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Chapter

Numerical Analysis of Liquid 
Menisci in the EFG Technique
Sergei N. Rossolenko, Gleb M. Katyba, Irina N. Dolganova,  

Irina A. Shikunova, Dmitry O. Stryukov, Kirill I. Zaitsev 

and Vladimir N. Kurlov

Abstract

This chapter is devoted to the analysis of the behavior of the profile curves of 
the melt menisci for the sapphire crystal growth by edge-defined film-fed growth 
(EFG) technique. The menisci of the shaped crystals with capillary channels, fibers, 
and tubes (including cases of outer and inner circular menisci) are considered. 
Also, we investigated the profile curves of menisci both in the cases of the positive 
and negative angles between profile curve and the working edge of the die. The 
cases of outer and inner circular menisci of the tubular crystals and menisci at 
capillaries and fibers are considered.

Keywords: EFG technique, meniscus, profile curve, sapphire

1. Introduction

Single crystalline sapphire has high melting point, chemical inertness, impres-
sive hardness, radiation and mechanical strength, high thermal shock resistance, 
and thermal conductivity. Sapphire also has high refractive index and a broad 
transmission band spanning the UV, visible, IR, THz, and microwave bands [1]. 
Such unique combination of physical and chemical properties makes sapphire an 
attractive material for various applications.

However, sapphire is difficult to shape because of its high hardness, which makes it 
difficult or impossible to obtain products of complex shape. In response to this prob-
lem, the edge-defined film-fed growth (EFG) technique [2] based on the Stepanov 
concept [3] was developed. This concept implies that the shape (or an element of the 
shape) to be produced is formed in the liquid state employing various effects, which 
enable the liquid to retain the shape. Then, the shape (or element of the shape) is con-
verted to the solid state in appropriate crystallization condition. The method to form 
a melt column of a defined shape using a special die and to subsequently crystallize 
the melt column outside the walls of the vessel was suggested. The main idea of this 
concept is to limit the area of the liquid-free surface and its perturbations.

In the EFG technique, the crystal is grown from a melt film formed on the top 
of the melt-wettable die, which contains capillary channel (see Figure 1). The melt 
rises to the top of the die due to capillary forces, and the crystal growth proceeds 
at the top of the die. The edges of the die determine the shape of the meniscus and 
thus the cross section of the growing crystal. As a result, sapphire-shaped crystals 
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of various constant and variable cross sections could be grown by the EFG tech-
nique due to its versatility for high-tech applications in optics, material science, 
biomedicine, etc. [4–10] with the relatively low production cost.

For the EFG technique, shape and quality of crystals are significantly defined by 
the form and position of the crystallization front and the shape of a liquid meniscus 
located between a crystal and a die. It is necessary to know the characteristics of the 
meniscus profile curves for their further use in dynamic models of the crystal-melt 
system, which are necessary for the development and optimization of automated 
systems for controlling the growth processes using a weight sensor.

Automated control systems make it possible to control not only the shape of the 
crystal but also its bulk and surface quality [11, 12], which is extremely important 
for expanding the fields of application of shaped crystals. In particular, preventing 
the formation of gas- and solid-phase inclusions in the volume of crystals and a 
significant improvement in the quality of the growth surface make it possible to use 
as-grown crystals in optics without additional surface treatment.

There are many publications devoted by the investigation of menisci shape 
evolution and their influence on the crystallization process. The approximate 
expression for the height of meniscus connected with the determined boundary 
conditions is represented in reference [13]. But this expression, usually being 
applied in Czochralski method, is difficult to use in EFG technique because of 
interconnected boundary conditions. Detailed consideration of this problem is 
represented in reference [14]. An approximate expression describing meniscus 
profile curve for the Czochralski method is given in reference [15]. Investigation of 
the influence of the negative outer pressure in the melt column of the meniscus on 
the limits of meniscus height in the crystal pulling of silicon by the EFG method is 
represented in reference [16]. Detailed research of the melt menisci, in the main, 
for the positive outer pressures, is given in reference [14]. The heights of menisci 
providing the implementation of the growth angle permanence condition and 

