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Abstract

Lakes are inestimable renewable natural resources that are under significant 
pressure by human activities. Monitoring lakes regularly is necessary to understand 
their dynamics and the drivers of these dynamics to support effective management. 
Remote sensing by satellite sensors offers a significant opportunity to increase the 
spatiotemporal coverage of environmental monitoring programs for inland waters. 
Lake color is a water quality attribute that can be remotely sensed and is independent 
of the sensor specifications and water type. In this study we used the Multispectral 
Imager (MSI) on two Sentinel-2 satellites to determine the color of water of 170 
Italian lakes during two periods in 2017. Overall, most of the lakes appeared blue in 
spring and green-yellow in late summer, and in particular, we confirm a blue-water 
status of the largest lakes in the subalpine ecoregion. The color and its seasonality are 
consistent with characteristics determined by geomorphology and primary driv-
ers of water quality. This suggests that information about the color of the lakes can 
contribute to synoptic assessments of the trophic status of lakes. Further ongoing 
research efforts are focused to extend the mapping over multiple years.

Keywords: chromaticity, multispectral sensors, optical remote sensing, inland 
waters, mapping, Sentinel-2, Italy, lakes

1. Introduction

Freshwater constitutes only 3% of the Earth’s water resource, but only 1% is 
available as surface water in lakes and rivers, while the remainder is frozen in glaciers 
and ice caps or stored underground. Lakes represent a valuable source of water for 
consumption and irrigation and provide a variety of key services such as food provi-
sion, energy generation, transportation, recreation, and tourism. Lakes are essential 
components of the hydrological and biogeochemical cycles due to their basic ability 
to store, retain, clean, and provide water [1]. Lake waters also contribute to support 
the agricultural sector and livestock to feed the 7 billion of people on our planet [2].

Lake ecosystems are under pressure from various human impacts as well 
as climate change [3]. They are sensitive to a range of stressors operating at 
global, regional, and local scales [4] whose impacts manifest in eutrophication, 
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proliferation of toxic algae, increase in turbidity, loss of aquatic benthos, and 
harmful effects on health for both animals and humans [5]. Significant effort is 
often devoted to monitor for changes, to the restoration of impacted systems, and to 
the preservation of healthy lakes. For example, in Europe, the need for having “[...] 
a coherent and comprehensive overview of water status within each river basin 
district” was defined by the Water Framework Directive (WFD) [6], setting out 
the requirements for the monitoring of the status of surface waters with the main 
objective of maintaining “good” and non-deteriorating status for all waters.

Earth observation (EO) techniques with optical sensors have been used for many 
decades to support timely and frequent acquisition of synoptic lake water quality 
information [7 and reference herein]. In recent years, EO has become an operational 
tool to support traditional measurements providing, at a relatively low cost and for 
some bio-geophysical parameters, information on surface water status to support a 
variety of applications [e.g., 8, 9]. EO systems measuring water quality typically are 
multispectral radiometers which might be grouped by their characteristic spatial 
and spectral resolution. Spatial resolution (the area on the ground covered by each 
pixel) is of particular importance for remote sensing of inland waters [10] as it 
determines the minimum size of lakes visible by each satellite. Four groupings of 
satellite sensors can currently be distinguished: ocean color (e.g., Sentinel-3 OLCI 
or MODIS, with pixels of about 300–1000 m), multispectral sensors (e.g., Landsat 
or Sentinel-2, with pixels of 10–30 m), imaging spectrometers (e.g., Hyperion or 
PRISMA, with a pixel size of 30 m, but coverage is not global unlike the previous 
missions), and geostationary platforms (e.g., GOCI, with a 500 m pixel size). Ocean 
color sensors provide better data for aquatic applications because they have more 
and narrower spectral bands and higher signal-to-noise ratios, but multispectral 
sensors are often the only choice for inland water applications because their finer 
spatial resolution can resolve smaller water bodies [10]. Multiple sensors might be 
used for improving the resolutions as in [11].

