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Chapter

The Boundary Element Method
for Fluctuating Active Colloids
William E. Uspal

Abstract

The boundary element method (BEM) is a computational method particularly
suited to solution of linear partial differential equations (PDEs), including the
Laplace and Stokes equations, in complex geometries. The PDEs are formulated as
boundary integral equations over bounding surfaces, which can be discretized for
numerical solution. This manuscript reviews application of the BEM for simulation
of the dynamics of “active” colloids that can self-propel through liquid solution. We
introduce basic concepts and model equations for both catalytically active colloids
and the “squirmer” model of a ciliated biological microswimmer. We review the
foundations of the BEM for both the Laplace and Stokes equations, including the
application to confined geometries, and the extension of the method to include
thermal fluctuations of the colloid. Finally, we discuss recent and potential applica-
tions to research problems concerning active colloids. The aim of this review is to
facilitate development and adoption of boundary element models that capture the
interplay of deterministic and stochastic effects in the dynamics of active colloids.

Keywords: active colloids, Brownian dynamics, boundary element method

1. Introduction

Over the past 15 years, significant effort has been invested in the development of
synthetic micro- and nano-sized colloids capable of self-propulsion in liquid solu-
tion [1–3]. These “active colloids” have myriad potential applications in drug deliv-
ery [4, 5], sensing [6], microsurgery [7], and programmable materials assembly [8].
Furthermore, they provide well-controlled model systems for study of materials
systems maintained out of thermal equilibrium by continuous dissipation of free
energy. In this context, and in comparison with driven systems (e.g., sheared
suspensions), a unique aspect of active colloids is that energy is injected into the
system at the microscopic scale of a single particle, instead of through macroscopic
external fields or at the boundaries of the system. As a consequence of this, novel
collective behaviors are possible, including motility-induced phase separation [9],
mesoscopic “active turbulence” [10], and formation of dynamic “living crystals”
and clusters [11, 12]. Furthermore, since living systems can be regarded as self-
organized non-equilibrium materials systems, study of active colloids could yield
insight into fundamental principles of living systems, and open a path towards
development of biomimetic “dissipative materials” capable of homeostasis [13],
self-repair [14], goal-directed behavior [15, 16], and other aspects of life.
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Paradigmatic examples of synthetic active colloids include bimetallic Janus rods
[17] and Janus spheres consisting of a spherical core with a hemispherical coating of a
catalytic material [18]. In both cases, self-propulsion is driven by catalytic decompo-
sition of a chemical “fuel” available in the liquid solution. For instance, for gold/
platinum Janus rods, both ends of the rod are involved in the electrochemical
decomposition of hydrogen peroxide into water and oxygen: hydrogen peroxide is
oxidized at the platinum anode and reduced at the gold cathode. In this reaction
process, a hydrogen ion gradient is established between the anode and cathode. The
resulting gradient in electrical charge creates an electric field in the vicinity of the rod.
The electric field exerts a force on the diffuse layer of ions surrounding the colloid
surface, resulting in motion of the suspending fluid relative to the colloid surface.
Viewed in a stationary reference frame, the final result is “self-electrophoretic”
motion of the colloid in direction of the platinum end. For Janus spheres (e.g.,
platinum on silica or platinum on polystyrene), the mechanism of motion is still a
subject of debate. Since the core material is inert and insulating, it was originally
thought that these particles move by neutral self-diffusiophoresis in a self-generated
oxygen gradient. Diffusiophoresis is similar to electrophoresis in that motion is driven
by interfacial molecular forces. Briefly, in diffusiophoresis, the colloid surface and
solute molecules interact through some molecular potential. This interaction poten-
tial, in conjunction with a gradient of solute concentration along the surface of the
colloid, leads to the pressure gradient in a thin film surrounding the colloid, and
therefore fluid flow within the film relative to the colloid surface. Following initial
studies on chemically active Janus spheres, subsequent studies revealed a dependence
of the Janus particle speed on the concentration of added salt [19], suggesting that a
self-electrophoretic mechanism may be implicated in motion of the colloid.
Golestanian and co-workers proposed that dependence of the rate of catalysis on
thickness of the deposited catalyst can lead to different regions of the catalyst acting
as anode and cathode [20]. More recently, it was proposed that if one of the redox
reactions is reaction-limited and the other is diffusion-limited, the anodic or cathodic
character of a point on the catalytic surface will depend on the local curvature of the
surface [21]. Regardless of the detailed molecular mechanism of motion, a key point
is that interfacial flows drive self-propulsion of chemically active colloids. A second
key point is that particles need to have an intrinsic asymmetry (e.g., from the Janus
character of their material composition) in order to exhibit directed motion.

These findings have motivated development of theoretical and numerical con-
cepts for modeling the interfacially driven self-propulsion of active colloids. Moti-
vated by classical work on phoresis in thermodynamic gradients [22, 23], an
influential continuum framework for modeling neutral self-diffusiophoresis was
established in Ref. 24, and will be reviewed below. This basic framework can be
modified or extended to account for electrochemical effects [25], multicomponent
diffusion [26], reactions in the bulk solution [27], and confinement [28–34]. An
emerging area of study within this framework is autonomous navigation and “taxis”
of chemically active colloids in ambient fields and complex geometries, including
chemotaxis in chemical gradients [35] and rheotaxis in confined flows [15, 36].
Theoretical research on synthetic active colloids has also found common ground
with an older strand of research on locomotion of biological microswimmers. Here,
an important point of contact is again the idea of interfacial flow [37]. For a quasi-
spherical microswimmer that is “carpeted” with a layer of cilia, the effect of the
periodic, time-dependent, metachronal motion of the cilia can be modeled as a
period-averaged interfacial flow. This “squirmer” model of locomotion was intro-
duced by Lighthill [38] and refined by Blake [39]. More recent work has explored
collective motion of suspensions of squirmers [40] and squirmer motion in con-
fined geometries [41].
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These theoretical frameworks are deterministic, and do not directly address the
role of thermal fluctuations. For instance, for the model of a chemically active
colloid in Ref. 42, diffusion of the chemical reaction product (i.e., the solute) into
the surrounding solution is modeled with the Laplace equation, which has a smooth
and unique solution for a given set of boundary conditions describing surface
catalysis. Implicit in the use of the Laplace equation are the assumptions that, on the
timescale of Janus particle motion, the solute diffuses very fast, and that fluctua-
tions of the solute distribution average out to be negligible. Likewise, fluctuations of
the surrounding fluid are neglected, i.e., the deterministic Stokes equation is used to
model the fluid in lieu of the fluctuating Stokes equation. On the other hand,
micron-sized active Janus particles are observed in experiments to exhibit
“enhanced diffusion”: directed motion on short timescales t < τr and random walk
behavior on long timescales t≫ τr. For the latter, the effective diffusion coefficient
Deff is enhanced relative to the “bare” diffusion coefficient D0 of an inactive colloid,

i.e., Deff ≫D0. The reason for this behavior is that the orientation of the particle is

free to fluctuate, and the particle changes its direction of motion by rotational

diffusion over the timescale τr ¼ D�1
r , where Dr is the rotational diffusion coeffi-

cient of the particle [18]. Therefore, thermal fluctuations qualitatively affect the
motion of even a micron-sized catalytic Janus particle in unbounded, uniform
solution. For a catalytic Janus particle in an ambient field or in confinement, ther-
mal fluctuations affect whether and for how long the particle can align with the
ambient field [42, 43] or stay near confining surfaces [34, 44]. Overall, a full
theoretical understanding of the behavior of micron-sized active colloids requires
modeling thermal fluctuations.

