickens compared to the levels at day 0. These results suggest dietary probiotic, 
Bacillus subtilis, could be a suitable strategy for increasing hosts’ mental health.

Keywords: probiotics, Bacillus subtilis, aggression, serotonergic system,  
gut-brain axis

1. Introduction

Human emotional susceptibility in an inter-group is associated with individual 
differences in the functions of the hormonal and/or neurochemical systems in 
response to internal and external stimulations. Aggression, as one of emotional dis-
orders, has been commonly defined as feeling of anger or antipathy of an organism 
during social interaction, leading to hostile of violent behavior or attitude, provok-
ing attack or confront toward another individual [1]. Aggression affects millions of 
people’s health and welfare around the world annually, resulting in significant social 
destruction and economic costs.

Intestinal bacteria, as a virtual endocrine organ, release various neuroac-
tive compounds directly or indirectly regulating brain function, including the 
serotonergic system, to regulate host health and behavior through the gut-brain 
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axis [2–10]. Intestinal bacteria, as well as Bacillus subtilis, used as probiotics are 
involved in tryptophan metabolism [11–14]. Tryptophan metabolites have roles 
in protecting intestinal mucosa from inflammation and regulating gut immune 
homeostasis [15–18]. Tryptophan, a precursor of 5-HT, directly affects brain 5-HT 
synthesis as that tryptophan can pass the brain-blood barrier [19, 20]. The brain 
serotonergic system plays a critical role in regulating behaviors, especially aggres-
sion [21, 22]. Concentrations of 5-HT and its metabolites, as well as the density 
of 5-HT receptors, have been used as major indicators of aggressive behaviors in 
humans and experimental animals [23–26].

Probiotics (also called psychobiotics or bio-friendly agents), defined “as a source 
of live (viable) naturally occurring microorganisms (direct-fed microbials, DFMs)”, 
have been used as dietary supplements to target gut microbiota (microbiome) for 
a novel promising therapeutic approach of various diseases including social stress-
induced mental disorders in humans and various experimental animals [27–36]. 
Different probiotic strains, for example, have been investigated as functional food or 
therapeutic treatment of various diseases, including Bifidobacterium bifidum [37–39]; 
Bifidobacterium bifidum (BGN4) and Bifidobacterium longum (BORI) [40, 41]; 
Bifidobacterium pseudocatenulatum [42]; Lactobacillus helveticus [31, 32]; Lactobacillus 
plantarum [43]; Lactobacillus paracasei (KW3110, [44]); Lactobacillus rhamnosus [45]; 
and Clostridium butyricum [46]. The results collected from these studies indicate that 
the effects of probiotics on physiological homeostasis, immunity, stress resistance, 
and related health status are affected by multiple factors, including the probiotic spe-
cies, its concentration, and duration as well as the host’s age and health status [47, 48].

Bacillus subtilis, as one of the three most common species of probiotic products 
in the United States [49], has been widely used as functional feed supplements, 
such as in a number of dairy and non-dairy fermented foods, for improving human 
health and well-being [50–52]. Similarly, Bacillus subtilis, as growth promoters, has 
been demonstrated to improve chickens’ growth performance [53–55]; regulate 
intestinal microstructure [56] and digestive enzymes [57, 58]; synthesize and 
release antimicrobial and antibiotic compounds [15, 59–63]; increase immunity 
[57, 64] and neurochemical activities including serotonin [8, 65, 66] as well as affect 
animal behavior [67, 68] following various stressors. In addition, Bacillus subtilis 
can overproduce l-tryptophan [11, 69], consequently increase 5-HT in the hypo-
thalamus [70], function as an antidepressant and anti-anxiety agent [71, 72], and 
eliminate nervous tension in mice [73]. In the current study, chickens were used as 
an animal model to assess if dietary supplementation of probiotic, Bacillus subtilis, 
reduces aggressive behaviors following social challenge.