After processing of the light measured by a satellite sensor at the top of the 
atmosphere by removing light scattered by the atmosphere, stray light from adja-
cent pixels and specular reflection from the water surface physical and biochemical 
parameters of lakes can be estimated using several methods. Parameters that can 
be estimated include turbidity, photosynthetic biota (e.g., phytoplankton, macro-
phytes, and cyanobacteria), colored dissolved organic matter (CDOM, e.g., humic 
and fulvic substances), and suspended non-algal particulate matter (e.g., detritus 
from land). Lakes are complex ecosystems relative to oceanic waters due to the large 
variety and range of concentrations of living and nonliving material [12]. This 
complexity also applies to the optical properties, i.e., the spectral characteristics of 
absorption and scattering of light, of the constituents of lake water [13, 14], and, 
therefore, their estimation in lakes is extremely challenging. For example, if one 
component (e.g., CDOM) dominates the others (e.g., phytoplankton), it may mask 
the signature of the other components in the reflectance spectrum and reduce the 
accuracy of determining their concentrations. Due to this optical complexity, most 
algorithms for the retrieval of biogeochemical parameters are tailored to specific 
lakes and are not applicable to systems with optical properties different to those 
used for their development [e.g., 15, 16].

When research activities are focusing on mapping water quality in lakes from 
national to global scales, simpler yet robust approaches might be therefore strategi-
cally adopted. Among those, the methods estimating the color of water as perceived 
by the human eye show promise, because it does not rely on knowledge on inherent 
optical properties and concentrations of water components. Although perceived 
color is not unambiguously related to quantitative water quality attributes such as 
clarity, the phytoplankton, suspended matter, and CDOM, the color of water can 
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be seen as a water quality attribute in its own right with the advantage of intuitive 
meaning in public perception.

The Commission Internationale de l’Éclairage (CIE) [17] mathematically defines 
color by weighting the reflectance spectrum of an object with three mixing curves, 
or chromaticity curves, each specifying the respective sensitivity of the human 
eye to one of the primary colors. To adapt this definition to the spectral bands of 
satellite sensors, several methods have been developed starting from the use of 
Forel-Ule (FU) scale, a historical standard recently recalibrated [18]. More recently, 
van der Woerd and Wernand [19] developed an algorithm to derive the hue angle 
consistently from different ocean color and multispectral sensors. Hue angle can be 
thought of as the pure color most closely resembling the true color of natural waters.

Several studies have used color analysis for a variety of applications in dif-
ferent aquatic ecosystems, including oceans and lakes. For example, [20] used 
chromaticity coordinates to prove the capability of Landsat-5 in assessing water 
quality changes from the pelagic to the coastal zone in Lake Garda (Italy). Wang 
et al [21] assessed the trophic state of global inland waters using a MODIS-derived 
Forel-Ule index finding that oligotrophic large lakes are concentrated in plateau 
regions in central Asia and South America, while eutrophic large lakes are con-
centrated in central Africa, eastern Asia, and mid-northern and southeast North 
America. In New Zealand, [22] calculate the color of water on almost 45,000 
observations from 1486 lakes over 4 years. A preliminary exploratory analysis 
suggests that both geophysical and anthropogenic factors, such as catchment land 
use, provide environmental control of lake color and are promising avenues for 
future analysis. Lastly, [23] revealed that subtropical oceans will get bluer as fewer 
phytoplanktons are able to survive in its waters, while green regions at the poles 
will turn greener as warming waters become more habitable for them.

In this study, the method developed in [24] is adopted to calculate the color of 
Italian lakes based on multispectral Sentinel-2 images, whose 10-m spatial resolu-
tion allowed us to observe 170 lakes of the country. We follow [22] to analyze and 
classify lake colors from two different periods in 2017 for seasonal variations and 
patterns related to geomorphology and other primary drivers of water quality.

2. Materials and methods

2.1 Study area

About 2000 lakes are known in Italy, and ~500 of those have a surface area 
greater than 0.2 km2 (400 of which are freshwater bodies and 100 brackish water 
bodies) [25]. The lakes are diverse systems with a plethora of values, including 
biodiversity, water provision, recreation, and landscape. For example, the volcanic-
lake district located between Lazio and Basilicata administrative regions has 80% of 
the deep lakes within the Mediterranean coastal region holding 94% of the freshwa-
ter in central and southern Italy [26].

