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1. Introduction  

In many ways and in various tasks, computers are able to outperform humans. They can 
store and retrieve much larger amounts of data or even beat humans at chess. However, 
when looking at robots they are still far behind even a small child in terms of their 
performance capabilities. Even a sophisticated robot, such as ASIMO, is limited to mostly 
pre-programmed behaviours (Weigmann, 2006). The reliance on robots that must be 
carefully programmed and calibrated before use and thereafter whenever the task 
changes, is quite unacceptable for robots that have to coexist and cooperate with humans, 
especially those who are not necessarily knowledgeable about robotics. Therefore there is 
an increasing need to go beyond robots that are pre-programmed explicitly towards those 
that learn and are adaptive (Wermter, Weber & Elshaw, 2004; Wermter, Weber, Elshaw, 
Panchev et al., 2004). Natural, dynamic environments require robots to adapt their 
behaviour and learn using approaches typically used by animals or humans. 
Hence there is a necessity to develop novel methods to provide such robots with the 
learning ability to deal with human competence. Robots shall learn useful tasks, i.e. tasks 
in which a goal is reached, if executed successfully. Reinforcement learning (RL) is a 
powerful method to develop goal-directed action strategies (Sutton & Barto, 1998). In RL, 
the agent explores a ‘state space’ which describes his situation within the environment, by 
taking randomized actions that take him from one state to another. Crucially, a reward is 
received only at the final goal state, in case of successful completion. Over many trials, the 
agent learns the value of all states (in terms of reward proximity), and how to get to 
higher-valued states to reach the goal. 
In Section 2 we will review RL in the brain, focusing on the basal ganglia, a group of 
nuclei in the forebrain implicated in RL. 
Section 3 presents algorithms for RL and describes their possible relation to the basal 
ganglia. In its canonical formulation, RL maps discretely defined states to discrete actions. 
Its application to robotics is challenging, because sensors, such as a camera, deliver high-
dimensional input that does not define a state in a way suitable for most tasks. 
Furthermore, several actions are to be learnt in different contexts with different reward 
types being given. 

Source: Reinforcement Learning: Theory and Applications, Book edited by Cornelius Weber, Mark Elshaw and Norbert Michael Mayer
ISBN 978-3-902613-14-1, pp.424, January 2008, I-Tech Education and Publishing, Vienna, Austria
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In Section 4 we will address how a neural network performing RL can be embedded in a 
larger architecture in which other modules follow different processing and learning 
principles. Taking inspiration from the brain, the sensory cortex may extract meaning 
from sensory information that may be suitable for defining a state as it is used for RL by 
the basal ganglia (Weber, Muse, Elshaw & Wermter, 2005). The motor cortex on the 
other hand may store movement primitives that may lead from one state to the next. 
Moreover, the basal ganglia might delegate learnt movement primitives to the motor 
cortex, so to focus on the learning of other, in particular higher-level, actions (Weber, 
Wermter & Elshaw, 2006). 
Section 5 addresses vision, an untypical field for RL. We posit that visual stimuli can act 
as reinforcers for saccade learning (Weber & Triesch, 2006) and gaze following, leading 
to the emergence of mirror neuron like representations in motor cortex (Triesch, Jasso & 
Deák, 2007), and altering neuron properties in visual cortical areas (Roelfsema & Ooyen, 
2005; Franz & Triesch, 2007). Together, this encourages a view in which RL acts at the 
core, while unsupervised learning establishes the interface to a complex world. 
Section 6 discusses whether experiments are based on oversimplifying assumptions. 

2. Anatomy and physiology  

Our focus will be reinforcement  learning in the basal ganglia. However, since the basal 
ganglia’s main outputs are inhibitory, and since they are not yet connected in neonates 
(Humphries, Gurney& Prescott, 2005), there must be more fundamental brain substrates 
for behaviour/action initiation.  

2.1 Reticular formation  

The brain’s reticular formation (RF) has been proposed as such a device for action 
selection (Humphries et al., 2005; Kilmer, 1997). The RF’s giant neurons receive input 
from many brainstem nuclei, enabling them to sample from all sensory systems, and 
their axons bifurcate to project downward to the spinal cord as well as upward to the 
midbrain, enabling the production of motor behaviour and the control of higher-level 
brain centers. 
The RF contains several specialized circuits. A potent example are the giant neurons in 
the caudal pontine RF which respond at very short latency to acoustic stimuli, and 
which are hypothesized to elicit the startle response to a loud and unexpected acoustic 
stimulus (Lingenhöhl & Friauf, 2004). The paramedian pontine RF is involved in the 
control of horizontal eye movements, and the midbrain RF in vertical eye movements 
(Sparks, 2002; Weber & Triesch, 2006). 
Model of Behaviour Generation  

Kilmer (1997) proposed a “command computer” model of the RF which outputs one 
behaviour, given as input several vectors of recommended behaviours, originating from 
several sensory systems. The RF model computes the winning behaviour using a 
relatively small number of connections and a distributed representation. Humphries et 
al. (2005) optimized the originally randomized connectivity by a genetic algorithm. In a 
robotic demonstration involving the behaviours ‘wander’, ‘avoid obstacle’ and 
‘recharge energy’, the genetic algorithm augmented the model’s behaviour selection 
from near-chance levels to achieving very long survival times. 
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The RF is rarely implicated in learning (see Bloch and Laroche (1985) for a counter-example), 
but rather seems “pre-programmed” at birth. Other brain structures are needed to allow 
adaptation to beneficial circumstances in the environment. 