2. Gut microbiota and the gut-brain axis

Gut microbiota is a collective name of ten of trillions of microorganisms living in 
our intestine, including more than 35,000 different species of known bacteria [74]. 
Microbiome refers to the collective genomes of more than 3 million genes of the 
microorganisms in a particular environment. Gut microbiota, like a virtual endo-
crine organ, reacts to various internal and external stimuli [5, 75–78]. Consequently, 
gut microbiota influences and regulates hosts’ health and mood statue including 
aggression by integrating metabolic, immune, endocrine, and neural reactions 
through the bidirectional communication of the gut-brain axis (Figure 1) [7, 33, 
79–83]. Gut microbiota in hosts, for example, regulates brain neurotransmitters 
[84–87] such as serotonin (5-HT) through releasing its precursor, tryptophan, 
an essential amino acid [75, 88–90]. Serotonin is a key neurotransmitter within 
the brain, contributing to the development of the central nervous system (CNS) 
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[91–94] and social behavior [95, 96], affecting mental health [97–100] and pro-
viding therapeutic strategy for treating or preventing stress reaction and related 
neuropsychiatric disorders [94, 97].

2.1 Social stress and the hypothalamic-pituitary-adrenal axis

The social world is filled with different types of interactions, such that social 
challenges (fight-or-flight) and social environmental changes (group instability), 
as stressors, can cause highly potent stress [101–103]. Some management practices 
used in the intensive farm animal production systems, for example, may cause 
stress in animals. Farm animals are often housed in large groups at high densities, 
and during the animals’ lifetimes, they are repeatedly transported to new environ-
ments and mixed with unfamiliar individuals. Based on the social network theory, 
animal group disruption can lead to social stress and related aggression [104] when 
they are unable to cope with these management practices and/or to reset their 
dominance rank (a form of animal social structure hierarchy) [105, 106].

Aggression has been commonly defined as feeling of anger or antipathy during 
social interactions, leading to hostile or destructive behaviors or attitudes, provok-
ing physical or verbal attack or confront toward another individual [1]. Aggressive 
encounters among conspecifics for obtaining or maintaining a socially dominant 
position or rank cause a negative or unstable social environment to activate the 
hypothalamic-pituitary-adrenal (HPA) axis which is known as the key stress 
response system [107–109]. Cortisol (or corticosterone, CORT, in rodents and 
birds), as one of the final hormones released from the adrenal cortex, has multi-
functional functions in both normal and abnormal states, regulating behavioral 
styles, metabolic patterns, and endocrine and immune functions, and ensuring an 
adequate coping strategy and well-being [110–112]. In mammals, hypercortisolism 
in response to novel environment exposures has been evidenced to be of adrenal 
origin [113, 114]. The value of circulating cortisol (or CORT) has been used as a cri-
terion of stress response in humans and various animals [115–117]. Corticotrophin-
releasing factor facilitates aggression [118, 119], and related elevation of CORT (or 
cortisol) also affects neuroendocrine functions through binding to their receptors 
[120, 121], causing neuron loss in the hippocampus [122], dysfunction of the sero-
tonergic system [123], and inhibition of immunity (increased pro-inflammatory 
cytokines as neuroinflammatory response) within stress-sensitive brain regions 
[124]. These changes finally lead to the development of psychological disorders such 
as aggression [109, 125]. Similar to that the HPA hyperactivity generates aggressive 
behavior, exogenous glucocorticoid treatments increase exacerbated aggressiveness 
in both humans and experimental animals [123, 126]. Taken together, emerging 

Figure 1. 
The microbiota-host interaction occurs at the level of the gastrointestinal mucosa via local neural, endocrine, 
and immune activities, influencing brain neurotransmitter expression, physiological homeostasis, and 
immunity (modified from [79]).
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evidence have indicated that the changes of the programming of HPA stress reactiv-
ity [127] cause long-term effects on the host physiological homeostasis and neu-
robehavioral functions [128].

2.2 Microbiota, stress-associated aggression

Aggression within a group is to establish a dominance hierarchy when the animals 
are first brought together in a common environment [129–131]. From an evolution-
ary perspective, aggression is adaptive behaviors that are related to an individual’s 
survival, growth, and reproductive success within a group [132, 133]. However, 
aggression with long-term impact is often destructive and maladaptive in today’s 
society, affecting millions of people’s health and well-being around the world annu-
ally, resulting in significant social destruction and economic costs [134–136].

