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Chapter

Introductory Chapter: Some
Insights into Bridge Structural
Condition Monitoring

Yun-Lai Zhou and Linya Liu

1. Introduction

Bridge structural condition monitoring has become a hot spot in both research
and engineering fields. Bridges, serving as a connection between cliffs, shallow
rivers, or special environmental conditions, have a lot of forms in functionality,
economy, and art consideration. For instance, concrete bridge, steel bridges, cable
stayed bridge, suspension bridges shown in Figure 1, and so on have been served in
various cities [1]. The initial use of bridge is for functionality like footbridge [2],
and then other considerations are included. As shown in Figure 1, both the
suspension bridge and cable-stayed bridge are extending for long span and large
area application in civil engineering.

Since the bridges provide the convenient transportation for passengers and
vehicles, the in-service safety shall be the most essential issue in the lifecycle service
of bridges, providing timely early stage warning and suggestion for the possible
maintenance [3-7]. For instance, fiber optic sensors are applied for full-scale
destructive bridge condition monitoring [3]. A comprehensive discussion on bridge
instrumentation and monitoring for structural diagnosis is conducted in [4],
expressing the general steps for bridge management system for condition monitor-
ing including experimental tests, nondestructive tests, performance evaluation, and
so on; in [5], the temperature effect is studied between the temperature and the
frequency ratio for model plate-girder bridges under uncertain temperature condi-
tions; and also the modal strain energy is extended to predict the location
and severity of the damages; in [6], the acoustic emission is applied for monitoring
the prestressed concrete bridges health condition after constructing a reference-
signals database; in [7], Poisson process is applied to simulate the arrival of vehicles
traversing a bridge, and a stochastic model of traffic excitation on bridges is
constructed to be incorporated in a Bayesian framework, to assess the properties
and update the uncertainty for condition evaluation of the bridge superstructure.

N
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Figure 1.
Diagram for (a) suspension bridge; (b) cable-stayed bridge.
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1.1 Sensing techniques

Sensing techniques include a lot of conventional technologies and advanced
technologies developed in recent decades. The conventional technologies include
impact echo testing, dye penetration, strain gage, electrical magnetic testing,
piezoelectric gages, acoustic emission, leakage testing, magnetic testing, ultrasonic
testing, radiographic testing, eddy current testing, infrared thermography testing,
microwave testing, and so on. Advanced technologies include phased array
ultrasonic testing, eddy current array testing, microelectromechanical sensors,
air-coupled sensors, vision sensors with cameras, radar sensors, and so on. In [8],
the condition monitoring system for Tsing Ma Bridge is thoroughly introduced: the
wind and structural health monitoring (WASHMS) in the Tsing Ma Bridge used
about 300 sensors: anemometers, temperature sensors, accelerometers, strain
gauges, displacement transducers, weigh-in-motion sensors, and so on. The Global
Positioning System-On-Structure Instrumentation System (GPS-OSIS) was
installed to improve the bridge displacement response monitoring. In [9], the
Global Navigation Satellite System (GNSS): BeiDou Navigation Satellite System
(BDS) and Global Positioning System (GPS) are applied to monitoring the bridge
displacement responses. In [10], image processing is applied to construct a vision-
based monitoring system for cable tension estimation under various weather con-
ditions in the cable-stayed bridge, proving that the natural frequencies can be
obtained up to the third and fifth modes. In [11], the radar sensor techniques were
employed to predict the changes in the natural frequencies of bridge girders with
certain characteristics that control the structural performance with being inc-
orporated with computational modeling. In [12], commercially available remote
sensors for Highway Bridge condition evaluation such as ground penetrating
radar (GPR), optical interferometry, digital image processing (DIC), and so on
are summarized.

1.2 Damage identification

Damage identification, part of structural health monitoring (SHM), has
appealed lots of attention since the occurrence of defect/damage demands repairing
and maintenance, simultaneously leading to economic loss. Damage identification
techniques can be summarized into two categories: model based and data based, and
this has been discussed in [1].