Lakes in Italy have different origins and features. Alpine lakes are generally 
small, fed by meltwater, and are normally located at altitudes above 2000 m a.s.l. 
where they occupy basins carved by glaciers. The deep subalpine lakes—the largest 
in Italy—occupy deep elongated valleys shaped by the erosive action of glaciers 
during the last glacial period. The debris left by ice on the edge of the plain forms 
the so-called morainic amphitheaters that, like the case of Lake Garda, still mark 
the southern limit of these water basins. The moraine lakes are entirely enclosed by 
hills formed by glacial deposits on the border between the Prealps and the Po Plain 
(e.g., lakes Viverone, Varese, Pusiano). The barrier lakes are formed following the 
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obstruction of a river valley due to a landslide or the accumulation of alluvial sedi-
ments; examples are Lake Alleghe (landslide) and Lake Levico (accumulation of 
sediments). Volcanic lakes, mainly found in central Italy, feature an almost circular 
shape. Their formation is mainly related to subsidence and caldera formation dur-
ing the final stages of volcanic activity [27]; examples are Lake Bolsena and Lake 
Bracciano. Alluvial lakes located in Central Apennines are formed by the filling of 
depressions originated by the raising of the Apennine chain (e.g., Lake Trasimeno). 
Other types of lakes include coastal and artificial ones.

Italy’s overall lacustrine water volume is about 146 billion m3, with seven large 
lakes (Garda, Maggiore, Como, Bolsena, Iseo, Bracciano, and Monte Cotugno) 
representing more than 97% of this amount. A major part of these lakes is located 
in the northern sector of the Italian Peninsula (along the Alpine range), although 
the Mediterranean regions are characterized by a high number of artificial lakes 
mainly supporting drinking or irrigation purposes. The morphology of the lakes 
is diverse with surface areas ranging between 3.4 and 370 km2 (lakes Comabbio 
and Garda, respectively), maximum depths ranging between 2 and 410 m (Lesina 
and Como), and altitudes ranging between 0 and 507 m a.s.l. (lakes Lesina and 
Varano, and Vico).

Since 1997, a systematic investigation of morphological, physical, chemical, and 
biological features of the main lakes (with areas >0.2 km2) has been implemented 
under the Project LIMNO. This project has the objective of developing a territorial 
information system for the interdisciplinary study of Italian lake environments. It 
consists of a database focused on morphometric, chemical, and biological data of 
water and sediments and the geographic information system tool (GIS LIMNO), 
which also includes thematic information on land use.

A major outcome of this project is the ability to analyze the physical and chemi-
cal variables for time trends in many lakes, especially the subalpine ones. For Lake 
Pusiano, it was revealed that the total phosphorus (TP) concentration, after having 
increased up to 200 μg/L (i.e., hypereutrophic) around the middle of the 1980s of 
the last century, has undergone a constant decline, down to the value of 58 μg/L 
in 2004. In other cases, however, opposite trends were observed. For example, 
Lake Garda exhibited TP concentrations in the range of 15 (1990s) to 34 μg/L 
during the 2004 circulation. In general, TP concentration shows higher values in 
lakes located at altitudes lower than 1000 m a.s.l. (median = 43 μg/L), while, for 
high-altitude lakes, this value never exceeds 4 μg/L. A similar trend has been also 
detected for total alkalinity (TAlk), with the highest values at low-altitude lakes 
(TAlk = 2.65 meq/L) and lowest values at high-altitude lakes (TAlk = 0.40 meq/L). 
This trend is also reflected by pH, which shows the minimum values at the highest 
altitudes. To sum up, the collected evidence has confirmed a considerable reduction 
in the maximum values of nutrients and contaminants even if data has often veri-
fied an increase in their basal levels.

2.2 Sentinel-2 data and processing

Sentinel-2 is a multispectral imaging mission of the Copernicus program. The 
mission that is funded by ESA Member States and the European Commission 
consists of twin satellites, the Sentinel-2A and Sentinel-2B, launched on 23 June 
2015 on 7 March 2017, respectively.