Intestinal microbiota plays an important role in regulation of social behavior, 
emotional expression, and mental health within the animal kingdom [3, 137, 138]. 
They are essential players in stabilizing homeostasis of the GI tract in response to 
both acute and chronic stress via the microbiota-gut-brain axis [16, 139]. Normally, 
intestinal microbiota provides protection for animals by competing for attachment 
sites and nutrients with pathogens as well as production of antimicrobial peptides 
and neuroactive compounds [140, 141]. The gut microbiota is also a key pathway to 
modulate brain processing the integrated information received from the peripheral 
nerve systems (the vagus nerve, enteric nerve, and autonomic nervous system), 
hormone signaling, the immune system, and microbial metabolites (short-chain 
fatty acids) [5, 137]. Under social challenges, stress and related oxidative damage 
cause anatomical and functional disorders of the GI tract by: (1) disrupting the 
commensal bacterial populations and colonization, thus reducing beneficial bacteria 
and increasing pathogens; (2) increasing pathogen survivability and innovating 
capability; (3) disrupting absorption of nutrients and minerals, including calcium; 
(4) disrupting microbial neuroendocrine functions; (5) disrupting the gut epithelial 
barrier, thereby increasing intestinal permeability causing the gut to leak certain 
bacteria (leaky gut), resulting in metabolic disorder; (6) damaging epithelial cells, 
thus producing free radicals and reducing antioxidant efficacy; and (7) interrupting 
intestinal integrity, thereby leading to intestinal inflammation [142–144]. These 
changes in gut microenvironment affect brain functions, resulting in exacerbated 
HPA axis activity, increased chronic inflammation, and/or disrupted neurotransmit-
ter balance, leading to emotional damage [139, 145] and mental disorders [137, 138]. 
Sudo et al. [146] reported a correlation between the changes of gut microbiota and 
the function of the HPA axis. Germ-free (GF, antibiotic-treated microbiota-deficient 
or raised without any exposure to microorganisms) rats show exaggerated HPA 
responses to psychological stress [75, 147] with significantly higher levels of both 
ACTH and CORT in response to restraint stress compared to control rats [146]. In 
GF mice, gut microbiota also modulates the 5-HT synthesis and release at both the 
brain and peripheral levels directly and indirectly via the microbiota-host interac-
tions [148]. Reduced 5-HT activity (a 5-HT deficiency) has been associated with 
personality traits (interspecific social behavior), such as impulsivity and aggression, 
and deteriorated stress coping capability (increased stress response) in humans and 
various animals [149, 150] including chickens [24, 151–154].

3. Serotonin and aggression

Serotonin, as an ancient chemical, is a key neurotransmitter. It plays a critical 
role in shaping social responses by regulating both basic (proactive) behaviors 
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(such as feeding, drinking, and sexuality) and reactive behaviors (fearfulness, anxi-
ety, and cognition) including aggressive behaviors [155, 156] and mood disorders 
[157, 158]. Abnormalities of blood and brain levels of 5-HT, 5-HIAA (its metabolite, 
5-hydroxyindoleacetic acid), tryptophan, and its receptors have been used as major 
indicators or targets in the diagnoses and treatments of psychiatric and compulsive 
disorders in humans and various experimental animals [62, 63, 159, 160].

In the CNS, 5-HT functions to inhibit aggression, thereby controlling domestic 
behaviors [161–163]. The 5-HT deficiency theory of aggression is driven from the 
negative correlation between the changes of the CNS 5-HT and aggressiveness in 
humans [164, 165], non-human primates [166], rodents [25, 167], and chickens 
[24, 168]. Aggressive animals have low levels of 5-HT in the brain, including in the 
hypothalamus [169–171]. Experimental increase of 5-HT and/or 5-HIAA in the 
brain, such as in the lateral hypothalamus and amygdala, blocks or retracts killing 
behavior in rodents [172, 173]. Hypothalamic injection of a 5-HT1a agonist inhibits 
aggression in male hamsters [174]. Depletion of brain 5-HT in TPH2 mutant mice 
marks aggression and lowers habituation in novel environments [149]. In addition, 
5-HT1BR knockout mice show increased aggression and impulsivity [175, 176]. The 
implication of 5-HT successfully relieves the depression syndromes in humans [177] 
and reduces aggressive behaviors in primates and rodents [178, 179].

In the peripheral system, however, pathophysiological roles of 5-HT in behav-
ioral and motivational regulations are unclear. Reduced, elevated, and unchanged 
blood 5-HT concentrations have all been reported in association with behavioral 
dysfunctions, including aggressiveness [180, 181]. The conflicting data from 
different investigations could be related to the differences in species of animals, 
behavioral evaluations, and/or stressors used as well as duration and frequency of 
stressors presented.