Modal testing serves as the fundamental and most essential technique in SHM,
and along with the development of technology, modal testing underwent experi-
mental modal analysis (EMA) and operational modal analysis (OMA). The key
difference between them is EMA needs, while OMA does not demand the
measurement of excitation. During the last decades, new measurement techniques
also arise in engineering application. For instance, ultrasonic testing, eddy current,
magnetic particle testing, acoustic emission, and so on are all imposed in SHM.

Comparing with the model-based techniques, data based, especially the output
only based damage identification suggests a wide applicable potential since its merit
relying on structural responses solely. Transmissibility is a typical output only based
technique [13], which has been developed in the past decades for system identifi-
cation, damage detection, localization, quantification, and assessment [14]. Review
can refer to [14]. Even a lot of investigations about transmissibility can be accessed
to [15-19], for instance, transmissibility coherence (TC) is raised [14, 17];
cosine-based indicator is constructed from the modal assurance criterion (MAC)
and incorporated with transmissibility for damage detection and quantification
relatively [15]; Mahalanobis distance is also applied to transmissibility for damage
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detection [16]; transmissibility is extended to apply in the responses analysis of
ultrasonic testing [19]; the transmissibility still encounters difficulty in both theory
development and engineering application. This study tries to extend the transmis-
sibility theory for estimating and reconstructing mode shape from structural
responses solely. Remaining work can be summarized as follows: Section 2 gives the
theoretical development of transmissibility mode shape (TMS) and comparison
between transmissibility-based OMA and frequency response functions (FRFs)
based EMA, Section 3 gives the possible damage indicators, and Section 4 gives the
numerical case study; conclusions are finally summarized.

2. Structural condition monitoring
2.1 Transmissibility and transmissibility coherence

Transmissibility has several kinds of definitions with existing reviews [14],
while the fundamental concept is the ratio between two structural responses, which
can be expressed as

Xi
T = X. (1)

where i, s mean the response locations, while X; and X; represent the frequency
spectrum of dynamic response x; and x; in time domain.

Transmissibility can be assessed with several ways, for instance, to use FRFs if
available,

Tiis) = = 70 (2)

where 7 denotes the excitation location (assuming single load). H represents the
FRFs.

Similar to the application of coherence in FRFs analysis, TC is also raised and
defined as

(3)

where G means the auto- and cross spectrum. TC is initially developed for
damage/small nonlinearity detection and quantification, and later it is advanced for
natural frequency extraction.

2.2 Transmissibility mode shape (TMS)

For a single load linear elastic structural system, the FRF can also be expressed as

” 0,9,
Hi (o) = — ;
() pglkp — w'my + jocy

(4)

where p denotes the pth mode, 7 means the number of modes considered. k,, 7,,
and ¢, mean modal stiffness, mass, and damping, respectively, ¢ means the mode
shape, and o represents the frequency.
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Then, the transmissibility illustrated above can be further expressed as
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Note, this relation shall be better if obtained by using Laplace transform. As to
Eq. (5), if fixing s, transmissibility will allow assessing the mode shape, or scalar
mode shape. For each mode, transmissibility will express the scalar mode shape at
each location, if further obtaining the direction of the scalar mode shape in each
measurement location, and then the transmissibility-based mode shape TMS (full-
unscaled mode shape ¢y, ¢ 2, @ 35 .., Pni> N is the number of measured responses)
will be obtained. A general definition can be denoted as

fBZ
) = J T 5 df (6)
fBl

TMS

where B denotes the frequency boundary [B1, B2] around the natural frequency,
and f indicates the frequency domain. TMS, means p™" TMS. All the TMSs will later
contribute for further OMA [14].

2.3 Comparison between transmissibility and FRF

Table 1 illustrates the comparison between EMA and transmissibility-based
OMA, and it can be found that transmissibility has been developed by analog of FRF,
where transmissibility can also perform the same function as FRF, like in damage
detection, system identification, and so on. Note that transmissibility has not been
thoroughly investigated; and further study is still needed to unveil new features.