2.2 Basal ganglia

Fig. 1. Selected brain areas and connections. The thick arrows denote the primary basal 
ganglia (BG) thalamus cortex loop. This includes the direct pathway through the BG 
via striatum and GPi. The indirect and hyperdirect pathways are via STN, GPe and GPi. The 
SNr has a similar connectivity as the GPi (not shown for simplicity), so one often refers to 
“GPi/SNr”. Dopaminergic nigro-striatal projections from SNc reach the CN and Put which 
make the dorsal striatum. Meso-limbic projections from VTA reach the NAcc which is part 
of the ventral striatum. Meso-cortical projections are from VTA to regions in the prefrontal 
and cingular cortex. Abbreviations: Inside the BG: CN = caudate nucleus; Put = putamen; 
NAcc = nucleus accumbens; GPe/i Globus pallidus externus/internus; STN = subthalamic 
nucleus; SNc/r = Substantia nigra pars compacta/reticulata. Outside of the BG: VTA = 
ventral tegmental area; RF =reticular formation.  

Figure 1 shows the relevant areas and their abbreviations related to the basal ganglia (BG). 
The main input nucleus of the BG is the striatum which receives its main input from motor 
and prefrontal cortex, but also from intralaminar thalamic nuclei (not shown in Figure). The 
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striatum accounts for approximately 95% of the total neuron population of the BG in the rat  
(Wood, Humphries & Gurney, 2006). The dorsal striatum (neostriatum) consists of the puta-
men and the caudate nucleus. The ventral striatum consists of the nucleus accumbens (core 
and shell) and the olfactory tubercle (not shown in Figure). The principal neurons of the 
dorsal striatum, the medium spiny neurons, are inhibitory GABAergic projection neurons. 
They emit collaterals to neighbouring spiny neurons before they project to output stages of 
the BG, namely to either GPi or SNr (Houk et al., 2007).  
According to Shepherd (2004), the cortical and thalamic afferents to the BG have a cruciform 
axodendritic pattern. This implies that individual axons cross the dendritic fields of many 
neurons in the neostriatum, but make few synapses with any particular cell (Wilson, 2004). 
The opposite is also true. Any particular neostriatal neuron can synapse (sparsely) with a 
large number of afferents.
Optimal Decision Making  

Based on the connectivity of the BG, Bogacz and Gurney (2007) propose a model of optimal 
decision making that implements the statistical multihypothesis sequential probability ratio test 
(MSPRT). The underlying assumption is that the different regions of the cortex each send 
evidence yi for a particular decision i to the striatum. A problem of passing this directly to 
the thalamus is that the action would be performed as soon as the accumulated evidence in 
a given channel reaches a certain threshold. This is not optimal, because in the presence of 
noise, a wrong channel could first reach threshold (not to mention the “technical” problem 
of defining when to start to integrate, as addressed in Stafford and Gurney (2007)). Rather 
should the difference between the favored channel and the other channels reach a threshold.  

Mathematically, yi  ln 
j
e

y
j

is better sent to the thalamus.  

Bogacz and Gurney (2007) identify the first term yi with the direct pathway: the striatum in-
hibits the GPi/SNr which then disinhibits a corresponding thalamic region so to perform 
the action. The positive sign is because the tonically spiking inhibitory GPi/SNr neurons are 

silenced. The second term ln
j
e

y
j

represents the indirect (hyperdirect) pathway. It has a 

negative sign because the cortical afferents excite the STN (the only excitatory nucleus of the 
BG) which then excite the GPi/SNr neurons’ inhibitory activity. Diffuse STN GPi/SNr 
connections implement the sum over all channels.  
This model is minimal in terms of its mechanisms, and encourages additional functionality 
to be implemented in the same structures. For example, the number of hypotheses yi in the 
input is the same as the number of outputs; however, the BG has a much larger input 
structure (striatum) than output structure (GPi/SNr), which suggests a transformation to 
take place, such as from a sensory to a motor representation. For example, the GPi/SNr 
might extract a low-dimensional subspace from the high-dimensional cortical and striatal 
representations by a principle component analysis (PCA) algorithm (Bar-Gad, Havazelet-
Heimer, Goldberg, Ruppin & Bergman, 2000). Learning, not only action selection, becomes 
important.
Rewards  