4. Chicken as an animal model for social stress and related aggression

Human emotional susceptibility in an inter-group is associated with indi-
vidual differences in the functions of the hormonal and neurochemical systems 
in response to internal and external stimulations [182, 183]. Various social and 
biological factors are associated with the development and expression of aggressive 
behaviors, including environmental, genetic, cognitive, hormonal, and neurotrans-
mitter circumstances [184]. Aggression and associated mental illness are an emerg-
ing public health problem [29]. Animal models are critical for investigating the 
potential biological processes involved in human aggression and mental disorders.

Although there are dissimilarities between humans and chickens, as indicated, 
the neural circuitry for aggression and social behavior appear to be evolutionarily 
conserved across the vertebrates [185]; chickens have been used as an animal model 
in various clinical and psychopharmacological studies, such as anxiety, depression, 
and aggression [186, 187]. A commercial hen can have more than 300 offspring with 
similar genetic characteristics during her lifetime, and chicks can be hatched with-
out maternal condition effects. Previous studies have reported that birds’ brain pos-
sess a core “social behavioral network” which is humongous to the social behavioral 
network of mammals [188]. There are evidences that the central nuclei involved 
in moodiness in avian, at least in part, are morphofunctional homologous to the 
mammalian nuclei [189], such as the hypothalamus [190], nucleus taeniae (homo-
log to the amygdala of mammals, [191, 192]), and Raphe nucleus [193]. These nuclei 
exert similar cognitive abilities and consciousness [194] with capability of plastic-
ity in response to environmental stimulations [195]. In addition, there are similar 
distributions of neurotransmitter receptors, including serotonergic receptors 
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between birds and mammals  [196, 197]. Particularly, it has been evidenced that the 
development and function of avian HPA axis in response to stimuli are analogous 
to those of mammals [198, 199] and there are similar distributions of cortisol-like 
molecules in the same organs from both birds and mammals [200]. Birds’ CORT 
biosynthesis and metabolism can be stimulated in the same way as that of mammals 
[201–203]. During breeding, functional integrations among behavior, physiology, 
morphology, and environment in chickens may create suites of various traits that 
are simultaneously acted upon each selection program [204]. For example, selection 
based on individual production capability (phenotypic characteristics) increases 
animals’ competition and aggression [205, 206] such as potentially injurious feather 
pecking and cannibalism. For instance, through more than 20 years of selection, 
egg production had been increased significantly in a former commercial Dekalb XL 
strain, whereas mortality due to aggression and cannibalism in non-beak trimmed 
hens had also increased about 10-fold [132, 152].

Results from previous studies conducted in our laboratory have found that 
chicken strain dif fers in social reactions through a diversely genetic selection 
program. The DXL hens have distinct stress levels in attempting to adapt to their 
social environments [207, 208] and exhibit different levels of aggressiveness [168]. 
In addition, neurotransmitters, 5-HT and dopamine (DA), and the hypothalamic-
pituitary-adrenal (HPA) axis are regulated differently between chicken strains 
[168, 207]. There results suggest that injurious behaviors and related social sensi-
tivity of chickens, similar to that in mammals, are regulated via the serotonergic 
system and the HPA axis [123, 209], and mechanisms underlying aggression in 
laying hens may be analogous to those of humans and rodents [210]. Similarly in 
humans and rodents, stress-induced destruction of intestinal bacteria disturbs 
the bilateral connection of the microbiota-gut-brain axis in chickens, affecting 
physiological homeostasis and behavioral exhibition [211]. In one of our studies, 
the role of probiotic, Bacillus subtilis, on aggression in DXL line was examined. 
In the study, one-day-old female chicks were reared in single-bird cages up to 
24 weeks. At 24 weeks of age, the hens with similar body weight were paired for the 
first aggression test (pre-treatment, day 0) in a novel floor pen [212]. Behaviors 
were video-taped for 2 h immediately after releasing the two hens simultaneously 
into the floor pen to determine the dominant individual per pair. Following the 
behavioral test, the subordinate hens were continuously fed the regular diet, while 
the dominant hens were fed the diet mixed with 250 ppm probiotic (1.0 × 106 cfu/g 
of feed) for 2 weeks. The probiotic contains three proprietary strains of B. subtilis. 
After the treatment (day 14), the second aggression test was conducted within 
the same pair of hens. The video recording was analyzed for frequency of feather 
pecking, threat, aggressive pecking, and threat kick by the routine lab procedures 
(Table 1) [154, 213].