Moreover, as part of the general drive towards miniaturization, recent experi-
mental efforts have sought to fabricate and characterize nano-sized chemically
active colloids [45–47]. On the theoretical side, new questions arise when the size of
the colloid becomes comparable to the size of the various molecules participating in
the catalytic reaction. These questions include: When is using a continuum model
appropriate [48]? Can a catalytic particle still display (time- and ensemble-
averaged) directed motion when the particle and the surrounding chemical field are
fluctuating on similar timescales? Relatedly, can a spherical colloid with a catalytic
surface of uniform composition exhibit enhanced diffusion when nano-sized [49]?
Can a fluctuating, nano-sized Janus particle effectively follow an ambient chemical
gradient, i.e., exhibit chemotaxis [35]? These questions also connect with the
burgeoning literature on chemotaxis of biological enzymes [50].

In this chapter, we review the boundary element approach to modeling the
motion of active colloids. This is a “hydrodynamic” approach that resolves the
detailed geometry and surface chemistry of the colloids, the velocity of the sur-
rounding solution, and the distribution of chemical species within the solution
[30, 40, 51–57]. The advantage of such an approach—in comparison with, for
instance, the active Brownian particle model—is that it can resolve the detailed
microscopic physics of how a colloid couples to ambient fields and other features of
the surrounding micro-environment. In addition, we discuss how thermal fluctua-
tions can be included within the approach. The aim of this review is to facilitate
development and adoption of models that capture the interplay of deterministic and
stochastic effects within an integrated framework.

2. Theory

As a starting point, we review the basic deterministic theoretical framework for
understanding the motion of active colloids [24]. This is a continuum approach that
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coarse-grains the interfacial flow that drives colloid motion, discussed above, as a
“slip velocity” boundary condition for the velocity of the suspending fluid.

We consider a suspension ofN active colloids in an unbounded liquid solution. The
position of each colloid α, with α∈ 1; 2;…;Nf g, is described in a stationary reference
frame by a vector xα. The solution is modeled as an incompressible Newtonian fluid
with dynamic viscosity μ. The solution is governed by the Stokes equation,

�∇Pþ μ∇2u ¼ 0, (1)

where P xð Þ is the pressure at a position x in the solution, and u xð Þ is the velocity
of the solution. The velocity obeys the incompressibility condition,

∇ � u ¼ 0, (2)

and the boundary condition

u xsð Þ ¼ Uα þΩα � xs � xαð Þ þ vs,α xsð Þ, xs ∈Sα, (3)

whereSα is the surface of colloidα,xs ∈Sα is a position onSα, andUα andΩα are the
translational and rotational velocities, respectively, of colloid α. The quantity vs,α xsð Þ is
the slip velocity on the surface of colloid α, which is either prescribed (for a squirmer)
or determined by the distribution of chemical species in solution (for a chemically
active colloid). The form of vs,α xsð Þ for the two types of particles will be discussed in
detail below. Additionally, far away from theN particles, the fluid velocity vanishes:

u jxj ! ∞ð Þ ¼ 0: (4)

In order to close this system of equations, we require 6N more equations,
corresponding to the 6N unknown components of Uα and Ωα. The net force and
torque on each colloid vanishes:

ð

Sα

σ � n̂ dSþ Fext,α ¼ 0, (5)

ð

Sα

xs � xαð Þ � σ � n̂ dSþ Text,α ¼ 0, (6)

where the integrals are performed over the surface Sα of each colloid α, and
Fext,α and Text,α are, respectively, the net external force and net external torque on
the colloid. The stress tensor is given by

σ ¼ �PIþ μ ∇uþ ∇uð ÞT
� �

, (7)

where the pressure P xð Þ is determined by the incompressibility condition.
Practitioners of Stokesian Dynamics may notice some similarity between Eq. 3

and the boundary condition for an inert or passive sphere in an ambient flow field.
If vs,α xsð Þ could be expressed as an effective ambient flow field at the position of
particle α, the tools of Stokesian dynamics could be straightforwardly applied to
simulation of active suspensions. This analogy will be developed in the Appendix.

2.1 The squirmer model: prescribed surface slip

The “squirmer” model was originally introduced by Lighthill to describe the
time-averaged motion of ciliated quasi-spherical micro-organisms [38]. Lighthill’s
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formulation was subsequently corrected and extended by Blake [39]. The basic
motivating idea of the squirmer model is that the periodic, metachronal motion of
the carpet of cilia on the surface of the micro-organism drives, over the course of
one period and in the vicinity of the microswimmer surface, net flow from the
“forward” or “leading” pole of the micro-organism to the “rear” pole (see Figure 1,
left). This interfacial flow drives flow in the surrounding bulk fluid, leading to
directed motion of the micro-organism towards the forward end. The squirmer
model captures some essential features of the self-propulsion of micro-organisms,
including the hydrodynamic interactions between micro-organisms, and between
an individual micro-organism and confining surfaces.

The slip velocity on the surface of a spherical squirmer α is specified by fiat and
does not depend on the configuration of the suspension. It is given as [41]:

vs,α xsð Þ ¼ ∑
n
Bn,αVn cos θð Þ êθp,α , (8)

where

Vn xð Þ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

n nþ 1ð Þ
dPn xð Þ
dx

: (9)

The unit vector êθp,α is defined in following manner (see Figure 1, left). The

squirmer has an axis of symmetry, and a propulsion direction d̂α oriented along this
axis. We define the body-frame polar angle θp,α at a point xs on the surface of

squirmer α as the angle between d̂α and a vector xs � xα from the center of the
squirmer xα to xs. The unit vector êθp,α is oriented in the direction of increasing θp,α,

i.e., locally tangent to the squirmer surface along a longitudinal line.

Figure 1.
The two types of microswimmer considered in this chapter. In the spherical “squirmer” model (left), the slip
velocity on the surface of the particle is specified by fiat and fixed (in a frame co-moving and co-rotating with
the particle) for all time. For an axisymmetric distribution of surface slip, the particle moves in the direction of
the green arrow, i.e., opposite to the (surface-averaged) direction of the slip velocity. For a Janus particle
(right), a fraction of the particle surface (black) catalyzes a reaction involving various molecular species
diffusing in the surrounding solution. The resulting anisotropic distribution of product molecules or “solute”
(green spheres) drives a phoretic slip velocity (purple) in an interfacial layer surrounding the particle. For a
repulsive interaction between the solute and the particle surface, the slip is towards high concentration of solute,
and the particle moves in the direction of the green arrow.
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The squirming mode amplitudes Bn,α, which can potentially vary from squirmer
to squirmer, are fixed a priori and do not depend on the configuration of the
suspension. The set of amplitudes determine the detailed form of the flow field in
vicinity of the particle. Furthermore, the lowest order squirming mode B1 deter-
mines the velocity of an isolated squirmer in unbounded solution: Ufs,α ¼ 2=3ð ÞB1,α.

According to our definition of dα and θp,α, we require that B1,α>0. Simulations of
squirmers typically truncate Eq. 8 to n≤ 2 or n≤ 3. The justification for this is that
the contributions of the higher order squirming modes to the flow around the
squirmer decay rapidly with distance from the squirmer.