Sentinel-2A and Sentinel-2B carry the Multispectral Imager (MSI), a 
push-broom sensor designed and built by Airbus Defense and Space, France. 
MSI has 13 spectral bands, ranging from the visible to the shortwave infrared 
(443–2190 nm) [28], with a swath width of 290 km and spatial resolutions of 
10, 20, and 60 m (Table 1).
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By providing spatial resolution on the order of tens of meters and spectral bands 
comparable to the Operational Land Imager on Landsat 8 (and imagers on previous 
Landsat missions back to Landsat-5), Sentinel-2 is becoming to be considered as a 
key sensor for mapping lakes [10], which are often too small for ocean color sensors 
largely used in water quality studies [e.g., 21]. Then, considering the capacity of 
revisiting the same area every 5 days (2–3 days toward mid to high latitudes because 
of the overlap of the paths), Sentinel-2 is also useful for tracking changes over time 
scales of weeks. Therefore, in the last years, a number of lake studies have been 
developed with Sentinel-2 [e.g., 29–34].

In our study, 45 Sentinel-2A and Sentinel-2B MSI images were chosen, 22 during 
the spring (end of March to end of May) and the remaining acquired between 
late August and the end of September (late summer). Images were selected based 
on clear sky conditions and low glint contamination. Level-2C standard products 
were downloaded via the Copernicus Open Access Hub. The level-2C standard 
product is atmospherically corrected using the Sen2Cor [35]. Although the level-2C 
products rely on an atmospheric correction scheme not specifically designed for 
retrieving water leaving reflectance, it was recently demonstrated that its accuracy 
was better for inland than for coastal waters [36]; moreover level-2C MSI data have 
been used both in lake [37] and shallow water [38] applications. The MSI bands 
1–5 were resampled at 10 m and then converted into remote sensing reflectance 
(Rrs) by dividing level-2C reflectance by π. The remaining spectral bands were not 
used as chromaticity which is entirely determined by light in the visible part of the 
spectrum. Finally, imagery data in Rrs units were imported into a GIS environment 
for clipping to vector outlines of the lakes listed in the geodatabase of the Italian 
Institute for Environmental Protection and Research (ISPRA). The 10-m spatial 
resolution of Sentinel-2 allowed us to consider 170 lakes down to a minimum size 
of 0.3 km2. For each lake, the Rrs values were extracted from a square area avoiding 

S2A S2B

Band 

number

Central 

wavelength 

(nm)

Bandwidth 

(nm)

Central 

wavelength 

(nm)

Bandwidth 

(nm)

Spatial 

resolution (m)

b1 442.7 21 442.2 21 60

b2 492.4 66 492.1 66 10

b3 559.8 36 559.0 36 10

b4 664.6 31 664.9 31 10

b5 704.1 15 703.8 16 20

b6 740.5 15 739.1 15 20

b7 782.8 20 779.7 20 20

b8 832.8 106 832.9 106 10

b8a 864.7 21 864.0 22 20

b9 945.1 20 943.2 21 60

b10 1373.5 31 1376.9 30 60

b11 1613.7 91 1610.4 94 20

b12 2202.4 175 2185.7 185 20

Table 1. 
Nominal settings of Sentinel-2A/Sentinel-2B MSI with band number, central wavelength, band width, and 
pixel size/resolution (source ESA).
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islands and shallow waters, thus reducing the chance for mixed land-water pixels 
and bottom effects. The area used corresponds to a pixel window ranging from 
3-by-3 to 90-by-90 and from smaller to larger lakes.

The chromaticity coordinates x, y, and z from MSI-derived Rrs data were com-
puted by normalizing the individual tristimulus values X, Y, and Z:

  x =   X ______ 
X + Y + Z

  ;  y =   Y ______ 
X + Y + Z

  ;  z =   Z ______ 
X + Y + Z

  ; with x + y + z = 1  (1)

X, Y, and Z were computed as a linear weighted sum of MSI’s five Rrs bands in 
the visible part of the spectrum (cf. Table 1) according to [24] (Eqs. (2)-(5)):

  X = 8.356 Rrs (b1)  + 12.040 Rrs (b2)  + 53.696Rrs (b3)  + 32.087Rrs (b4)   
                    + 0.487Rrs (b5)    

(2)

 Y = 0.993 Rrs (b1)  + 23.122 Rrs (b2)  + 65.702Rrs (b3)  + 16.830Rrs (b4)  
                    + 0.177Rrs (b5)    

(3)

  Z = 43.487 Rrs (b1)  + 61.055 Rrs (b2)  + 1.778Rrs (b3)  + 0.015Rrs (b4)   (4)

The x and y pairs were then plotted in the typical horseshoe-shaped chromatic-
ity diagram (locus), where the center of the chromaticity diagram is the “white 
point” at which x = y = z = 1/3.