Behavior Description

Feather 
pecking

One bird pecking at feathers of another bird, can be gentle (nibbling or gentle pecking 
in which feathers are not removed or pulled) or severe (vigorous pecking to feathers in 
which feathers are often pulled, broken, or removed)

Threat One bird standing with its neck erect and hackle feathers raised in front of another bird

Aggressive 
pecking

Forceful downward pecks directed at the head or neck of other birds

Threat kick One bird forcefully extending one or both legs such that the foot strikes another bird

Table 1. 
Behavioral ethogram.
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5. Probiotic, Bacillus subtilis, and aggression

As social animals, chickens show fear, depression, and/or anxiety in novel envi-
ronments and show aggression toward ones for establishing social dominance rank 
in unfamiliar social groups [214, 215], which is similar to rodents used in human 
psychopharmacological studies [216, 217]. The paired social ranking-associated 
behavioral test used in this study has been routinely performed in chicken behav-
ioral analysis [154, 213, 218]. The rationale and cellular mechanisms of the test is 
similar to the resident-intruder test which is a standardized method used in rodents 
for detecting social stress-induced aggression and violence [219, 220].

5.1 Probiotics and Bacillus spp.

A healthy intestinal microbiota community is important for maintaining physi-
ological and behavioral homeostasis as that the gut microbiota regulates appetite, 
local and systemic immunity, stress responses of the HPA and sympathetic- 
medullary-adrenal (SMA) axes, and circadian rhythms [5, 221]. The new strate-
gies of psychotherapy aimed at restoring the normal gut microbiota and intestinal 
homeostasis have been developed for the prevention and/or reduction of stress-
induced abnormal behaviors and mental disorders.

Probiotics are commensal bacteria (“direct-fed microbials”, DFM) that offer 
potential health beneficial bio-physiological effects to the host’s stress response 
(acute, chronic, or both). Probiotics aid animals in adapting to their environments 
and protect against pathogens by: (1) altering the microbiota profile with beneficial 
bacteria to prevent the growth of pathogens and to compete with enteric pathogens 
for the limited availability of nutrient and attachment sites; (2) producing bacte-
riocins (such as bacteriostatic and bactericidal substances) and short-chain fatty 
acids against pathogens to regulate the activity of intestinal digestive enzymes and 
energy homeostasis and to increase mineral solubility; (3) reducing oxidative stress, 
inflammation, and acinar cell injury; (4) modulating host immune and inflam-
matory responses and restoring the intestinal barrier integrity which prevents 
pathogens from crossing the mucosal epithelium; (5) stimulating the endocrine 
system and attenuating stress-induced disorders of the HPA and/or SMA axes via 
the gut-brain axis; and (6) inducing epithelial heat shock proteins to protect cells 
from oxidative damage; and (7) synthesis and secretion of neurotransmitter such as 
5-HT and tryptophan [16, 17, 222–226]. In both human and rodent studies, probiot-
ics reduce cognitive dysfunction, decrease the stress response and related oxidative 
damage by lowing plasma CORT and ACTH levels, restore hippocampal 5-HT 
levels, and normalize immunity with low plasma levels of TNF-α (tumor necrosis 
factor-α), a proinflammatory cytokine, but high levels of IL-10 (Interleukin-10), an 
anti-inflammatory cytokine [67, 227–230]. It has been stated in nonhuman primate 
models that the composition of the gut microbiota has potential effects on hosts’ 
aggressive behaviors and anxiety symptoms [127], which is similar to the findings 
reported in humans [137, 231–233]. In rodent studies, GF animals with exaggerated 
HPA responses to social stress can be normalized by certain probiotics [147]. In 
addition, probiotics have successfully attenuated anxiety and depressive behaviors 
in rat offspring separated from their mother [234–236] and the obsessive- 
compulsive-like behaviors in house mice [28, 237]. These results support the psy-
chobiotics theory [238] and provide a new insight into the possible use of probiotics 
to improve a host’s cognitive function in humans [9, 40, 41, 239–243].