2.2 Chemically active colloids: diffusiophoretic slip from chemical gradients

For chemically active colloids, the slip velocity on the surface of a colloid
is driven by interfacial molecular forces. The molecular physics of phoresis and
self-phoresis is reviewed in detail elsewhere [2, 23, 58]; here, we provide a brief
summary. Consider a “Janus” colloid with a surface composed of two different
materials. In the presence of molecular “fuel” diffusing in the surrounding
solution, one of the two Janus particle materials catalyzes the decomposition
of the fuel into molecular reaction products. A paradigmatic example of this
reaction is the decomposition of hydrogen peroxide by platinum into water and
oxygen:

H2O2 !
Pt
H2Oþ 1

2
O2: (10)

(This equation is a severe simplification of the actual reaction scheme, which
most likely involves charged and complex intermediates [20, 27]; nevertheless,
proceeding from it, we can capture some essential features of self-phoresis.) If the
reaction is reaction-limited—i.e., hydrogen peroxide is plentifully available in solu-
tion, and diffuses quickly relatively to the reaction rate—then we can approximate
the production of oxygen with zero order kinetics:

�D ∇c � n̂½ �jx¼xs
¼ κ xsð Þ, (11)

where D is the diffusion coefficient of oxygen, c xð Þ is the number density of
oxygen, and κ xsð Þ is the rate of oxygen production on the surface of the particle.
(The validity of assumption of reaction-limited kinetics is quantified by the
Damköhler number Da ¼ κ0R=D, where κ0 is a characteristic reaction rate; we
assume Da≪ 1.) Furthermore, we assume that the Péclet number Pe � U0R=D is
very small, where U0 is a characteristic particle velocity and R is the particle radius.
Accordingly, we can make a quasi-steady approximation for the diffusion of oxygen
in the solution:

∇2c ¼ 0: (12)

Finally, we assume that

c jxj ! ∞jð Þ ¼ c∞, (13)

where c∞ is a constant. Eqs. 11, 12, and 13 specify a boundary value problem
(BVP) for the distribution of oxygen in the fluid domain containing the N active
particles. This problem can be solved numerically, e.g., by the boundary element
method, as will be outlined in a later section.
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Accordingly, each Janus particle will be surrounded by an anisotropic “cloud” of
oxygen molecules (“solute”), with the oxygen concentration highest near the cata-
lytic cap (see Figure 1, right). Now we suppose that the oxygen molecules interact
with the surface of the colloid through some molecular interaction potential with
range δ≪R [23]. Each colloid is surrounded by an interfacial layer of thickness � δ

in which the molecular interaction of the solute and the colloid is significant.
Outside of this layer, the solute freely diffuses in the solution. We can regard c xð Þ as
the bulk concentration, i.e., the concentration outside the interfacial layer. Near a
location xs on the surface of the colloid, the interfacial layer concentration is
enhanced or depleted, according to the attractive or repulsive character of the
molecular interaction, relative to c xþ

s

� �

. Here, the plus sign emphasizes that c xþ
s

� �

is
evaluated outside the interfacial layer. Moreover, since δ≪R, the interfacial layer
concentration can locally, in the direction locally normal to the colloid surface, relax
to a Boltzmann (i.e., equilibrium) distribution governed by the molecular interac-
tion potential Φ. (The timescale for this local relaxation is much faster than the
characteristic timescale for colloid motion R=U0.) Accordingly, the local pressure
P x�

s ; η
� �

can be calculated from Φ and c xþ
s

� �

, where η is a coordinate defined at xs
that is locally normal to the colloid surface.

These notions can be made mathematically rigorous through the theory of
matched asymptotics. However, for the purpose of this discussion, the essential idea
is that the bulk concentration c xð Þ determines the pressure in the interfacial layer in
the vicinity of a point xs on the colloid surface. Moreover, c xð Þ varies over the length
scale R of the colloid. Accordingly, within the interfacial layer, the pressure varies
over the size of the colloid, driving flow within the interfacial layer. From the
perspective of the outer solution for the flow field, this interfacial flow looks like a
slip velocity:

vs,α xsð Þ ¼ �b xsð Þ∇kc: (14)

Here, the surface gradient operator is defined as ∇k � I� n̂n̂ð Þ � ∇. The
material-dependent parameter b xsð Þ encapsulates the details of the molecular inter-
action between the solute and the surface material, and can be calculated from the
molecular potential Φ [23]. Since the surface of the Janus colloid comprises different
materials, b depends on the location on the colloid surface. In fact, a spatial varia-
tion of b over the surface of colloid is a necessary condition to obtain phoretic
rotation of a colloid near a wall [30] or chemotactic alignment with a gradient of
“fuel” molecules [35].

2.3 Lorentz reciprocal theorem

The Lorentz reciprocal theorem relates the fluid stresses σ; σ 0ð Þ and velocity
fields u;u0ð Þ of two solutions to the Stokes equation within the same domain V:

ð

S

u � σ 0 � n̂ dS ¼
ð

S

u0 � σ � n̂ dS, (15)

where S is the boundary of V. For the N active particles in unbounded solution,
S ¼ ∪N

α¼1Sα.
This theorem can be used to simplify the problem specified above for the veloc-

ities of N active particles. We designate that problem as the “unprimed” problem.
Additionally, we specify that Fext,α ¼ 0 and τext,α ¼ 0 for all α. (Since the Stokes
equation is linear, the contributions of the external forces and torques to the
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velocities of the particles can be calculated separately, using standard methods, and
superposed with the contributions from activity to obtain the complete velocities.)
We consider 6N “primed” problems, indexed by j ¼ 1, 2,…, 6N. For problem j ¼ α,
particle α is exposed to an external force with magnitude F0

ext in the x̂ direction.

Each particle has unknown translational and rotational velocities U0 jð Þ
α and Ω

0 jð Þ
α , and

the velocity field u0 jð Þ is subject to no-slip boundary conditions on each particle:

u0 jð Þ
xsð Þ ¼ U0 jð Þ

α þΩ
0 jð Þ
α � xs � xαð Þ, xs ∈Sα, (16)

Additionally, the flow field vanishes far away from the particles, i.e.,

u0 jð Þ jxj ! ∞ð Þ ¼ 0. The unprimed problem and primed problem α are schematically
illustrated in Figure 2. Similarly, for problems j ¼ αþ 1 and j ¼ αþ 2, particle α is
exposed to an external force with magnitude in the ŷ and ẑ directions, respectively,
with no-slip boundary conditions likewise holding on each particle, and the flow
field vanishing far away from the particles. For problems j ¼ αþ 3, j ¼ αþ 4, and
j ¼ αþ 5, particle α is exposed to a torque with magnitude τ0ext in the x̂, ŷ, and ẑ
directions, respectively, with the same boundary conditions. Each “primed” prob-

lem j can be solved for 6N unknown velocity components U0 jð Þ
α and Ω

0 jð Þ
α .