Dopamine neuron activity in SNc and VTA is known to be correlated with rewards, learning 
and also with addictive behaviour. Dopamine neurons are active during delivery of an 
unexpected reward. If a stimulus predicts a future reward, then they will instead become 
active at the onset of the reward-predicting stimulus (Fiorillo, Tobler & Schultz, 2003). 
Dopamine neuron firing in the VTA is suppressed by aversive stimuli (Ungless, Magill & 
Bolam, 2004). These neurons (SNc borders the SNr, an output nucleus of the BG) project 
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dopaminergic axon fibres into the input nuclei (Fischer, 2003): the nigro-striatal projection is 
from the substantia nigra to the dorsal striatum; the meso-limbic projection is from the VTA 
to the ventral striatum; there is also a meso-cortical projection from the VTA to prefrontal and 
cingular cortex (Fig. 1). Consequentially, during the delay period of delayed-response tasks 
neurons in striatum were found to be selective for the values of individual actions 
(Samejima, Ueda, Doya & Kimura, 2005), and in orbitofrontal (a part of prefrontal) cortex 
neural activity represents the value of expected reward (Roesch & Olson, 2004). There may 
be a finer grain resolution of the reward delivery system, as Wilson (2004) suggests that any 
local region of the neostriatum may receive its dopaminergic innervation from a relatively 
small number of dopaminergic neurons. 
 The concept of a reward is however wider. Unexpected, biologically salient stimuli elicit a 
short-latency, phasic response in dopaminergic neurons (Dommett, Coizet, Blaha, 
Martindale & Lefebvre, 2005). If not reinforced, responses to novel stimuli become 
habituated rapidly, and the responses to rewarding stimuli also decline if stimuli can be 
predicted.
D1 and D2 Receptors  

Dopamine has varying effects on neurons, because different neurons have different 
dopamine receptors. Lewis and O’Donnell (2000) state “D1 receptors may enhance striatal 
neuron response to [excitatory] NMDA receptor activation, where as D2 receptors may 
decrease responses to non-NMDA [e.g. inhibitory] receptors”. Vaguely interpreted, D1 
supports direct excitatory responses and D2 supports later decisions by limiting inhibition. 
This correlates with the findings of Hikosaka (2007) who make use of the fact that saccades 
to highly rewarded positions are initiated earlier than saccades to less rewarded positions. 
Injections of dopamine D1 receptor antagonist delayed the early, highly rewarded saccades. 
Injections of D2 antagonist delayed even more the later, less rewarded saccades. 
The models of Brown, Bullock and Grossberg (2004) and Hazy, Frank and O’Reilly (2007) 
(Section 4) feature ‘Go’ cells which have the D1 receptor and project along the direct pathway 
to facilitate an action, and ‘NoGo’/‘Stop’ cells which have the D2 receptor and which project 
to the indirect pathway to suppress an action.  
In addition to facilitating activation, dopamine directly facilitates learning by increasing the 
number of synaptic receptors (Sun, Zhao & Wolf, 2005). As an example of dopamine-
modulated Hebbian learning, Reynolds, Hyland and Wickens (2001) showed that synapses 
between the cortex and the striatum could be potentiated only with concurrent stimulation 
of the substantia nigra.  
BG-Thalamo-Cortical Loops  

The function of the basal ganglia as a learning action selection device makes sense only in 
the context of its main input, the cortex and its main output, the thalamus. Wilson suggests 
that the striatum contains a functional re-mapping of the cortex. For example, motor and 
somatosensory cortical representations of a single body part specifically converge on a 
particular region of the putamen (Flaherty & Graybiel, 1991), which is implicated in sensory 
guided movements.The other part of the neostriatum, the caudate nucleus, receives input 
from more anterior cortical areas and is implicated in memory-guided movement (Houk et 
al., 2007). Posterior cortical areas (such as the lower visual system) seem to be less connected 
with the BG. Specificity is preserved throughout the projection target of the BG which are 
the 50-60 nuclei of the thalamus (Herrero, Barcia & Navarro, 2002) and which project back to 
specific areas of the cortex.  
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3. Theory of reinforcement learning  