A proposed strategy for improving human health is dietary supplement with 
probiotic microorganisms including Bacillus species [52, 244]. Bacillus subtilis 
is spore-forming bacteria. They have heat stability and low pH-resistance  (the 
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gastric barrier), and tolerate multiple environmental stressors [245, 246]. Several 
Bacillus spp. such as B. coagulans and B. subtilis have been used as probiotics in 
both humans [247–249] and animals [246] including poultry [65, 67, 250, 251]. 
Several mechanisms of action of Bacillus spp. have been proposed: the improve-
ment of hosts’ growth, survival, and health status via their anti-inflammatory 
functions through immunomodulation and cytoprotection [252, 253]. And, they 
have been used as antibiotic growth promoters alternatives with health-promoting 
benefits by naturally synthesizing proteins, enzymes, antimicrobial peptides, vita-
mins, gut flora modulation to promote beneficial microbiota along the GI tract and 
to correct and repair immunological and gut morphological alterations [244, 246, 
250, 254, 255]. In addition, numerous studies have shown that probiotic-induced 
changes in the composition of gut microbiota lead to alterations of neuroendocrine 
functions. For example, in response stimulations, B. subtilis alleviate oxidative 
stress, provoke a specific biological response, and improve mood status of hosts via 
the gut-brain axis [52, 147, 256].

5.2 Bacillus subtilis-based probiotic and social challenge-induced aggression

Aggression, in nature, is associated with competition (natural selection) for 
survival and reproduction [22, 257, 258] (please also see above for the detailed 
description). However, in artificial production environments, such as in the 
poultry industry, aggression causes increased social stress and feather and body 
damage, in some instances these injuries leading ultimately to cannibalism. 
Cannibalism is a major concern related to non-beak trimmed bird deaths in cur-
rent housing environments [259, 260]. Beak trimming (BT) is a routine procedure 
practiced in the US egg industry for reducing social stress by preventing and/or 
inhibiting feather pecking and cannibalism. However, BT is criticized for causing 
tissue damage and pain (acute, chronic, or both), negatively affecting the welfare 
of billions of chickens annually [261, 262]. Considerable concern from the public 
has led to a growing movement against procedures causing pain and suffering 
in farm animals. In response to growing pressures, housing environments of 
laying hens have been modified and/or various dietary supplementations have 
been provided in attempts to prevent social stress and stress-associated injurious 
behaviors. For instance, modifications include reducing light intensity, changing 
the nutritive value or taste of diets [263–265], providing straw or grain [266, 267] 
or pelleted diets [263], housing hens in floor-pens [268], and developing enriched 
cages [269, 270]. However, these methods have had limited success and provide no 
guarantee of preventing these injurious behaviors. Therefore, an obvious solution 
is to develop a welfare-friendly alternative to BT that minimizes social stress, 
thereby preventing feather pecking and cannibalism. The hypothesis was tested 
in this study: probiotics could be an alternative to beak trimming in chickens for 
reducing feather pecking and aggression via regulating the gut-brain axis.

Based on the 5-HT deficiency theory of aggression, social challenge-induced 
changes in 5-HT concentration were examined in this study. In the current study, 
the data showed that prior to the treatment (day 0), plasma 5-HT levels were 
higher (26% increase) in the dominant hens than that of subordinate hens but 
were not statistically significant (P = 0.24. Dominant5-HT = 17.46 ng/ml,  
Subordinate5-HT = 13.87 ng/ml). This finding is in agreement with the results 
reported previously [152, 168]. In those studies, higher plasma levels of 5-HT 
were detected in hens from mean bad bird (MBB) strain, a high aggressive strain 
selected for both low productivity and low longevity resulting from injurious 
pecking and cannibalism, compared to hens from kind gentle bird (KGB), a 
low aggressive strain selected for both high productivity and high longevity. In 
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addition, Bolhuis et al. [271] proposed that blood 5-HT activity is correlated with 
the development of severe feather pecking in laying hens. A similar correlation 
between blood 5-HT levels and aggressiveness has also been detected in humans 
and various other animals, that is, a lower blood 5-HT level was associated with less 
aggressive individuals in humans [180, 272] and canine [273], while an elevated 
blood 5-HT level was determined in patients with aggressive behaviors [274] and in 
aggressive teleost fish [275].