Figure 1. 
Schematic of shaped crystal growth by the EFG technique.
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depending on the outer pressure for the sapphire-shaped crystal growth by the EFG 
method are given in reference [17]. In work [18] the equations for programmed 
masses of menisci (based on the integration of the Young-Laplace equation and 
approximate data from the weight sensor signal) for various forms of the crystals’ 
cross section are described. These ones are used in the automated systems of the 
crystals’ form and quality controlling [11] and in consideration of the dynamic 
models of the crystallization processes [19]. Non-cylindrical (almost quadratic) 
forms of the meniscus distinguishing for the growth of rare-earth molybdates by 
modified Czochralski and EFG methods [20] are investigated using numerical solu-
tion of the Young-Laplace equation submitted in Cartesian (non-cylindrical) system 
of coordinates [21]. Thermo-capillary numerical models also require solution of the 
equation [24–31]. In reference [32] the problem of mechanical stability of the liquid 
menisci is considered.

This chapter contains the results of study of the profile curves’ formation, 
their properties, and dependence from the various external options and boundary 
conditions, which determine a meniscus form: outer pressure in the meniscus, 
height of the meniscus, contact angles between meniscus and working surface of 
the die, contact angles between meniscus crystal edge, and dimensions of the die 
and crystal. Variations of the ranges of external options and boundary conditions 
providing optimal conditions of the crystal growth process are discussed.

Figure 2 illustrates the scheme of meniscus zone for the tubular crystal growth. 
We consider one (right) side of the vertical cross section of the growing tubular 
crystal. There are two meniscus profile curves in this cross section—left (inner) 
and right (outer). The working surface of the die and the crystal edge contact with 
profile curve via the contact angles θd and θc, respectively. An angle between a 
profile line and a tangent line in the corresponding point defines the contact angle. 
We consider two types of the dies—with horizontal working surface (Figure 2a) 
and with sloped one (Figure 2b).

Estimation of the profile curves of the liquid menisci was made using the 
numerical analysis of the capillary Young-Laplace equation with various options 
and boundary conditions close to those of the EFG technique. The analysis of the 
melt-column shaping conditions was made for the case of catching meniscus at 
working edges of the wettable die. Special mention was paid for menisci providing 
stationary isotropic growth of sapphire crystal, i.e., profile curve should be satis-
fied with the condition of the growth angle permanency at the crystal edge (at the 
triple point). Specified boundary conditions for solving the Young-Laplace equation 
are close to the real ones resulting in the experimental processes of shaped crystal 
growth.

In this chapter the following results are presented:

• Analysis of the meniscus profile curves for various cases of catching with die, 
for various outer pressures, and various sizes of the crystal and the die

• Investigation of the shapes of menisci with negative and positive contact angles

• Analysis of the inner and outer menisci for the tubular crystal

• Analysis of the “planar” menisci for the case of the ribbon

It is well known [22] that the meniscus profile line z(r) for cylindrical crystal 
and die is defined via capillary Young-Laplace equation in static approximation. For 
circular meniscus in dimensionless sight, it looks as follows:
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Figure 2. 
Schematic of the crystal tube growth (a) with ordinary die and (b) with die having sloped working edges. The 
right vertical cross-section of the tube is shown.
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   z   ″  r +  z    ′  (1 +  z′   2 )  ± 2 ( H  d   − z)    (1 +  z′   2 )    
3/2

  r = 0  (1)

where z is current meniscus height, r is current meniscus radius, and Hd is static 
outer pressure determined mainly by a difference between melt level in the crucible 
and meniscus base at the working surface of the die.