For problem j, we substitute Eqs. 3 and 16 into Eq. 15 for u and u0 ¼ u0 jð Þ to
obtain:

∑
α

ð

Sα

Uα þΩα � xs � xαð Þ þ vs,α xsð Þ½ � � σ0 jð Þ � n̂ dS ¼ (17)

∑
α

ð

Sα

U0
α jð Þ þΩ

0
α jð Þ � xs � xαð Þ

� �

� σ � n̂ dS: (18)

It can be shown that the right hand side of this equation vanishes. Consider the
term involving U0

α jð Þ. For each integral over Sα, U
0
α jð Þ is a constant and can be

moved out of the integral,

U0
α jð Þ �

ð

Sα

σ � n̂ dS, (19)

Figure 2.
Illustration of the “unprimed” problem for the velocities of N active particles, and the “primed” problem α for
the velocities of N inert particles when particle α is exposed to a force with magnitude F0

ext in the x̂ direction.
Similarly, in primed problems αþ 1 and α þ 2, particle α is exposed to a force with magnitude F0

ext in the ŷ
direction and the ẑ direction, respectively. Moreover, in primed problems α þ 3, α þ 4, and αþ 5, particle α is
exposed to torques with magnitude τ0ext in the x̂, ŷ, and ẑ directions, respectively. Note that the primed and the
6N unprimed problems all have the same geometry, i.e., the same configuration of N spheres.
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but the integral is simply the force Fα on particle α. Since the particles are free of
external forces, Fα ¼ 0. Likewise, the term involving Ω

0
α jð Þ can be rearranged as

Ω
0
α jð Þ �

ð

Sα

xs � xαð Þ � σ � n̂ dS, (20)

but the integral is the torque τα ¼ 0 on particle α.
Rearranging the left hand side of Eq. 17, we obtain a set of 6N equations j:

∑
α

Uα � F0 jð Þ
α þΩα � τ0 jð Þ

α

� �

¼ �∑
α

ð

Sα

vs � σ0 jð Þ � n̂ dS , j ¼ 1,…, 6N : (21)

These 6N equations can be written in matrix form:

R �V ¼ b, (22)

where b is a vector containing the 6N integrals associated with the right hand

side of Eq. 21, V is vector of all 6N velocity components Uα;Ωαð ÞT, and R is the
grand resistance matrix for N spheres at positions xα. Note that the arbitrary
magnitudes F0

ext and τ0ext have been divided out of Eq. 22.
The advantage of the reciprocal theorem approach is that if we solve the

“primed” problem for a given set of particle positions xα, we can easily compute the
set V of 6N velocities for any set of slip velocities vs,α. This, for instance, facilitates
studying how various choices for b xsð Þ or Bn,α affect particle motion. Additionally,

the “primed” problem for the resistance matrixR and stresses σ0 jð Þ in a system of N
spheres is a standard problem in microhydrodynamics. An interesting open ques-
tion is whether this approach is numerically more stable than directly solving for the
6N particle velocities in the presence of the force-free and torque-free constraints.

2.3.1 Proof of Lorentz reciprocal theorem

We provide a short proof of Eq. 15, following the lines of Ref. 59 because some
intermediate results will be useful later in the chapter. We recall that the rate of
strain tensor eij is defined as

eij ¼
1

2

∂ui
∂xj

þ ∂uj
∂xi

	 


, (23)

and that, in index notation, the stress tensor is

σij ¼ �Pδij þ 2μeij (24)

We consider the quantity σ0ijeij:

σ0ijeij ¼ �P0δij þ 2μeij
0� �

eij

¼ �P0eii þ 2μe0ijeij

¼ 2μe0ijeij,

(25)

where we have used ∇ � u ¼ 0 to eliminate eii, and we assume the Einstein
convention for summation over repeated indices. Similarly, we can obtain
σije

0
ij ¼ 2μe0ijeij, so that
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σ0ijeij ¼ σije
0
ij: (26)

We can also manipulate σ0ijeij as follows:

σ0ijeij ¼
1

2
σ0ij

∂ui
∂xj

þ 1

2
σ0ij

∂uj
∂xi

: (27)

Swapping the two indices in the last term,

σ0ijeij ¼
1

2
σ0ij

∂ui
∂xj

þ 1

2
σ0ji

∂ui
∂xj

: (28)

But σ0ij ¼ σ0ji, giving

σ0ijeij ¼ σ0ij
∂ui
∂xj

¼ ∂

∂xj
σ0ij ui
� �

�
∂σ0ij
∂xj

 !

,

(29)

so that

∂

∂xj
σ0ijui
� �

�
∂σ0ij
∂xj

 !

ui ¼
∂

∂xj
σiju

0
i

� �

� ∂σij

∂xj

	 


u0i: (30)

If there are no point forces applied to the fluid in determination of u0 and u, then
∇ � σ ¼ 0 and ∇ � σ0 ¼ 0, and we obtain

∇ � u � σ0ð Þ ¼ ∇ � u0 � σð Þ: (31)

Integrating both sides over the volume V and applying the divergence theorem,
we obtain Eq. 15.

2.4 Boundary integral formulation of the Laplace equation

Even with the aid of the Lorentz reciprocal theorem, it is necessary to solve the
Stokes and (for self-phoretic particles) Laplace equations in a fluid domain
containing the active particles as interior boundaries. For most configurations of the
suspension, an analytical solution is intractable, and a numerical approach is
required. Many numerical methods (e.g., the Finite Element Method) discretize and
solve the governing partial differential equations in the three-dimensional fluid
domain. This can be computationally intensive. Moreover, if the domain is
unbounded in one or more dimensions, the computational domain must be trun-
cated. Typically, the computational domain must be large in order to accurately
approximate an unbounded solution, and significant computational effort must be
expended on calculating the flow, pressure, and concentration fields far away from
the particles.

An alternative approach proceeds from the following insight: a linear boundary
value problems can be reformulated as a boundary integral equation (BIE) on the
domain boundaries [51, 60]. Furthermore, the boundary integral equation can be
discretized for numerical solution, yielding a dense linear system of coupled bound-
ary element equations in the form of A � q ¼ b. One significant advantage of the
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boundary element method is that it requires discretization of only bounding surfaces;
for instance, to represent an unbounded system of N particles, one need only mesh
the surfaces of the N spheres. As a disadvantage, the coefficient matrix A is typi-
cally fully populated and non-symmetric; therefore, for a system of Nelm elements,

the required computer memory scales as O N2
elm

� �

, and the required computation

time scales as O N3
elm

� �

.
In order to obtain the BIE for the Laplace equation, we first consider the diver-

gence theorem:

ð

V

∇ �AdV ¼ �
ð

S

A � n̂ dS, (32)

where the volume integral on the left hand side is carried out over the entire
solution domain V, and the surface integral on the right hand side is carried out over
all boundaries S. We include a negative sign on the right hand side of the equation
because we define n̂ to point into the solution domain (see Figure 3). If A ¼ ϕ∇ψ ,
where ϕ xð Þ and ψ xð Þ are scalar fields, then the divergence term

∇ �A ¼ ϕ∇2ψ þ ∇ϕ � ∇ψ , and we obtain Green’s first identity:

ð

V

ϕ∇2ψ þ ∇ϕ � ∇ψ
� �

dV ¼ �
ð

S

ϕ∇ψ � n̂ dS: (33)

We can also write Green’s first identity for A ¼ ψ∇ϕ:

ð

V

ψ∇2ϕþ ∇ψ � ∇ϕ
� �

dV ¼ �
ð

S

ψ∇ϕ � n̂ dS: (34)

Subtracting Eq. 34 from Eq. 33, we obtain Green’s second identity:

Figure 3.
Schematic illustration of the geometry for development of the boundary integral equations for the Laplace and
stokes equations. The fluid domain is denoted by V, the solid domain by Vp, and the interior of particle α by

Vp,α, where Vp ¼ ∪N
α¼1Vp,α. The solid and fluid domains are separated by the particle surfaces Sα, with

S ¼ ∪N
α¼1 Sα. The observation point x0 can occur in V, in V, or on S; we show x0 in V.
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ð

V

ϕ∇2ψ � ψ∇2ϕ
� �

dV ¼ �
ð

S

ϕ∇ψ � ψ∇ϕð Þ � n̂ dS: (35)