Post-treatment (day 14), plasma 5-HT levels were reduced toward the levels of 
controls (subordinates) in the probiotic fed dominant hens (P = 0.02) compared 
to their related levels prior to treatment (day 0) (Figure 2). There were no treat-
ment effects on plasma 5-HT concentrations in subordinate hens fed a regular diet 
(P = 0.88). Although the reasons of the reduction of plasma 5-HT concentrations in 
probiotic fed hens are still unclear but could be similar to those proposed in probi-
otic-treated patients with intestinal inflammatory disorders such as irritable bowel 
syndrome (IBS) and IBS experimental animals. Probiotics reduce IBS-associated 
abdominal pain and abnormal bowel habits [276, 277] through regulation of both 
the central and peripheral serotonergic systems via the microbiota-gut-brain axis 
[278, 279] and gut epithelial enterochromaffin cells [19]. In the peripheral system, 
probiotics reduce or inhibit IBS-associated serotonergic system abnormalities, that 
is, great hypersensitivity and spontaneous release of 5-HT [280, 281]. Serotonin 
reuptake transporter (SERT or 5-HTT) has functions in inactivating 5-HT. Down-
regulation of SERT receptors has been found in the intestinal mucosa of IBS patient 
whose symptoms are similar to those found in the SERT knockout mice [282]. 
Serotonin 5-HT3 receptor antagonist also has shown efficacy in treating IBS patients 
[278, 283]. In addition, Wikoff et al. [284] reported that conventional mice had 
lower concentrations of 5-HT compared to GF mice. GF mice also had an exag-
gerated stress response [146] with anxiety-like behaviors [285]. These abnormal 
behaviors in GF mice can be inhibited or reduced by feeding probiotics [286] or 
transplanting fecal samples of conventional mice [287]. The current and previous 

Figure 2. 
Plasma serotonin (5-HT) levels at day 0 (pre-treatment) and day 14 (post-treatment) in probiotic fed 
dominant hens and regular diet fed subordinate hens. Compared to subordinate hens, plasma 5-HT 
concentrations were higher in dominant hens at day 0 but without statistical difference (P = 0.24); the 
difference disappeared at day 14. Compared to the levels at day 0, blood concentrations of 5-HT were 
reduced in probiotic fed dominant hens at day 14 (P = 0.02) but were not in regular diet fed subordinate hens 
(P > 0.05). a,b between the concentrations at day 0 and day 14, least square means lacking common superscripts 
differ (P < 0.05).
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results indicate that normal health gut microbiota plays an important role in regu-
lating social stress and stress-associated behaviors.

Whether the changes of blood 5-HT levels in probiotic fed dominant hens 
represent a similar change of 5-HT concentrations in the brain is unclear, as 5-HT 
cannot pass the brain-blood barrier and is regulated differently between brain 
neurons and peripheral tissues [288]. The plasma 5-HT is synthesized mainly by the 
EC cells of the gut and stored in the platelets [289]. However, it has been proposed 
that platelet 5-HT uptake is a peripheral marker of brain 5-HT [273]. Dietary 
probiotic, Lactobacillus plantarum strain PS128, increases the levels of 5-HT as well 
as dopamine in the striatum, which is correlated with the improvement of anxiety-
like behaviors in GF mice [290]. Similar results have been received from our current 
studies. In one study, chickens (broilers) were fed Bacillus subtilis from day one. At 
day 43, Bacillus subtilis fed chickens had higher levels of 5-HT in the raphe nuclei 
and lower levels of norepinephrine and DA in the hypothalamus than controls 
[291]. Probiotic fed chickens also had improved bone traits (bone mineral density, 
bone mineral content, and robusticity index). Under heat stress (32°C), Bacillus 
subtilis fed chickens had lower heat stress-related behaviors and inflammatory 
response and reduced IL-6 levels in the hypothalamus compared to controls [67]. 
Further studies, however, are needed to examine if there are correlations between 
the regulations of peripheral 5-HT and CNS 5-HT in probiotic fed hens.

The gut commensal microflora may have an indirect effect on 5-HT synthesis 
by regulating tryptophan metabolism. The degradation of tryptophan, a precursor 
of 5-HT, is mainly through the kynurenine pathway which regulates over 95% of 
tryptophan in the peripheral system and is functionally mediated by gut microbiota 
and probiotics [147, 292]. In the present study, the tryptophan level was not signifi-
cantly affected by dietary probiotic (P = 0.35), but the initial levels of tryptophan 
in dominant hens were approximately 28% higher than the subdominant hens 
(P = 0.21) (Figure 3). The pattern of changes in blood concentrations of trypto-
phan in probiotic fed dominant hens was correlated with the changes of peripheral 
concentrations of 5-HT, indicating that probiotic may directly or indirectly regulate 
5-HT synthesis in the peripheral system.