In sapphire crystal growth by the EFG technique, the base of the meniscus is 
usually above the melt surface in the crucible, i.e., Hd < 0. Thus, in the present 
chapter, we consider negative outer pressures in the meniscus. For solving the 
Young-Laplace equation in the case of normal stationary crystal growth, vertical 
coordinate z(r) is predefined, and horizontal coordinate r is independent from z. 
Therefore, positive sign before the last part in Eq. (1) is considered. Taking into 
account the relation between z and r, we can analyze both negative and positive 
menisci contact angles θd between tangent meniscus profile line and horizontal line 
of the working surface of the die, i.e., the case of ambiguity along the vertical coor-
dinate z is analyzed. In the case of the die with sloped working edge for the outer 
meniscus of the tubular crystal, a positive contact angle θd is possible (Figure 2b). 
In this case, the meniscus of the die is formed along this edge.

In the present chapter, menisci relating to the stationary crystal growth are 
considered and, hence, being formed without ambiguity along the r coordinate. 
Therefore, positive sign before the last part in Eq. (1) is considered.

Boundary conditions in our analysis for solving Eq. (1) can be determined as

  z ( R  d  )  = 0, − arctg  z′     ( r  c  )  = π / 2 − ε  (2)

where rc is a radius of crystal, Rd is a radius of the working surface of the die, and 
ε is growth angle of the melt (for liquid Al2O3 ≈ 13° [17, 23]).

Zero height of the meniscus is predefined at the working edge of the die, and for 
the upper edge of the meniscus, the growth angle should keep permanent.

2. Outer circular menisci

2.1 Analysis of the menisci profile curves for various crystal radii

Numerical data shown in Figures 3 and 4 were calculated for the outer pressure 
Hd = −4 in dimensionless units. The capillary constant of Al2O3 melt is approxi-
mately 6 mm [23]. Thus, this outer pressure corresponds to the difference of 
−24 mm between levels of the melt surface in the crucible and working edge of the 
die. It is close to data featured to real crystal growth process. Outer pressure is nega-
tive because of the upper location of the working edge of the die in comparison with 
the position of the melt surface in the crucible. The range of crystal radius changing 
was from 0.95 to 0.995 with step 0.005. We represent linear sizes in dimensionless 
units in this chapter. In this paragraph the radius of the working surface of the die 
was constant.

Figure 3a and b demonstrates profile curves of the menisci being calculated for 
the various values of the radius of the cylindrical crystal, i.e., outer right circular 
menisci of the crystal tube were considered.

As a result of the iterative process, the angle θd was automatically adjusted so 
that the angle θc of the meniscus at the point of contact with the crystal (at the triple 
point) satisfies the condition of constancy of the growth angle. Taking into account 
the growth angle of sapphire, the required slope angle of the meniscus to the hori-
zontal line at the triple point should be equal to −77° with high accuracy.
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Profile curves depicted in Figure 3a correspond to the negative angles θd, while 
in Figure 3b to the positive angles θd. One can see different shapes of the menisci 
profile curves in these two cases.

We observe the decrease of the meniscus height with crystal radius increase 
(Figure 3a). With the oncoming of the crystal to the edge of the die, meniscus 
curves move upward from the die more intensively. There is an upward convexity 
of the meniscus curves near the die. After the inflection point, a convexity becomes 
downward.

Meniscus profile curves with positive angles θd for the die with sloped work-
ing edges are shown in Figure 3b. Figure 3b demonstrates that the points on the 
profile curve are displaced down in close proximity to the die and then, as a rule, are 
displaced upward, toward the edge of the crystal. In both cases, when the radius of 
the crystal increases, the behavior of the menisci is similar. Thus, if we change the 
angle θd from −π/2 to +π/2, the Young-Laplace equation has two solutions satisfying 
the boundary conditions (2): for the positive and negative angles θd.

The second derivatives of the meniscus profile curves are demonstrated in 
Figure 3c and d. The second derivatives characterize a curve convexity direction. 
Negative second derivatives near the die for negative contact angle (Figure 3c) 
correspond to a bulge upward. With the rise of the meniscus height, the second 
derivative becomes positive. This corresponds to a bulge of the meniscus profile 
curve downward. Thus, the second derivatives grow as the profile curve approaches 
the edge of the crystal. This shows that the convexity of the profile curves increases 
near the edge of the crystal.