Any pair of x and y coordinates was then converted to hue angle (α). This is 
the angle between the line drawn from the white point to the x, y coordinate and 
the x-axis in anticlockwise direction. α was computed by using the four-quadrant 
arctangent function atan2 in MATLAB according to [22] (Eq. (5)):

  α = arctan  (y −  1 ⁄ 3 , x −  1 ⁄ 3 ) modulus2π  (5)

The final step was the computation of dominant wavelength (λd). λd is the 
wavelength marked along the locus, and it is found as the intersection of the line 
drawn from the white point through the x, y coordinates.

3. Results and discussion

For each lake, x and y are plotted in the chromaticity diagram, commonly used to 
illustrate the color space and the range of colors in the sample. Figure 1 depicts the 
natural color of our 170 lakes for each acquisition period in 2017. In spring, the colors of 
lakes are aligned elongated to a region spanning from blue toward green-orange; in late 
summer, the extent of the point cloud is greater and extends further into orange-red.

The optical properties of clean water are dominated by absorption and scat-
tering by water molecules whose spectral dependence produces a blue reflectance 
spectrum. Therefore, the common perception that blue is “clean” is often true, 
while moving toward green, yellow, orange, and red, the optical effects of the other 
water components, such as phytoplankton, CDOM, and non-algal particle, become 
predominant. However, a simple back calculation from color to the direct causes 
of color change, e.g., proliferating phytoplankton or increasing sediment resus-
pension, is not possible. Nevertheless, any changes from blue can be reasonably 
attributed to decreasing water purity and is often also associated with a reduction in 
water clarity.
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The frequency distribution of the dominant wavelength for the 170 lakes for 
both periods is plotted in Figure 2. Both histograms show a bimodal frequency 
distribution. In spring, most observations are in the blue-green part of the spec-
trum, with a secondary mode at green-yellow wavelengths. Vice versa, in late 
summer, most observations are in the green-yellow part of the spectrum and the 
secondary mode in the blue-green. To explain these changes, the lakes have been 
clustered according to three λd classes, defined as follows: blue (λd < 495 nm), green 
(495 nm < λd < 560 nm), and yellow (λd > 560 nm). In spring, 43% of lakes were 
classified as blue, 35% as green, and the last 22% as yellow. Moving toward late 
summer, most of the lakes were green (42%), then yellow (33%), and the remaining 
25% as blue.

Of the 170 lakes, 96 did not show any transition from one color class to another, 
while 13 lakes moved from blue to yellow, showing a major change of optical prop-
erties also likely associated with a reduction in water clarity. The remaining 61 lakes 
showed smaller transitions to the neighboring color: 45 from blue to green or from 
green to yellow. The other 16 lakes showed transitions in the opposite direction, 
from green to blue or from yellow to green, suggesting improving water clarity from 
spring to late summer.

The geographic distribution of the three color classes is presented in Figure 3. 
Subalpine lakes in the northern part of the country including the largest lakes 
of the country (lakes Garda and Maggiore of 370 and 210 km2, respectively) are 
distinctly blue in the spring. This lake district represents more than 80% of the 
total Italian lacustrine volume and is therefore of great interest. Moving from 
spring to late summer, a change of color toward green and yellow was observed 
in many of these lakes. Notably, the largest of these lakes, e.g., Lake Garda, 
remained blue.

A similar change is occurring in Sardinia, the second largest island of the 
country. Blue lakes turn yellow and green from spring to late summer. In contrast, 
only few lakes in Sicily show color transitions, and green and yellow colors prevail. 
Along the peninsula, more lakes are also blue during the spring than in late summer. 
However, a geographic gradient is seen in that summertime greening or yellowing is 
more common in the southern half of the peninsula.