Now, we let ϕ ¼ c xð Þ, with ∇2c ¼ 0. Furthermore, we let ψ ¼ G x;x0ð Þ, where
the Green’s function G x;x0ð Þ satisfies Poisson’s equation:

∇2G x;x0ð Þ þ δ x� x0ð Þ ¼ 0: (36)

We obtain:

ð

V

c xð Þ∇2G x;x0ð ÞdV ¼ �
ð

S

c xð Þ∇G x;x0ð Þ �G x;x0ð Þ∇c xð Þ½ � � n̂ dS: (37)

We have not yet specified the location of the pole x0. If x0 is located in the
domain V, then, using the properties of the Dirac delta function, we obtain an
integral representation of the concentration field c x0ð Þ at a point x0 ∈V:

c x0ð Þ ¼
ð

S

c xð Þ∇G x;x0ð Þ �G x;x0ð Þ∇c xð Þ½ � � n̂ dS: (38)

Using the divergence theorem, can show that ∇2 1
∣x�x0∣

� �

¼ �4πδ x� x0ð Þ, so that

G x;x0ð Þ ¼ 1

4π∣x� x0∣
: (39)

We recall from electrostatics that G x;x0ð Þ represents the electrostatic potential
at x from a point charge of unit strength located at x0. Within the context of the

steady diffusion equation ∇2c ¼ 0, it has a different physical interpretation: it can
be regarded as the steady concentration c xð Þ at a point x due to a point-like, steady
source of concentration, continuously injected into the system, located at x0 and
with unit strength (i.e., unit number density flux per unit time). One can take
derivatives of G x;x0ð Þ with respect to x0 to obtain higher order multipole singular-
ities. For instance, we can obtain the Green’s function Gdp x;x0ð Þ for a source/sink
dipole located at x0 as

Gdp x;x0ð Þ � ∇x0G x;x0ð Þ ¼ x� x0ð Þ
4π x� x0j j3

: (40)

As Gdp x;x0ð Þ is a vector quantity, we obtain a scalar contribution to c xð Þ by
multiplying with a dipole vector d; the magnitude and direction of d specify the
strength and orientation of the dipole.

By inspection, the Green’s function obeys the symmetry property G x;x0ð Þ =
G x0;xð Þ, so we can rewrite Eq. 38 as

c x0ð Þ ¼
ð

S

c xð Þ∇G x0;xð Þ �G x0;xð Þ∇c xð Þ½ � � n̂ dS: (41)

Interestingly, we have obtained an expression for c x0ð Þ in the solution domain in
terms of the values of c xð Þ and ∇c xð Þ � n̂ on the domain boundaries. Note that this is
not a solution to a boundary value problem for c x0ð Þ, since a BVP specifies only one
of the quantities c xð Þ and ∇c xð Þ � n̂ on the domain boundaries. Specifically, for the
problem of a system of catalytic particles outlined above, we only know ∇c xð Þ � n̂

12

Non-Equilibrium Particle Dynamics



a priori. Eq. 41 has an interesting physical interpretation: c x0ð Þ can be regarded as
the concentration due to a distribution of monopoles (i.e., point sources of mass
flux) with strength�∇c xð Þ � n̂ on the boundaries, plus a distribution of point dipoles
(i.e., infinitesimally separated pairs of mass sources and sinks) with strength c xð Þ
and orientation n̂ on the boundaries.

We still have two other options for where to place x0: inside the boundary S

(i.e., outside the solution domain V) or somewhere on the boundary S. If we place
x0 inside S, then the integral on the left hand side of Eq. 37 vanishes:

ð

S

c xð Þ∇G x;x0ð Þ �G x;x0ð Þ∇c xð Þ½ � � n̂ dS ¼ 0: (42)

Placing x0 on the boundary requires some care in how to handle the Dirac delta
function on the left hand side of Eq. 37. If we regard the Dirac delta as the limit of a
sequence of distributions, then it is clear that a factor of one half should arise when
we integrate over V:

1

2
c x0ð Þ ¼

ð

S

c xð Þ∇G x;x0ð Þ �G x;x0ð Þ∇c xð Þ½ � � n̂ dS: (43)

This is a boundary integral equation (BIE) because the left hand side is the
concentration c x0ð Þ at a point on the boundary, while the right hand side is an
integral of c xð Þ and ∇c xð Þ � n̂ over the same boundary. A boundary value problem
typically specifies one of these two quantities on the boundary; the other can be
obtained with Eq. 43.

In the boundary element method, the boundary integral equation is discretized for
numerical solution. Here, we briefly summarize the method, and direct the reader
to consult the useful and comprehensive book of Pozrikidis for further information
[51]. Each particle is represented as a meshed, closed surface. The meshing only
needs to be done once; for a dynamical simulation, no remeshing during the simu-
lation is required, even if the particles move relative to each other. The concentra-
tion c and its normal derivative ∇c � n̂ are assumed to be uniform over element i. For
a point x0 on the surface, we obtain the boundary integral equation:

1

2
c x0ð Þ ¼ ∑

Nelm

i¼1
ci

ð

Si

∇G x;x0ð Þ � n̂ dS

	 


� ∇c � n̂ð Þi
ð

Si

G x;x0ð Þ dS

	 
� �

: (44)

Choosing x0 as the midpoint xj of element j, we can write Nelm equations:

1

2
cj ¼ ∑

Nelm

i¼1
ci

ð

Si

∇G x;xj

� �

� n̂ dS

	 


� ∇c � n̂ð Þi
ð

Si

G x;xj

� �

dS

	 
� �

: (45)

The Nelm equations can be written in matrix form:

Aij �
1

2
δij

	 


cj ¼ Bij ∇c � n̂ð Þj, (46)

where

Aij �
ð

Si

∇G x;xj

� �

� n̂ dS (47)

and
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Bij �
ð

Si

G x;xj

� �

dS: (48)

Given either a specification of either cj (Dirichlet boundary conditions) or
∇c � n̂ð Þj (Neumann boundary conditions), the algebraic system in Eq. 46 can be

solved numerically with standard methods.
A certain difficulty becomes apparent when we consider the element Bii: the

evaluation point xi lies within the element of integration, and therefore the integral
contains the singularity of Eq. 39. We are saved from a potentially disastrous
situation by the fact that the integral is carried out over an area. Nevertheless, this
singular integral has to be handled with care. Further technical information, as well
as a wealth of practical details concerning implementation of the BEM, is available
in Ref. [51].

As a further note, issues with singular integrals have motivated development
of regularized boundary element methods, which use a regularized Green’s function,
i.e., a Green’s function with the singularity “smeared out” over a finite size ε
[52, 54, 61].