Figure 3. 
(a, b) Profile curves of the outer menisci (a) for the negative angles θd and (b) for the positive angles θd and 
(c, d) second derivatives of the profile lines of the menisci (c) for the negative angles θd and (d) for the positive 
angles θd.
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The second derivatives of the meniscus profile curves for positive angles θd 
(see Figure 3d) have a positive sign everywhere along the current radii of the 
meniscus. The values of the second derivatives near the crystal are significantly 
larger than at a sufficient distance from it. In the case of positive angles θd, 
the inflection point is absent, and menisci have convexity everywhere in melt 
direction.

Figure 4a demonstrates dependence of the height of the meniscus on the radii 
of the crystal. We observe diminishing meniscus height with crystal radius rise 
(Figure 4a) and its oncoming to the edge of the die. Decrease of the meniscus 
height corresponds to smaller height of the interface boundary. This corresponds to 

Figure 4. 
(a) The curves of the meniscus height depending on the crystal radius (first line) for the contact angles θd < 0 
and (second line) for the contact angles θd > 0, (b, c) the curves of the contact angle θd depending on the crystal 
radius (b) for the angles θd < 0 and (c) for the angles θd > 0, (d, e) the lines of meniscus height depending on 
the contact angle θd (d) for the angles θd < 0 and (e) for the angles θd > 0.
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colder thermal zone of the system “melt-crystal.” In a growth process, it is necessary 
to choose some middle position of the interface boundary corresponding to the 
optimal conditions for crystal formation.

Figure 5 shows the surface of dependence of the outer meniscus height on the 
outer pressure and the radius of the die for the case of the negative angle θd and for 
the crystal tube outer radius 0.97 (in capillary constants).

2.2 Influence of various outer pressures on the menisci profile curves

We have made the calculations for various pressures being changed from −8 
to 0 with step 1 in capillary constants (dimensionless units) via the constant die 
and crystal radii equal to 1 and 0.97, respectively. The requirement of growth angle 
permanence was satisfied during calculations.

With the rise of outer pressure in the range from Hd = −8 to Hd = 0 the meniscus 
height increases (Figure 6a, b). It takes place because of diminishing the force 
pressing meniscus down to the die.

As shown in Figure 7a, meniscus height decreases with the rise of absolute value of 
outer pressure for negative contact angles as well as for positive ones. Therefore, Figure 7 
shows the features of the meniscus profile lines only for negative boundary angles θd.

Diminishing the absolute value of the outer pressure increases the absolute value 
of the contact angle θd (Figure 7b). To obtain the appropriate (higher) meniscus 
height, the larger absolute values of contact angles θd are required (Figure 7a and b). 
The function of the meniscus height depending on the boundary angle θd is almost 
linear (Figure 7c).

2.3 Influence of various boundary angles θd on the menisci profile curves

We have made analysis for the various boundary angles θd, while the die and 
crystal radii were constant. The die radius was equal to 1, crystal radius was equal 

Figure 5. 
The surface of dependence of the meniscus height on the outer pressure and the radius of die.



9

Numerical Analysis of Liquid Menisci in the EFG Technique
DOI: http://dx.doi.org/10.5772/intechopen.86721

to 0.97, and outer pressure was equal to −4, in dimensionless units (capillary 
constants). Requirement of the growth angle permanence at triple point was not 
satisfied. We have used the next boundary condition:

  z ( R  d  )  = 0, arctg  z′     ( R  d  )  =  θ  d    (3)

Figure 8a shows that the large absolute values of the boundary angles θd result 
in significantly higher menisci. Diminishing and rise of line segments (Figure 8a) 
correspond to the case above. Derivatives of the line decrease and rise is significant. 
Hence, the range of the menisci heights being sufficient for the stable growth and 
being satisfied with the condition of the growth angle permanence is sufficiently 
narrow. Figure 8b demonstrates that the ranges of boundary angles being almost 
real are approximately from −50 to −30° for the negative boundary angles θd and 
from +30 to +50° for the positive ones.

Under relatively small absolute values of the boundary angles (<30°), θd menisci 
heights are very small and unreal in a course of the sapphire crystal pulling by EFG 
technique.