Figure 1. 
Chromaticity diagram showing the color of water of 170 lake observations determined from Sentinel-2A/
Sentinel-2B MSI data of 2017. Data related to spring are shown on the left, whereas those observed in late 
summer are shown on the right. The white point (WP: x = y = 1/3) is indicated as reference.
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To investigate these trends further, the lakes were split into four clusters 
according to latitude: northern (with latitudes >44°N), central (with latitudes in 
the range 44–41°N), southern lakes (with latitudes <44°N), and separately the 
lakes of Sardinia (Figure 4). Similar to general trends observed at the national 
scale, a progressive increase in λd was recorded moving from north to south in 
both the seasons. This is not surprising as the wide latitudinal range of Italy 
(~38–47°N) encompasses marked climatic, geological, topographic, and land 
use gradients.

A possible explanation, regardless of physical and chemical differences between 
lakes, is that the Mediterranean lakes are characterized by an advance of the grow-
ing season compared to northern ones. This may translate into an early start of the 
algal growth with significant effects on the color of the water. Consequently, it is 
quite natural to guess higher levels of productivity (colors basically more green-
yellow) for southern lakes, as described by [39] at a global scale. Additionally, the 
differences between the two main Mediterranean and Italian islands, Sicily and 
Sardinia, are probably due to the geological and climatic differences between the 
two islands [40] and are likely exacerbated by the fact that their lakes are largely 
artificial reservoirs with site-specific trophic drivers.

Figure 2. 
Frequency histogram of dominant wavelength for the 170 lakes: on top, spring data; on bottom, late summer 
data.
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4. Conclusion

In this study, the color of water, a simple and straightforward water quality 
attribute quantitatively described in terms of dominant wavelength, was retrieved 
from Sentinel-2A and Sentinel-2B MSI data. The method allowed us to map the 
color of 170 Italian lakes in two periods during 2017.

The results revealed a general increase in λd moving from north to south (in the 
range ~38–47°N) and from spring to late summer. This could be put in relation to 
the macroclimatic differences associated with the latitudinal gradient under inves-
tigation. Moreover, the observed trends suggest that the investigation of drivers 
of water chromaticity can contribute to fundamental understanding of lake water 
quality. This represents an opportunity for water managers who have to act under 
the dramatic effects of climate change on water availability and quality.

Figure 3. 
Geographic distribution of lakes, colored according to their dominant wavelength: on left, spring observations; 
on right, summer observations. The latitudes in degrees are indicated as reference.

Figure 4. 
Box plot depicting dominant wavelengths for spring (white) and autumn (gray) periods for northern (>44°N), 
central (44–41°N), Sardinian, and southern (<41°N) lakes.
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Our work shows that color observations are an efficient means to capture an 
intuitive water quality attribute at spatial and temporal scales practically impossible 
to achieve using ground-based observations. Further investigations are required to 
relate color of water to trophic status and traditional water quality metrics such as 
chlorophyll a concentration and suspended particulate matter. Such relationships 
most likely require the classification of lakes into bio-optical types [14, 16] which 
can also be assisted by remote sensing observations. Such knowledge would help 
to better understand and disentangle the main determinants of lake productivity 
such as the role of physical, chemical, and morphometric traits that are generally 
acknowledged as pivotal drivers of primary production [26].

For more than four decades, satellite sensors have been used for lake monitoring, 
and since 2015, Sentinel-2 MSI provides free and open data at a spatial resolution 
suitable for small- to medium-sized lakes (down to 0.3 km2). MSI has similar spectral 
and spatial resolution as the Landsat series of satellites which allows the new data to 
be analyzed in continuity with historical imagery spanning back four decades. The 
color of water as calculated in this work is a promising water quality attribute for time 
series analysis as it does not rely on algorithms depending on inherent optical proper-
ties that have to be calibrated with field observations. While the present study only 
looked at two seasons in the same year, a long-term analysis could investigate the tim-
ing of summertime greening of the lakes in response to climatic forcing mechanism.

Ongoing research is focused on extending the color mapping over past observa-
tions. Future applications of chromaticity analysis are promising as each Sentinel-2 
satellite has a 7-year lifetime design, and they are planned to be replaced in the 
framework of ESA’s Copernicus Program in 2022–2023 by new identical missions. 
This ensures continuity of the data record to 2030 and provides the opportunity for 
lake water quality monitoring for decades from now.
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