The canonical reinforcement learning network (Sutton & Barto, 1998) has an input layer on 
which the activity of exactly one unit codes the state s of the agent and an output layer on 
which the activity of one unit codes the action a the agent is going to choose given the in-
put. Fig. 2. a) shows the architectures of two algorithm classes, TD-learning and SARSA. 
Input and output layers are termed state and actor in both implementations. A critic may be 
used only to guide learning. Given a random initial state (position) of the agent within the 
limited state space, and another state at which a reward r is consistently given, the agent 
learns to maneuver directly to the rewarded state.  
In the case of TD-learning all states are assigned goodness values v that represent the sum of 
discounted future rewards and are kept by the critic in a lookup table V . A distant reward 
will be discounted in that it keeps only a proportion, e.g.  0.9, of its original value for 
each step required to get it. So if the reward r will be reached in n steps, then the current 
state will be worth v = r n .
Standard reinforcement learning lacks a “working memory” to backtrack recently visited 
states when a reward is given. Instead, a state value v is updated from the value v of the 
neighbor state that is visited in the next step. Since then one step is done, the reward was 
further away in the previous state, hence v =  v . If the reward is given, instead v = r +  v .
This equation will be inconsistent for neighbouring states during early learning. Step (5) of 
the algorithm in Fig. 2c) quantifies this error which is then used in steps (6) to update the 
value v of the previous state. The difference in time between the new estimate r +  v and
old estimate v taken in step (6) bestows this class of algorithms the name Temporal 
Difference (TD) learning.  
The actor-critic architecture employs a dedicated neuron, the critic, to encode the expected 
future reward – or the values v – in its connections V . The connections Q to the actor which 
encode the action policy are separate1. The critic influences the actor update, step (7) in Fig. 
2, through its prediction error . Vice versa, the current action policy determines which 
states the agent will visit next, and this feeds back into the update of the critic’s value v.
SARSA2 encodes the value of state-action pairs (s, a) instead of the value of states. It may be 
implemented with a critic neuron that is connected to all state units and all action units. Fig. 
2, right, shows an implementation without a critic, using only the weights from the state 
units to the action units. These store the state-action values Q and are also used to choose 
the action in step (3). However, computation of v and v involves state units j, j and action 
units i, i , hence, crosstalk involving some lateral connections must exist.  
The state values V (or Q in case of SARSA) depend on the action strategy, because that influ-
ences the number of steps required to reach the reward. The action strategy is implemented 
in step (3) of the algorithm. Note the stochastic choice of actions. A deterministic agent may 
select a long path with a gradual increase of value rather than a short path on which it hasn’t 
yet assigned any value to some states. The stochasticity allows for exploration of new states 
over exploitation of a previously thought optimal strategy. During learning, weights Q and 
hence the inputs h in step (3) become larger and so the character of action choice becomes 
more deterministic.

1 These connections are sometimes called “P” to denote action preferences. 
2 SARSA computes the values from (s, a, r, s0, a0), hence the name. 
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Fig. 2. TD-learning vs. SARSA. a) Architectures. The actor-critic architecture used in TD-
learning has weights from all state space units to all action units and to the critic. SARSA is 
missing these critic weights, but there is additional information flow via links that are not 
shown. b) Trained weights for a toy problem. Dark blue denotes strong positive weights. 
The rewarded position is indicated by a “×” in the 16×12 state space. c) Algorithms. Actor-
critic learning assigns a value to a state s, SARSA to a state-action pair (s, a). Note: (i) The 
value in step (4) reduces to a single weight because only state unit j and action unit i have
activation 1, others are 0. (ii) In TD-learning, step (3) may be done after (7).  
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Relation to Basal Ganglia 

The lateral inhibition in the striatum might ensure that neurons will be active only in a 
small focused region which directly represents the state, just like a single active neuron 
denotes the state in the models. In such a localist – as opposed to a distributed – code, a 
neuron does not participate in the coding of several completely different states. Thereby 
an assignment of reward to all active units will not interfere with other states, which is 
important in the critic-and actor update steps (6), (7) in Fig. 2. In accordance with this 
demand, the striatum is known as a ‘silent structure’, in which only a small percentage 
of the dominant neuron type, the spiny projection neurons, is strongly active at any one 
time3.
If the striatum encodes the state sj, and if the GPi/SNr encode actions ai, then the 
could modulate learning by dopaminergic projections to either striatum or GPi/SNr 
neurons to form the multiplicative factor in the actor update, step (7).  
Dopaminergic neurons are mainly found in the VTA and the SNc, and they do not have 
spatial or motor properties (Morris, Nevet, Arkadir, Vaadia & Bergman, 2006). 
Corresponding to the value , dopaminergic neurons exhibit bursts of activity in 
response to unexpected  rewarding stimuli or conditioned stimuli associated with those 
rewards (Ungless et al., 2004). Their firing correlates with expected reward values, i.e. 
probability times magnitude of the reward (Tobler, Fiorillo & Schultz, 2005). While 
dopamine neurons generally respond briefly to unexpected reward delivery, trained 
neurons will respond briefly to the cue that predicts an upcoming reward, but not to the 
expected reward itself, and their baseline firing will be suppressed, when an expected 
reward fails to be delivered (Schultz, Dayan & Montague, 1997).  
Biological Support for SARSA  