2.4 Influence of various values of die and crystal radii (with constant difference 
between them) on the features of menisci

We have considered simultaneous changing of the die and crystal radii with 
constant distance between them, which was equal to 0.03 in dimensionless units 
(capillary constants).

Figure 6. 
(a, b) Profile curves of the menisci for the various outer pressures (a) for the negative angles θd and (b) for the 
positive angles θd and (c, d) second derivatives of the profile curves of the menisci for the various outer pressures 
(c) for the negative angles θd and (d) for the positive angles θd.
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The die radius was changing from 0.1 to 20, and the crystal radius was chang-
ing from 0.07 to 19.97. For sapphire it corresponds to the change from 0.42 mm to 
approximately 120 mm of crystal radius. We took into account the requirement of 
the growth angle permanence at the crystal edge.

Figure 9a shows that the strong changing of the meniscus height takes place at 
the die and crystal radii change at sizes of the capillary constant. The same situation 
is also for the change of θd (Figure 9b).

Figure 7. 
(a) Function of the meniscus height depending on the outer pressure, (b) function of the boundary angle θd 
depending on the outer pressure, and (c) function of the meniscus height depending on the boundary angle θd.

Figure 8. 
(a) Function of the meniscus height depending on the boundary angle θd and (b) function of the boundary 
angle θc depending on the boundary angle θd.
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3. Inner menisci for the tubular crystal

We have analyzed the inner menisci for the tubular crystal with similar data as 
for outer menisci. Figure 10 shows typical profile lines of the inner menisci. There 
are some differences connected with the fact that azimuthal curvature (second part 
of the capillary Eq. (1)) has positive sign for the inner meniscus and negative sign in 
the case of outer meniscus.

This curvature enlarges the current meniscus height due to the positive sign of 
the azimuthal curvature for the inner menisci. Profile curves of the inner menisci 
are a little bit higher than outer menisci due to the positive sign of the azimuthal 
curvature. This results in the presence of additional compressing factor in the inner 
menisci.

We have also considered simultaneous change of the die and crystal radii with 
constant distance between them. Outer pressure Hd was equal to −4 in dimension-
less units (capillary constants). Requirement of the growth angle permanence in 
triple point was implemented.

The dependence of the meniscus height on the crystal and die radii (Figure 11a) 
has difference in comparison with the one in the case of the outer circular menisci 
and has opposite behavior. The line of the inner menisci height is slightly diminish-
ing, but outer menisci height rises. This can be explained by the opposite signs of 
the azimuthal curvature.

Figure 9. 
(a) Function of the meniscus height depending on the crystal (and die) radius for the tubular crystal and  
(b) function of the contact angle θd depending on the crystal (and die) radius for the tubular crystal.

Figure 10. 
(a, b) Profile lines of the inner menisci (a) for the positive angles θd and (b) for the negative angles θd.
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We have considered also “planar” menisci being formed at the wide side of the 
crystal ribbon. The Young-Laplace equation was analyzed with zero azimuthal cur-
vature. Using the same modeling options (as for circular menisci), we have found 
that the heights of “planar” menisci are a little bit higher than the heights for the 
outer circular menisci and a little bit lower than the heights for the inner menisci. 
This can be explained by zero azimuthal curvature. The influence of the various 
outer pressures, various crystal ribbon width, and other factors is the same as for 
the circular menisci.

4.  Application of menisci analysis to automated control in EFG 
technique

The programmed expression of observing for weight sensor is necessary for 
automated control in EFG technique. At periods of control, the mass being calcu-
lated via this expression is compared with real signal of the weight sensor. Obtained 
deviation is used for calculation of regulating impact in the feedback closed loop of 
control process.