In this study, behavioral changes in dominant hens were correlated with the 
changes of blood 5-HT concentrations following fed probiotic. In the probiotic fed 
dominant hens, the levels of threat kick were reduced (Figure 4a, P = 0.04), and 
the frequency of aggressive pecking tended to be lower (Figure 4b, P = 0.053). 
The levels of feather pecking in dominant hens were reduced compared to their 
initial levels at day 0 but without statistic significant (Figure 4c, 58%, P > 0.05). 
There was no change in injurious behaviors in the regular diet fed subordinate hens 
between day 0 and day 14 (Figure 4a–d). The same or similar cellular mechanisms 
proposed in humans and rodents may be applied to the changes in the probiotic fed 
dominant hens. In humans and rodents, probiotics directly manipulate commensal 
bacteria releasing neuroactive factors, such as 5-HT and norepinephrine [8], and 
indirectly affect the neurotransmitter metabolisms, such as tryptophan as well as 
cytokines, through the microbiota-gut-brain axis [5, 40, 41, 279, 293–297]. In addi-
tion, the effects of probiotics, including B. sublitis, on behavioral exhibitions have 
been conducted on GF mice. Bercik et al. [287] reported that anxiety behaviors can 
be induced in less anxious phenotypic mice by colonization of the gut bacteria from 
anxiety-like phenotypic mice (FMT, fecal microbiota transplant). Probiotics also 
have therapeutic effects on neurodevelopmental disorders [28, 95, 298–301], for 
example, reduced anxiety-like behaviors by providing L. helveticus, Mycobacterium 
vaccae, and/or Bifidobacterium strains [231, 287, 302, 303], and alleviated autism-
related stereotypic behaviors by treating with Bacteroides fragilis [304] and behav-
ioral dysfunction with Lactobacillus reuteri [301, 305].
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In the current study, body weight gain and hen-day egg production were not 
affected in the probiotic fed hens compared with the regular diet fed control hens 
(Control = 2.83%, Probiotics = 2.2%, P = 0.76; Control = 73.6%, Probiotics = 87.5%, 

Figure 3. 
Plasma tryptophan levels at day 0 (pre-treatment) and day 14 (post-treatment) in probiotic fed hens and 
regular diet fed hens. Prior to treatment, dominant hens had higher tryptophan concentrations compared to 
subordinates but the difference did not reach statistical difference (P = 0.21). There were no treatment effects on 
tryptophan concentrations in both probiotic fed hens and regular diet fed hens (P > 0.05, respectively).

Figure 4. 
Frequency of aggressive behaviors at day 0 (pre-treatment) and day 14 (post-treatment) in probiotic fed hens 
and regular diet fed hens followed the paired social test. The exhibitions of aggressive behaviors in the regular 
diet fed subordinates were not affected by treatment (P > 0.05, respectively), while the frequency of threat 
kick (P = 0.04) was reduced, aggressive pecking (P = 0.053) was tend to be lower, and feather packing was 
declined (60%, P = 0.33) in probiotic fed dominates post-treatment. Notes: the treatment effects on the measured 
behaviors were reversed between dominants and subordinates during the 2nd social rank test. a,b between the 
frequency at day 0 and day 14, least square means lacking common superscripts differ (P < 0.05); and † a trend 
difference (0.05 ≤ P < 0.10).
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P = 0.18, respectively). Previous studies have reported the beneficial effects of 
dietary supplementation of probiotics on daily weight gain, finished body weight, 
and feed conversion rate in broiler chickens [306, 307], turkeys [308], and swine 
[309]. Several studies also reported that probiotic diets improved egg production 
in hens [310]. The underlying mechanisms of these effects may be related to the 
beneficial bacterial growth in the gastrointestinal tract to facilitate the fermentation 
process which improves the digestion and utilization of nutrients in animals [311]. 
The beneficial effects on growth performance, however, are affected by the bacte-
rial strains, preparation process, dosage, animal’s age, and genetic type [312, 313]. 
In the current study, the probiotic was provided for 2 weeks only, which may not be 
sufficient to functionally improve both growth and production performance.

6. Conclusions

Our data suggest that dietary inclusion of probiotics has positive effects on 
reducing agonistic behaviors in laying hens through modification of the serotoner-
gic system without negative effects on growth and production performance. The 
data indicate that dietary probiotic supplementation could be a useful management 
tool for preventing aggressive behaviors in laying hens. In addition, the current 
chicken strain could be a useful model to investigate mechanisms underlying the 
potentially probiotic therapy for preventing and reducing emotional susceptibility 
associated with psychiatric disorders such as depression and anxiety in humans.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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