When monkeys choose to reach one of two levers, one paired with a frequent reward 
and the other with a less frequent reward, they do not always choose the more 
frequently rewarded action, even if overtrained. Instead, they adopt “probability 
matching”, a suboptimal strategy in which the distribution of responses is matched to 
the reward probabilities of the available reward. This allows neural activations to be 
measured, when deciding for the lesser rewarded action (Niv, Daw & Dayan, 2006;  
Morris et al., 2006). Within just 200 msec after stimulus presentation dopamine neurons 
fire in proportion to the reward associated with the lever that they will reach at later, 
even if the reach is performed seconds later. In particular, they will fire less if the 
monkey is going to choose the poor reward. These results seem to contradict the actor-
critic models in which the value v of a state is independent of the next action4. They are 
in accordance with SARSA, in which the value depends on the state and the action that 
is chosen (but not yet executed). 
Multiple Tasks During Learning  

Rothkopf and Ballard (2007) hint at a problem that arises in realistic scenarios when 
multiple reinforcement strategies are learning concurrently. Since there is only one 
dopamine reward signal, not only the successful strategy, but all active strategies would 
receive it. Their solution is to share it: each strategy consumes an amount of the reward 
that is proportional to the reward that it expects from the current state transition, the 

3 Brown et al. (2004) suggest that feedforward inhibition causes such sparse firing, because recurrent 
(feedback) inhibition would require significant activation of many neurons to be effective. 
4 However, a predictive (cortical) input to the basal ganglia could denote already the next state. 
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difference of the corresponding values. Unfortunately, a strategy would not receive any 
amount of the reward if the reward comes completely unexpected under this strategy. 
This might be remedied by taking into account confidence values to each strategy’s 
prediction. In any  case, the different parallel loops need to communicate, possibly via 
the indirect pathway of the basal ganglia.  
Exploration – Exploitation  

Sridharan, Prashanth and Chakravarthy (2006) address the problem that a RL network 
has to produce randomness in some controllable fashion, in order to produce stochastic 
action choices. For this purpose they implement an oscillatory circuit via reciprocal 
excitatory-inhibitory connections. The indirect pathway (see Fig. 1) represents a suitable 
oscillatory circuit in that the STN excites the GPe and in turn receives inhibition. 
Together with short-range lateral inhibition the model produces chaotic oscillatory 
activity that becomes more regular only with stronger input from the cortex (Sridharan 
et al.,2006). They propose that, in case of weak or novel sensory input, the irregular 
firing causes an agent to behave more randomly and thereby to explore the state space. 
A biological manifestation of randomness could be in the pauses by which GPe neurons 
randomly and independently of each other interrupt their otherwise regular high-
frequency firing (Elias et al., 2007). These pauses last approximately half a second and 
happen on average every 5 seconds with Poissonian interpause intervals. There are less 
pauses during high motor activity, indicating less randomness during performance.  

4. Implementations  

A central idea about ‘lower’ and ‘higher’ parts of the brain is that lower centers “swap 
out” functions that they cannot perform themselves. At the lowest level we might find 
distributed control circuits such as in some inner organs, as well as spinal cord reflex
mechanisms. Since they function autonomously we may not actually cast them into a 
hierarchy with other brain structures.  
The reticular formation at a very low level is mature at birth and regulates the choice of 
basic behaviours such as eat, fight or mate. As a centralized structure it can coordinate 
these behaviours, which the distributed control circuits would not be able to do 
(Prescott, 2007). Yet it lacks sophisticated learning capabilities and cannot cope with a 
complex and changing environment.  
The basal ganglia implement a memory of successful actions in performing stimulus-
response mappings that lead to rewards based on experiences of previous stimulus-
response performance. Whether any reward is of interest may be set by a currently 
active basic behaviour (a thirsty animal will appreciate water but not food). So the 
reticular formation may have control over the basal ganglia, in selecting sub-circuits for 
different types of reward and  strategies.  
But the sensory stimuli from a complex environment are not necessarily suitable as a 
‘state’ in reinforcement learning. A situation like “food is behind the door” is hardly 
represented suitably. Suitable state representations are unlikely to be learnt from 
reinforcement learning, and unsupervised learning is a better candidate. The basal 
ganglia may “swap out” such functionality to the cortex. To learn useful 
representations, unsupervised learning in the cortex may be guided by rewards and 
attentional selection (see Section 5).  
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The cortex features various functionalities despite its homogeneous structure. (i) Preprocess-
ing in low hierarchical levels in the posterior cortex. The purpose is to transform light or 
sound into meaningful entities like objects, words or locations. (ii) Working memory in 
higher hierarchical levels in more anterior cortex. An example usage is for task setting: the 
strategy to use, or the reward to expect, is dependent on an initial stimulus that must be 
held in memory. The cortex may thereby determine which part of the basal ganglia to use, 
possibly overriding influence from the reticular formation. (iii) Motor primitives, 
presumably on a middle hierarchical level, in the motor cortex. For example, an action like 
“press the left lever” is a coordinated temporal sequence of muscle activations. Such action 
primitives reside in the motor cortex, and also the cerebellum, which we do not address 
further, is involved.  
Architectural Choices  