For the stationary tubular crystal growth with quasi-planar crystallization front, 
the meniscus part of the observing expression should be written as follows [12, 18]:

   M  m   =  𝜋𝜌  L   ( r  c,e  
2   −  r  c,i  

2  )  ( h  m,e   +  h  m,i  )  / 2 − 2  𝜋𝜌  L    a   2   r  c,e    sin𝜃  c,e   + 2  𝜋𝜌  L    a   2   r  c,i    sin𝜃  c,i    
                        + 2  𝜋𝜌  L    a   2   R  d,e    sin𝜃  d,e   − 2  𝜋𝜌  L    a   2   R  d,i    sin𝜃  d,i   − 2  𝜋𝜌  L   ( R  d,e  

2   −  R  d,i  
2  )   H  d                 (4)

Here, rc,i is a radius of the tube inner side, rc,e is a radius of the tube outer side, 
Rd,i is a radius of the die inner working edge, Rd,e is a radius of the die outer work-
ing edge, hm,i is an inner meniscus height, hm,e is an outer meniscus height, θc,i is a 
contact angle of the inner meniscus with the crystal edge, θc,e is a contact angle of 
the outer meniscus with the crystal edge, θd,i is a contact angle of the inner meniscus 
with die working surface, θd,e is a contact angle of the outer meniscus with the die 
working surface, ρL is a density of the melt, a is a capillary constant, and Hd is an 
outer static pressure.

The angle θc is connected with growth angle and specific for each liquid material. 
The outer pressure can be calculated from the dimensions of crucible and die and 

Figure 11. 
(a) Function of the meniscus height depending on the crystal (and die) radius for the inner circular menisci 
and (b) function of the contact angle θd depending on the crystal (and die) radius for the inner circular 
menisci.
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total melt charge in the crucible. The programmed menisci heights and angles of 
contact with working surface of die can be calculated from solution of the Young-
Laplace equation.

For the known outer pressure and growth angle, we can find menisci heights and 
angles of contact with the die, using Figures 7b and 8a. Similar estimations can be 
made for inner as well as for outer menisci.

The optimal heights of inner and outer menisci and, hence, optimal condi-
tions at the crystallization front are necessary to grow sapphire tubular crystals of 
high quality. To reach this purpose, die top design and special thermal shields are 
used [33].

We have grown large-scale sapphire tubular crystals of 55 mm in the outer 
diameter (Figure 12) using optimal values of menisci heights and contact angles in 
the automated control system.

5. Small inner menisci for tubular crystals (at capillary)

We have analyzed small inner menisci of capillaries for various crystal radii for 
the outer pressure Hd = −4 in dimensionless units (capillary constants). We changed 
the crystal radius from 0.05 to 0.0486 with step −0.0002. For sapphire it cor-
responds to the change from 0.3 to 0.2916 mm with step −0.0012 mm. The radius 
of the die edge was equal to 0.0485 (in dimensionless units) or 0.291 mm. We have 
made calculations for the positive contact angles θd.

As shown in Figure 13a, menisci profile lines have another character in com-
parison with lines demonstrated in Figure 3a shown above for sufficiently “large” 
menisci. As mentioned above, it is connected with the fact that azimuthal curvature 
has positive sign in the case of inner meniscus and negative sign in the case of outer 
meniscus.

As shown in Figure 13a, capillary menisci have an upward convexity. It takes 
place because of the very small weight and sufficiently large value of azimuthal 
convexity. The heights of capillary menisci are sufficiently small because of the 
small sizes of crystal radii (Figure 13b).

Figure 12. 
Sapphire tubular crystals of 55 mm in outer diameter grown by EFG technique using automated control system.
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Figure 14. 
(a) Profile lines of the small inner menisci (at capillaries) for the various outer pressures, (b) function of the 
meniscus height depending on the outer pressure, (c) function of the angle θd depending on the outer pressure, 
and (d) function of the meniscus height depending on the angle θd at various outer pressures.

Figure 13. 
(а) Profile lines of the small inner capillary menisci at the various crystal radii, (b) function of height of 
the capillary menisci depending on capillary radius, (c) function of the angle θd depending on the capillary 
radius, and (d) function of height of the capillary menisci depending on the angle θd. Positive angles θd are 
considered.
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For capillary menisci, absolute values of the contact angles (Figure 13c) are sig-
nificantly larger than for the “large” menisci. For the small menisci, larger angles θd 
are required, because the form of small profile lines has convexity directed upward, 
differing by this from the form of the “large” menisci.