Since transmissibility can assess TMS and natural frequencies, then, the
extended parameters based on modal parameters can later similarly be applied in
transmissibility-based OMA.

2.4 Transmissibility application for outlier identification

Damage identification includes several stages: detection, locating, quantifica-
tion, and remaining life assessment. All damage identifications follow the same
procedure, (1) operational evaluation; (2) data acquisition, fusion, and cleansing;
(3) feature extraction and information condensation; and (4) statistical mode
development for feature discrimination [20]. The most essential step is feature
extraction. Generally, feature means the property associated with the structural

Modal analysis EMA Transmissibility-based OMA
Kernel FRF Transmissibility
Coherence FRF coherence TC [17]
Modal Mode shape TMS
parameters Frequency extraction techniques Frequency extraction techniques like TC
like SSI based [14]
Table 1.

Comparison between EMA and transmissibility-based OMA.
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internal change. For instance, the cross section reduction will result in stiffness
reduction, which later changes the structural dynamic responses. Then, features can
be constructed from structural dynamic responses to assess the stiffness reduction
(kind of damage).

Certainly, damage has more kinds, like spalling in concrete structures, corrosion
induced defects, and so on. These kinds of defects at initial stage may not cause a
clear change in stiffness reduction; thus, special techniques like acoustic emission
should be adopted in further investigation.

For the damage illustrated in this study-stiffness reduction related damage,
vibration-based techniques are taken into consideration. To construct damage indi-
cator, the change of feature is the commonest, and one may use MAC for achieving
a comparable indicator without needing normalization, which can be denoted as

((Tms")" (TMSd)>2

DI=1-MAC=1- ((TMSM)T » (TMS”)) x ((TMSd)T X (TMSd))

7)

where (TMS)* and (TMS)? denote the value under undamaged and damaged
states, respectively.

Of course, herein, more indicators can be constructed, since TMS and natural
frequencies are assessed by transmissibility in OMA, curvature, higher order deriv-
ative, and so on, and all these modal parameters based indicators can further be
applied in damage detection [23].

3. Case study

In order to illustrate the feasibility of the proposed methodology, a pined-pined
beam is numerically analyzed. Young’s modulus is 185.2 GPa, dimension is
0.005 x 0.006 x 1.000 m, density is 7800 Kg/m3, and a vertical impulse is excited
in the node 7 with 10 elements discretized on average in the whole beam. Dynamic
responses are considered in the further OMA. The schematic diagram in Figure 2
shows the beam. Different damage levels are simulated with reducing the stiffness
in element 3, and for damage level D1, D2, D3, and D4, the stiffness reduced from 5,
10, 15, to 20% accordingly.
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Figure 2.
Schematic diagram of the pined-pined beam.

4, Results and discussion

Results for the aforementioned methodology is computed and discussed in this
section. Figure 3 illustrates the mode shapes for first four modes, while Figure 4
demonstrates the TMSs for first four modes, where one can find that both mode
shapes and TMSs share the similar shapes, and their well agreement implies the
potential use of TMS in damage identification.
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Figure 3.
Mode shapes of the beam for first four modes.

Figure 4.
TMSs of the beam for first four modes.
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Figure 5.
DI for first four modes.
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Figure 5 gives the structural detection results from the constructed damage
indicator DI. From this figure, it can be found that all damage levels are detected. It
should also be noted that the change of DI for all the four modes are not very much,
this suggests that TMSs vary small before and after the occurrence of damage, and
further enhancement should be conducted in order to achieve a better damage
detection performance.

5. Concluding remarks

This study tries to discuss some insights for bridge condition monitoring, also
extends the mode shape into transmissibility-based OMA, and by using transmissi-
bility, TMS is assessed by analog of mode shape in EMA, which paves the way for
further investigation of extending the mode shape-based indicators to TMS-based
analysis [21, 22]. MAC is used to construct a damage indicator with being verified
by a pined-pined beam. The damage detection performance implies further neces-
sary investigation for obtaining a better and deeper understanding.
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