Tiered architectures are common in robotics. They allow to implement short-term reactive 
decisions while at the same time pursuing long-term goals. They also allow for computer 
programs to be implemented in modules with minimal inter-modular communication.  
Brooks’ subsumption architecture is an early example (Brooks, 1986). From the robot’s low-
est control layer to the highest layer, actions are for example: “avoid an object” — “wander 
around”—“explore the world”—“create a map”, the latter of which may be the ultimate 
goal of a particular robotic application. The layers of such an architecture are however not 
directly  identifiable with brain structures such as reticular formation — basal ganglia — 
cortex.  
Unlike structured computer programs the ‘modules’ of the brain are highly inter-dependent. 
Computations involve multiple brain structures, and actions are often redundantly executed 
in parallel. For example saccades are destroyed by a combined lesion of the midbrain 
superior colliculus (SC) and the cortical frontal eye field (FEF), but not by a lesion of either 
of the two (Sparks, 2002). Another design principle of the brain is recurrence – connections 
form loops within and between brain structures.  
Several models which mainly focus on the basal ganglia implement a larger loop structure.  
The basic loop (Fig. 1) is Striatum GPi/SNr Thalamus Cortex Striatum. This loop 
is topographic in the sense that there are separate parallel loops, each for a specific feature, 
thought or action (Houk et al., 2007). Action on the level of the GPi/SNr activates the entire 
corresponding loop that  includes slices of the thalamus and cortex as well.  
Robot Action Selection  

Prescott, Stafford and Gurney (2006) use a basal ganglia model for basic behaviour selection 
in a Khepera robot. The robot removes cylinders from its arena using five action patterns in 
the natural order: cylinder-seek, cylinder-pickup, wall-seek, wall-follow, cylinder-deposit. 
Scalar salience signals for each of these actions, which depend on perception and 
motivation, are the input to the basal ganglia. These are implemented with standard leaky 
integrator neurons and hand-set parameters to select coherent sequences of actions. A 
sophisticated embedding architecture complements the basal ganglia model: perceptual 
sub-systems (e.g. visual cortex) and motivational sub-systems (e.g. reticular formation)  for 
computation of the salience signals; stereotyped, carefully timed “fixed action patterns” (e.g. 
motor cortex) for action execution. A “busy signal” prevents currently performed actions 
from being interrupted by other action bids. In the model of Brown et al. (2004), such a 
suppression of lingering actions is done via the STN which sends diffuse excitation to the 
inhibitory BG output nuclei GPi/SNr.  
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Working Memory Control  

Hazy et al. (2007) generalize action selection to the selection of working memory represen-
tations in the pre-frontal cortex (PFC). This tackles the temporal credit assignment problem 
in trace conditioning where there is a gap between the conditioned stimulus and the reward. 
The working memory capacity of the PFC bridges this gap and delivers sustained input to 
the basal ganglia. Working memories with different time spans in parallel loops allow for 
the execution of nested tasks. Their example application is the 1-2-AX task, in which a 
subject after seeing a ‘1’ must identify the consecutive letters ‘A-X’, but after seeing a ‘2’ 
must identify the sequence ’B-Y’. The numbers ‘1’, ‘2’ are memorized for a longer duration 
in an ‘outer’ loop. An ‘inner’ loop identifies the desired letter sequence within a short 
duration. A third loop elicits the motor response. While the basal ganglia resolve only these 
loops, the much larger cortex distinguishes also the contents within the loops. In the 1-2-AX 
task these are the values of the numbers and the digits. The model PFC stores them in 
hypercolumn-like “stripes” with one of several entries in a stripe being active in a winner-
take-all fashion. Gating is nevertheless accomplished in the basal ganglia that does not need 
to reflect the individual features within a stripe.  
Basal Ganglia Mediate Cortical Control on Superior Colliculus  

The superior colliculus (SC) is a phylogenetically old structure eliciting reactive saccades 
from direct retinal input. Planned saccades are elicited on the SC only via direct cortical 
input and concurrent disinhibition by the basal ganglia. This suggests that planned saccades 
are driven by expected reward (Hikosaka, 2007). Brown et al. (2004) implement such an 
extensive circuit and simulate saccade tasks which involve target selection and timing. 
Their model takes into account the cortical layer structure. ‘Planning’ cells in cortical layer 3 
with sustained activity send preparatory bids to the basal ganglia, while associated 
‘executive’ cells in layer 5 generate phasic outputs if and when their basal ganglia gate 
opens. Planning cells are modulated by layer 6 cells which possibly reside in higher-level 
cortical area (PFC) that is in control. These same cells of cortical layer 6 are a source of 
excitation to the thalamic cells whose disinhibition allows plans to execute.  
A hypothesis of Brown et al. (2004) is that thalamo-striatal connections (not shown in Fig. 1) 
become active in trials during which premature release of a movement leads to non-reward; 
this shall lead to a learned activation of the indirect channel and therefore guide the learning 
of ‘STOP’ responses.  
Basal Ganglia Instruct Cortex  