2.5 Boundary integral formulation of the Stokes equation

A similar approach can be taken for the Stokes equation [51, 59]. Recall that the
Stokes equation is:

∇ � σ ¼ �∇Pþ μ∇2u ¼ 0: (49)

We can define a Green’s function G x;x0ð Þ as the solution u xð Þ � G x;x0ð Þ � F to
the Stokes equation with a body point force F located at x0:

�∇Pþ μ∇2uþ Fδ x� x0ð Þ ¼ 0, (50)

or

∇ � σ ¼ �Fδ x� x0ð Þ: (51)

It can be shown that the Green’s function is

Gij x;x0ð Þ ¼ 1

8πμr
δij þ

~xi~xj

r2

	 


, (52)

where r � ∣x� x0∣ and where ~xj � xj � x0, j. Eq. 52 is commonly called the Oseen

tensor or “Stokeslet”. The fluid pressure in response to the point force is given by
P xð Þ � P x;x0ð Þ � F, where

P j ¼
~xj

4πr3
: (53)

The stress in the fluid is given by σ � Σ x;x0ð Þ � F, where

Σijk ¼ �3
~xi~xj~xk

4πr5
: (54)

Now we wish to apply Eq. 30. We specify the “primed” fields u0 and σ
0 as the

fields due to a point force F at x0 in unbounded fluid. For the “unprimed” fields u
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and σ, we specify that they are fields of interest in the domain V bounded by S (see
Figure 3). Furthermore, V is free of body forces, so that ∇ � σ ¼ 0. We obtain:

∂

∂xj
uiΣijkFk

� �

� ui
∂

∂xj
ΣijkFk

� �

¼ ∂

∂xj
σijGikFk

� �

(55)

Fk
∂

∂xj
uiΣijk

� �

þ uiFiδ x� x0ð Þ ¼ Fk
∂

∂xj
Gikσij
� �

(56)

We integrate both sides over the domain V:

ð

V

ukFkδ x� x0ð ÞdV ¼ Fk

ð

∂

∂xj
Gikσij
� �

� ∂

∂xj
uiΣijk

� �

� �

dV (57)

Now we apply the divergence theorem:

Fk

ð

V

ukδ x� x0ð ÞdV ¼ �Fk

ð

S

Gik x;x0ð Þσij � uiΣijk x;x0ð Þ
� �

njdS, (58)

where the negative sign appears because of our convention that n̂ points into V.
We note that Gik x;x0ð Þ ¼ Gik x0;xð Þ and Σijk x;x0ð Þ ¼ �Σijk x0;xð Þ. Additionally, the
choice of Fk was arbitrary. We can therefore write:

ð

V

ukδ x� x0ð ÞdV ¼ �
ð

S

Gik x0;xð Þσij þ uiΣijk x0;xð Þ
� �

njdS: (59)

If we choose to place x0 in V, we obtain a boundary integral representation for
uk x0ð Þ:

uk x0ð Þ ¼ �
ð

S

Gik x0;xð Þσij xð Þ þ Σijk x0;xð Þui xð Þ
� �

njdS: (60)

As with Eq. 41, the boundary integral representation for the flow field has an
interesting physical interpretation. The first term on the right hand side of Eq. 60
can be regarded as a “single layer potential” due to a distribution of point forces
with strength σ � n̂ over the surface of the particle. The second term on the right
hand side is the “double layer potential.” Detailed examination of this term reveals
that it can be decomposed into the superposition of the flow due to a distribution
u � n̂ of point sources and sinks of fluid mass, plus the flow to a distribution of point
force dipoles [59].

If we place x0 outside V, i.e., inside the space Vp enclosed by the particles, we
obtain

�
ð

S

Gik x0;xð Þσij xð Þ þ Σijk x0;xð Þui xð Þ
� �

njdS ¼ 0: (61)

Finally, if we place x0 on the boundary S, we obtain a boundary integral
equation:

1

2
uk x0ð Þ ¼ �

ð

S

Gik x0;xð Þσij xð Þ þ Σijk x0;xð Þui xð Þ
� �

njdS: (62)

For rigid body motion, including the 6N “primed” problems for the Lorentz
reciprocal theorem, the double layer can be eliminated from the boundary integral
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equation as follows [59]. Consider extending the volume filled by “fluid” to Vp.

Within Vp, the flow field u is simply the flow field uRBM for rigid body motion, since

it must obey no-slip on the surface S. Now we apply Eq. 59 for the field uRBM inside
Vp and x0 ∈V, noting that we must use a normal n̂0 ¼ �n̂ pointing into Vp:

�
ð

S

Gik x0;xð ÞσRBMij xð Þ þ Σijk x0;xð ÞuRBMi xð Þ
h i

n0jdS ¼ 0: (63)

For rigid body motion, there is no shear stress and the pressure is uniform,
i.e., σRBMij xð Þn̂0 ¼ �p0n̂

0. The first term is simply the integral of Gik x0;xð Þ � n̂0 over

the surface S for x0 ∈V, which vanishes identically by incompressibility. This
leaves:

�
ð

S

Σijk x0;xð ÞuRBMi xð Þ
� �

n0j dS ¼ 0: (64)

Examining Eq. 62, we note that u xð ), i.e., the flow velocity in V, is equal to uRBM

on S. Therefore, we conclude:

uk x0ð Þ ¼ �
ð

S

Gik x0;xð Þσij xð Þ
� �

njdS, x0 ∈V: (65)

In order to obtain a single-layer boundary integral equation for x0 ∈S, note that
the jump discontinuity responsible for the factor of 1=2 in Eq. 62 is strictly from the
double-layer potential [59]. The contribution of the single layer potential to the
velocity field is continuous across S. We obtain:

uk x0ð Þ ¼ �
ð

S

Gik x0;xð Þσij xð Þ
� �

njdS, x0 ∈S: (66)

This single layer boundary integral equation can be discretized and solved
numerically in a similar manner as the Laplace equation; Ref. 51 provides a com-
prehensive account.

2.6 Active suspensions in confined geometries

In the preceding, we considered a suspension of N particles in an unbounded
three-dimensional geometry. However, the presence of confining boundaries can
have a significant effect on the dynamics of a suspension. It is possible to include a
solid surface by explicitly meshing it and including it as a “fixed” or immobile
particle in the calculations [53]. This approach is typically necessary for solid sur-
faces with corners or complex topography. One disadvantage of this approach is
that an infinite surface (e.g., an infinite planar wall) must be truncated and
included as a finite size object. Care must be taken that the mesh is sufficiently fine
near the particles, so that, for instance, the concentration and flow fields do not
“leak” through a solid wall, but also that the mesh is sufficiently coarse far away
from the particles, so that computation time is tractable.

A second, “mesh-free” approach is suitable for confining geometries with high
symmetry, such as an infinite planar wall [39], an interface between two fluids with
different viscosities [62], a fluid domain bounded by a solid wall and a free interface
[63], or even two infinite planar walls. Additionally, it can be suitable if the domain
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is periodic in two or three dimensions. In this approach, the Green’s functions for
the Laplace and Stokes equations are replaced with Green’s functions that obey the
desired boundary conditions on the bounding surfaces. The Green’s function in the
confined geometry can often be constructed by the method of images.

2.7 Thermal fluctuations

So far, we have considered the deterministic contributions to the 6N compo-
nents of velocity for a suspension of N particles. However, as outlined in the
Introduction, the interplay of these deterministic contributions and the stochastic
Brownian forces on the particles is important—and in some problems, such as the
long-time behavior of an active colloid, it is absolutely essential.

One approach to include Brownian forces on an active particle, the hybrid
boundary element/Brownian dynamics method, simply calculates them separately and
superposes them with the deterministic contributions. Using the Itô convention for
stochastic differential equations, this superposition is expressed by the overdamped
Langevin equation for the generalized, 6N-component coordinate q:

dq

dt
¼ Vþ kBT ∇ �Mð Þ þ

ffiffiffiffiffiffiffiffiffiffiffi

2kBT
p

B �W, (67)

where V is the deterministic contribution of activity to the generalized velocity

Uα;Ωαð ÞT, i.e., the solution to the problem outlined above; M is the grand mobility

matrix M ¼ R�1; B satisfies B � BT ¼ M; and W is a collection of independent
Wiener processes. Discretizing time in steps of Δt, one can write a generalized
displacement Δq as the following Euler-Maruyama equation [34, 64]:

Δq ¼ VΔtþ kBT ∇ �Mð ÞΔtþ
ffiffiffiffiffiffiffiffiffiffiffi

2kBT
p

B � Δw, (68)

where Δw is a stochastic variable with Δwh i ¼ 0 and ΔwiΔwj

 �

¼ δijΔt. The

stochastic drift term ∇ �Mð Þ is a consequence of having a configuration-dependent
mobility tensor in the framework of the Itô interpretation.