For the small menisci, dependence of the meniscus height on the angle θd 
(Figure 13d) is nonlinear compared with “large” menisci. It takes place due to the 
upward convexity of the capillary menisci.

The die radius was 0.0485, and crystal radius was 0.05 in investigation of the 
capillary profile lines for the various outer pressures. The value of the outer pressure 
was changed from −10 to −2 with step 1. Calculations have been fulfilled for the 
positive angles θd.

As demonstrated in Figure 14, the capillary meniscus height becomes smaller 
with rise of the absolute value of the outer pressure as in the case of “large” 
menisci.

6. Small menisci for fibers

We have made the investigation of the profile lines of the small (outer) fiber 
menisci variating the crystal radii under the outer pressure Hd = −4 (in dimen-
sionless units). We were changing the crystal radius from 0.0483 to 0.0499 with 
step 0.0002. For sapphire it corresponds to the change from 0.290 to 0.2994 mm 
with step 0.0012 mm. The radius of the die working surface is equal to 0.05 (in 
dimensionless units) or approximately 0.3 mm. The negative boundary angles θd 
have been considered.

Due to another sign of the azimuthal curvature, the form of the fiber menisci 
strongly differs from the capillary ones (Figure 15).

We have made analogous numerical analysis for small fiber menisci as for the 
case of the “large” outer menisci (Figure 5). As a whole, behavior of the small fiber 
menisci and their features are similar to behavior of the “large” outer menisci for 
the tubular crystals (Figure 16).

Figure 15. 
Profile lines of the small (outer) fiber menisci at various crystal fiber radii. Negative angles θd are considered.
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7.  Application of small menisci analysis to sapphire fibers and 
capillaries’ growth using automated control

The data calculated from numerical solution of the Young-Laplace equation for 
the fibers and capillaries as well as for the large crystals are used in the programmed 
expression of observation of the weight signal. Due to the deviation between the 
programmed data and the weight signal, there are first and second derivatives of 
the deviation calculated that form the signal for heating power by the proportional-
integral-differential (PID) procedure.

Automated system also observes the amplitude of the first derivative of the 
weight signal deviation. The sufficiently strong amplitude corresponds to over-
cooling in the thermal zone, and sufficiently small amplitude corresponds to its 
overheating [12]. Thus, this amplitude should have optimal range of changing. 
For fibers and capillaries (inclusive the multi-crystal fibers pulling), this range is 

Figure 17. 
Sapphire rod of 10 mm in outer diameter with capillary channel of 450 μm.

Figure 16. 
The surface of dependence of the small meniscus height on the outer pressure and the radius of die.
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sufficiently narrow. The need of maintaining the narrow range of these oscillations’ 
amplitude requires the use of the second control loop tuning the first PID loop by 
the appropriate change of the programmed radius of the crystal or middle radii of 
the crystals in multi-crystal pulling.

An example of the automated growth of the capillary channel in the body of the 
bulk crystal is demonstrated in Figure 17.

Figure 18 shows sapphire fibers of 150–300 μm in diameter, which have been 
grown by multi-crystal process (up to 100 crystals per one process).

8. Conclusion

Comparable analysis of the forms and behaviors of the menisci profile curves for 
various signs of the boundary angle θd featuring the cases of ordinary (planar) and 
sloped working surfaces of the dies was made using the numerical analysis of the 
Young-Laplace capillary equation.

Calculation of the second derivatives of the menisci profile curves allowed us to 
analyze the curvature of the menisci profiles and observe its bulges.

Analysis of the inner and outer circular menisci has shown some different 
heights and behaviors of these menisci profiles because of the different signs of the 
azimuthal curvatures in the capillary equation.

Using numerical solution of the Young-Laplace capillary equation, the param-
eters for observing expression for automated growth control for tubular crystals 
as well as for capillaries and fibers were found. The sapphire tubes, capillaries, and 
fibers of good quality have been grown using automated system of control.
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