There appear to be two positions related to the association between the prefrontal  cortex 
(PFC) and basal ganglia. The conventional view is that the PFC drives the learning of the 
basal ganglia. This is mainly based on the fact that the striatum neurons require numerous 
synchronous inputs from cortex (and thalamus) to become active. An alternative view  is 
that while the dopamine system ‘teaches’ the striatum, the basal ganglia teaches the cortex 
through the basal ganglia-thalamo-cortical loop (Laubach, 2005; Graybiel, 2005). Our model 
of Weber et al. (2006) utilises this alternative.  
Areas of the motor cortex execute action primitives; on the other hand, the basal ganglia are 
well equipped for learning these actions by reinforcement learning in the first place. In our 
model an action that has been acquired by the basal ganglia is then imitated by the motor 
cortex. Thereby the resources used for reinforcement learning, such as the large state space  
that may reside in the striatum, would be available for further learning. See Section 5 for a 
description of this visually guided robot docking action (Weber, Wermter & Zochios, 2004). 
Both of these levels of neural processing have been implemented on a PeopleBot robot.  
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In our model of Weber et al. (2006) the motor cortex reads the visual input and motor output 
of the basal ganglia. It  establishes an internal representation of these input-output pairs by 
unsupervised self-organization (Hinton, Dayan, Frey & Neal, 1995). With ‘incomplete’ input 
in which vision is present but the action missing, the network will find a ‘complete’ internal 
code from which it will generate an appropriate action. Horizontal hetero-associator weights 
on the internal layer associate the current representation with a future representation one 
time step ahead, and thereby perform prediction, allowing for mental simulation of an 
action.
Experimental evidence supports our model. During associative learning, Pasupathy and 
Miller (2005) found earlier changes of neural activity in the striatum than in the PFC. In their 
study, primates were rewarded if they made saccades to a certain direction, dependent on 
the appearance of a complicated cue shown at the fixation point. The primate learnt the re-
warded direction by trial and error. Once the relationships were learned the input-response 
pairs where reversed. When relearning the appropriate behaviour to the input, the striatum 
was found to have direction-specific firing almost straight away. In contrast, the PFC only 
gained direction selectivity following 15 correctly performed trials. This is consistent with 
the striatum training the PFC.  
Jog, Kubota, Connolly, Hillegaart and Graybiel (1999) trained rats to make a left-right deci-
sion in a T-maze task. Striatal neurons which were initially active at the point of the junction 
became less active when the task had been learnt. Instead, they increased their activities at 
the beginning and at the end of the task. This suggests that the striatum might be putting 
together sequences of known behaviours that, once learned, are executed elsewhere.  
Task Switching  

Representing actions on the cortex might also make them easier to control by other cortical 
areas. Prelimbic and infralimbic regions of rat prefrontal cortex were shown to remember 
different strategies and aid in switching between learnt strategies (Rich & Shapiro, 2007). In 
an extension of our model of the motor cortex (Weber et al., 2006) we therefore showed that 
language input to another cortical area can influence which motor sequence on the motor 
cortex representation to recall (Wermter, Weber, Elshaw, Gallese & Pulvermüller, 2005). 
These cortical learning principles can lead to language-guided neural robots in the future.  

5. Visual system  

The actor-critic model of reinforcement learning has been used to perform various robot ac-
tions, such as camera-guided robot docking (Martínez-Marín & Duckett, 2005). In our ap-
proach (Weber et al., 2004), we first trained the peripheral vision so that it can supply a visu-
ally obtained state as input to the action selection network.  
Overall, there are three processing steps and associated training phases involved in the 
learning of the docking behaviour (see Fig. 3). First, training the weights between the visual 
input and the “what” area by unsupervised learning. The learning paradigm is that of a 
generative model (hence the feedback connections in Fig. 3) in which the color image is 
reconstructed from sparse activations of neurons in the “what” area. Second, training the 
lateral weights within and between the “what” and the “where” areas by supervised 
learning. For this purpose, a supervisor placed a blob of activation onto the position on the 
“where” area which corresponded to the correct position of the object within the image. 
After learning, an attractor network covering the “what” and the “where” areas creates the 
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“where”representation by pattern completion if only the “what” representation is supplied 
as input.

Fig. 3. Neural architecture for visual pre-processing and reinforcement-learnt action. Thick 
arrows denote trained weights. Only the ones depicted dark are used during performance 
while those depicted bright are involved in training. The area on shaded background 
labelled ‘saccades’ is assumed to perform saccades to bring the object from any location on 
the ‘where’ area to its center, as indicated by the arrows pointing to the middle. Saccades 
can be used here to replace supervised learning of the “what”  “where” connections 
(shaded background) by reinforcement  learning (see Section 5.1).