The update of the orientation of each particle α should respect the constraint
that ∣dα∣ ¼ 1 and avoid any errors arising from application of (non-commuting)
rotation matrices in arbitrary order to dα. There are robust algorithms for rigid body
motion that represent the orientations of the particles with quaternions [65], Euler
angles [66], or rotation matrices that transform between body-fixed and global
reference frames [67].

The stochastic drift term in Eq. 68 can present some difficulty for numerical
calculations [66]. For some simple situations, such as a single spherical colloid near
a planar wall [34, 42], solutions for the configuration dependence of the mobility
tensor are available in the literature [68, 69]. Alternatively, Eq. 67 can be discretized
and solved via Fixman’s midpoint method to avoid calculation of the drift term [70].

This approach assumes that that the colloid and the fluid are not fluctuating on
the same timescale, i.e., the fluid velocity is integrated out as a fast variable. Addi-
tionally, for self-phoretic particles, this approach necessarily neglects fluctuations
of the chemical field c xð Þ in the fluid domain V.

A recently developed variation of the boundary element method for Stokes flow,
the fluctuating boundary element method, does not make this post hoc superposition of
deterministic and Brownian contributions to particle motion. Rather, fluctuations
are directly incorporated into boundary integral equation via a random velocity
field on the boundary S [71].
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3. Discussion and conclusions

The boundary element method is emerging as a powerful and important method
for numerical simulation in the field of synthetic active colloids [30, 52, 54–57]. This
new area of application follows many years of fruitful application to modeling
biological microswimmers, including with the squirmer model [40, 53]. For active
colloids, a major advantage of the boundary element approach is that it can resolve
the microscopic details of phoretic self-propulsion, including the chemical and flow
fields generated by an active colloid, the surface chemistry and shape of the colloid,
and the microscopic physics of how the colloid can couple to ambient fields and
confining surfaces.

A few examples serve to illustrate the utility of the approach. Ref. [30] considers
the dynamics of a spherical active Janus colloid near a planar wall. The colloid can
“sense” and respond to the wall through self-generated chemical and hydrodynamic
fields. Specifically, the wall provides a no-flux boundary condition for the solute
concentration, and a no-slip boundary condition for the flow field. By confining the
solute, the wall enriches the concentration of solute in the space between the
particle and the wall, breaking the axial symmetry of the concentration field.
Concerning the flow, the flow created by the particle scatters off the wall and back
to the particle. These effects are captured by the boundary element method,
including their dependence on the size of the catalytic cap and the spatial variation
in the surface mobility b over the surface of the particle. As another example, Ref.
[43] considers the dynamics of a photo-active spherical Janus colloid. The catalytic
cap of the colloid is only active when exposed to incident light. This self-shadowing
effect, in conjunction with the spatial variation of b on the surface of the colloid,
leads to phototaxis (rotation of the cap towards the light) or anti-phototaxis
(rotation of the cap away from the light.) Notably, this work uses the hybrid
BEM/BD method to calculate the distribution of particle orientations as a
function of illumination intensity and particle surface chemistry. Concerning the
interaction of multiple particles, Ref. 57 uses the regularized BEM to calculate the
dynamics of multiple isotropic spherical colloids. Interestingly, a group of N ¼ 5
particles can form a stable cluster with broken rotational symmetry. This broken
symmetry allows propulsion of the whole cluster. Finally, concerning shape, the
BEM has been used to model toroidal [54] and spherocylindrical [72] self-phoretic
particles.

However, some caveats are in order. For the hybrid boundary element/Brownian
dynamics method discussed in this work, neither the fluctuations of the suspending
fluid nor of the chemical field(s) are explicitly resolved. For self-phoretic particles
in the ångstrom to nanometer size range, the particles, the solute, and the solvent
fluctuate on similar timescales. Additionally, the validity of the continuum
description of the surrounding solution is questionable. Molecular and mesoscopic
simulation methods that resolve discrete solute and solvent particles may be more
appropriate in this size range [48]. As a second caveat, boundary element methods
are most suited to solution of linear governing PDEs, such as the Laplace and Stokes
equations. Introducing nonlinearity in the governing equations (e.g., for a solution
with nonlinear rheology or nonlinear bulk reaction kinetics) leads to the appearance
of volume integrals in the boundary integral formulation. Thirdly and relatedly, the
boundary element method is not as easily extensible as other methods (e.g., the
finite element method) for inclusion of more complicated multiphysics. Finally,
there is a caveat specific to active colloids. Much remains unknown about the
reaction kinetics for self-phoretic particles. The boundary element method can have
many free microscopic parameters (e.g., the values of the surface mobility b on
different surfaces); this raises the danger of overfitting to experimental results.
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As a potential direction of research, we suggest developing a hybrid computa-
tional method combining the advantages of BEM and Stokesian Dynamics (SD).
Stokesian dynamics is a method for simulating the dynamics of colloidal suspen-
sions [73–76]. Far-field hydrodynamic interactions are included in SD, truncated at
the level of the stresslet (i.e., the first moment of the stress on the surface of a
particle, which produces a hydrodynamic disturbance decaying as � 1=r2.) Near-
field hydrodynamic interactions are typically included via lubrication forces acting
between particle pairs. Due to these approximations, Stokesian dynamics is com-
putationally much cheaper than BEM, allowing access to collective dynamics, the
rheology of dense suspensions, etc. On the other hand, SD does not typically resolve
the microscopic details of individual particles, such as shape or heterogeneous
surface chemistry. A hybrid BEM-SD method could combine the detailed micro-
scopic resolution of BEM for near-field interactions with the ability of SD to capture
many-body phenomena driven by far-field interactions. (This hybrid approach
would bear some similarity to the fast multipole method.) In the Appendix at the
end of this chapter, we develop a starting point for including interfacial flows vs xð Þ
within the standard SD formalism for spherical particles.

As a second potential research direction, one could consider deformable active
particles using the BEM. The boundary element method for Stokes flow has been
coupled to methods to model particle elasticity, including the finite element
method, in order to study the deformation of fluid-filled capsules [77] and elastic
particles in shear flow [78], as well as the deformation of blood cells squeezing
through constrictions [79].

The boundary element method could also be used to investigate questions
touching upon fundamental nonequilibrium statistical mechanics. For instance, do
nonequilibrium steady states of squirmers or self-phoretic particles (e.g., stable
clusters of catalytic particles [57]) minimize the rate of entropy production [80]?
When do hydrodynamic interactions suppress or enhance motility-induced phase
separation and other nonequilibrium phase transitions? Does the pressure of an
active suspension on a boundary obey an equation of state when hydrodynamic and
phoretic interactions with the boundary are considered [76, 81]?

In any case, we anticipate that the boundary element method will continue to
find successful application in the microswimmers field. A few potential problems
include: modeling the collision dynamics and scattering of two or more non-
spherical active colloids [72, 82]; the interaction of an active colloid and a passive
colloid, possibly including the formation of dimeric bound states for cargo trans-
port; and further exploration of motion near bounding surfaces and interfaces,
especially fluid/fluid interfaces.

A. Faxén laws and connection to Stokesian dynamics

Consider an inert (non-active) sphere of radius R in an ambient flow field u∞ xð Þ.
The sphere has translational velocity U and rotational velocity Ω. The flow field u
can be written as u xð Þ ¼ u∞ xð Þ þ uD xð Þ, where uD xð Þ is the velocity disturbance
created by the presence of the sphere. The boundary condition for uD xð Þ on the
sphere surface S is

uD xsð Þ ¼ UþΩ� xs � x0ð Þ � u∞ xsð Þ, xs ∈S: (69)

Additionally, uD jxj ! ∞ð Þ ! 0. Taking the sphere position to be x0 ¼ 0, we can
expand the ambient flow field around the sphere center as:
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u∞i xð Þ ¼ u∞i 0ð Þ þ ∂u∞i
∂xj

�

�

�

�

x¼0

xj þ
1

2

∂
2u∞i

∂xj∂xk

�

�

�

�

x¼0

xjxk þ… (70)

Now we recall the definitions of the (symmetric) rate of strain tensor eij,

eij ¼
1

2

∂ui
∂xj

þ ∂uj
∂xi

	 


, (71)

and the (anti-symmetric) vorticity tensor

W ij ¼
1

2

∂ui
∂xj

� ∂uj
∂xi

	 


, (72)

The vorticity tensor can be related to the vorticity vector w ¼ ∇� u by

W ¼ 1

2
ε �w: (73)

Here, ε is the Levi-Civita tensor. The first derivative in Eq. 70 can be
decomposed into symmetric and anti-symmetric contributions:

∂u∞i
∂xj

¼ e∞ij þW∞
ij : (74)

Using the Lorentz reciprocal theorem, one can obtain Faxén’s law for the drag
force on the sphere (see Ref. [59] for details):

Fdrag ¼ 6πμR 1þ R2

6
∇2

	 


u∞ x0ð Þ � U

� �

: (75)

(In our shorthand notation, the Laplacian is first applied to u∞ xð Þ and then
evaluated at x0.) One can also obtain Faxén law for the drag torque:

τdrag ¼ 8πμR3
ω

∞ x0ð Þ �Ωð Þ, (76)

where the angular velocity of the fluid ω � 1
2w. Finally, there is a Faxén law for

the stresslet [59, 83, 84]

S ¼ 20

3
πμR3 1þ R2

10
∇2

	 


e∞ x0ð Þ, (77)

where S is defined as an integral over the particle surface

Sij ¼
ð

1

2
xjσiknk þ xiσjknk
� �

� 1

3
xkσklnlð Þδij � μ uinj þ ujni

� �

� �

dS: (78)

So far we have only presented standard results, but now we raise the following
question. Consider an active sphere with a slip velocity vs xð Þ. Comparing the
boundary conditions in Eq. 3 and Eq. 69, can we construct an ambient linear
flow field

u∞ xð Þ ¼ u∞ 0ð Þ þ e∞ � xþ ω
∞ � x (79)
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with u∞ xsð Þ ¼ �vs xsð Þ on S? Constructing an effective flow field would allow us

to obtain Fdrag, τdrag, and S by Faxén laws, without having to solve the complete
hydrodynamic problem posed in Section II. Moreover, an understanding of how

vs xð Þ determines Fdrag, τdrag, and S would pave the way towards development of a
hybrid BEM-Stokesian Dynamics scheme, since these quantities are central to SD.

As our starting point, we write the Taylor expansion of u∞ xð Þ:

u∞i xð Þ ¼ u∞i 0ð Þ þ ∂u∞i
∂xj

�

�

�

�

x¼0

xj: (80)

To obtain u∞i 0ð Þ, we integrate both sides of Eq. 80 over the surface of the sphere:

ð

u∞i xð ÞdS ¼
ð

u∞i 0ð ÞdSþ
ð

∂u∞i
∂xj

�

�

�

�

x¼0

xjdS: (81)

We identify u∞
i xð Þ on the surface of the sphere as �vs xsð Þ. The second integral

on the right hand side of Eq. 81 vanishes, giving

u∞ 0ð Þ ¼ � 1

4πR2

ð

vs xsð ÞdS: (82)

Using Eq. 75, we obtain

Fdrag ¼ 6πμR � 1

4πR2

ð

vs xsð ÞdS�U

� �

: (83)

If we consider a force-free swimmer, Fdrag ¼ 0, giving the result:

U ¼ � 1

4πR2

ð

vs xsð ÞdS: (84)

This equation is one of the major results obtained in Ref. 37 by use of the Lorentz
reciprocal theorem. However, our rederivation and interpretation in terms of an
effective ambient flow field u∞ is (to our knowledge) novel. To obtain the vorticity
associated with u∞, we multiply Eq. 80 by εlmixm and integrate over the sphere
surface:

ð

εlmixmu
∞
i xð ÞdS ¼

ð

u∞i 0ð ÞεlmixmdSþ
ð

∂u∞i
∂xj

�

�

�

�

x¼0

εlmixm xjdS: (85)

The first integral on the right hand side of Eq. 85 vanishes. For the second
integral on the right hand side, we use the identity

ð

xmxjdS ¼ 4πR4

3
δjm: (86)

We obtain:

ð

εlmixmu
∞
i xð ÞdS ¼ 4πR4

3
εlji

∂u∞i
∂xj

�

�

�

�

x¼0

(87)

�
ð

x� vs xsð ÞdS ¼ 4πR4

3
∇� u∞

�

�

�

�

x¼0

¼ 8πR4

3
ω

∞ 0ð Þ, (88)
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so that

ω
∞ 0ð Þ ¼ � 3

8πR4

ð

x� vs xsð ÞdS: (89)

Using Eq. 76, we obtain:

τ
drag ¼ 8πμR3 � 3

8πR4

ð

x� vs xsð ÞdS�Ω

	 


: (90)

For a torque-free swimmer, τdrag ¼ 0, and we obtain a second major result from
Ref. [37]:

Ω ¼ � 3

8πR4

ð

x� vs xsð ÞdS: (91)

Finally, we consider how to obtain the stresslet S. We multiply Eq. 80 by xm and
integrate over the surface of the sphere:

ð

u∞i xð ÞxmdS ¼
ð

u∞i 0ð ÞxmdSþ
ð

∂u∞i
∂xj

�

�

�

�

x¼0

xmxjdS: (92)

The first integral on the right hand vanishes, giving

ð

u∞i xð ÞxmdS ¼ 4πR4

3

∂u∞i
∂xm

�

�

�

�

x¼0

: (93)

Swapping the indices i and m, we can also write:

ð

u∞m xð ÞxidS ¼ 4πR4

3

∂u∞m
∂xi

�

�

�

�

x¼0

: (94)

Adding these two equations and dividing by two, we obtain

1

2

ð

u∞i xð Þxm þ u∞m xð Þxi
� �

dS ¼ 4πR4

3
e∞im 0ð Þ: (95)

Accordingly,

e∞im 0ð Þ ¼ � 3

8πR4

ð

vs, i xð Þxm þ vs,m xð Þxi½ �dS: (96)

Using the Faxén Law in Eq. 77, we obtain:

S ¼ � 5μ

2R

ð

vs xsð Þxþ xvs xsð Þ½ �dS: (97)

This is the major result obtained in Ref. 84 via the Lorentz reciprocal theorem.
As before, this manuscript provides a novel alternative derivation and interpreta-
tion of Eq. 97 in terms of an effective ambient flow field. (Note that, due to the
linearity of the Stokes equation, our approach is easily extended to model active
particles in a real ambient flow field.)
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