The robot needed to approach the table at a right angle. For the final step therefore the vi-
sual “where” representation of the object was augmented by the robot angle w.r.t. the table, 
here discretized into just seven angle values. This outer product yielded the state space, a 3-
dimensional block in which one unit’s activity denoted the visual object position and the 
robot angle; in other words, seven layers of the visual space, one for every possible robot an-
gle. Finally, the weights from this state space to the critic and the four actor units, denoting 
‘forward’, ‘backward’, ‘turn left’ and ‘turn right’, were trained by TD-learning.  
The critic weights assign each state a value v which is initially zero. For each trial the robot 
is initialized to a random starting position and the steps of Fig. 2 are followed until the 
reward is obtained. The reward signal is given when the target is perceived in the middle of 
the lower edge of the visual field (hence at the  grippers) and when the robot rotation angle 
is zero. When the robot hits the table or looses the object out of sight, then a new trial is 
started without a reward. During learning, states that lead quickly to the goal will be 
assigned a higher value v by strengthening their connections V to the critic unit. The weights 
Q to the motor units which have been activated simultaneously are also increased, if the 
corresponding action leads to a better state.  
In short, we have used a simple ‘what-where’ visual system as a preprocessing module, sup-
plying suitable input to a state space for reinforcement learning. In-line with the classical 
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view, this simplified visual system learns from visual data irrespective of the use of vision 
for action and reward-seeking.  

5.1 Reward in the visual system  

In recent years evidence is accumulating that even the lower visual system such as the 
primary visual cortex V1 is sensitive to reward learning. Shuler and Bear (2006) repeatedly 
presented rats a light flash to one eye followed by a reward given after two seconds. V1 
neurons acquired reward-dependent responses such as sustained responses after visual 
stimulus offset, or increasing responses until the time of the (expected) reward. Schoups, 
Vogels, Qian and Orban (2001) trained monkeys to discriminate oriented bars (such as 

distinguishing 45 from 43 orientations), after the presentation of which they had to respond 
with saccades to a certain direction to receive a juice reward. After training, the slopes of the 
orientation tuning curves were increased in V1 neurons tuned to orientations near the 
trained orientation5. On the other hand, no modifications of the tuning curves were 
observed for orientations that had been shown as often but which were not decision 
relevant.
But learning in the adult visual system is not always reward dependent. Furmanski, Schlup-
peck and Engel (2004) trained subjects to detect very low-contrast oriented patterns, 
following which they indicated a decision, but which did not incur a reward. This fMRI 
study revealed increased V1 responses for practiced orientations relative to control 
orientations. However, Vessel (2004) conjectures that stimuli that make sense and are richly 
interpretable on a higher level are ‘rewarding’ and perceived as pleasurable. He recalls that 
there is an increasing number of opiate receptors as one traverses up the visual hierarchy. 
Hence, mere neuronal activation might be regarded as reward and be utilized in learning 
algorithms.  
Saccade Learning  

In Weber and Triesch (2006) we have trained saccades using a reward signal made only 
from visually-induced activation. The model exploits the fact that the fovea (the center of the 
retina) is over-represented in visual areas. Saccades to an object are rewarded dependent on 
the resolution increase of the object — a value that is higher the closer the object is brought 
to the fovea. Motor units which code for a certain saccade length, and which become active 
in a noisy competition, compete via limited afferent connections. A motor unit that brings 
the object closest to the fovea will learn with the highest reward modulation and ultimately 
win. Since there is evidence for a different learning mechanism for horizontal saccades, we 
applied this algorithm for the learning of vertical saccades in combination with a different 
algorithm for horizontal saccades.  
When saccades have been learnt, we can assume that neurons in higher visual areas of the 
“where” pathway exist which code for saccades of a certain direction and amplitude, as in-
dicated in the shaded area of Fig. 3. These are then akin to action units. With the algorithm 
of Weber and Triesch (2006) we can then learn the “what“ “where” connections by 
reward-based learning  instead of by supervised learning.  

5 Neurons which adapted their tuning curves were found only in supra- and infragranular layers of V1 
where there are dense intra- and inter-area horizontal connections as well as inter-area top-down 
connections. Neurons in layer IV which receive bottom-up input from retina/thalamus did not adapt. 
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Gaze Following  

The potential of a purely visual stimulus as a reward is also used in a RL model of how in-
fants learn to follow the gaze of the mother (Triesch et al., 2007), a skill which infants learn 
only after 18 months of age. The model assumes an infant’s tendency to look frequently at 
the mother’s face. It assumes further that the mother then looks to the left or the right, and 
that there is an interesting (rewarding) stimulus where the mother looks. The infant initially 
cannot make use of the mother’s gaze direction, but after making (initially random) sample 
eye movements, it will find out that rewarding stimuli can be found in the line of sight of 
the mother. The model predicts a mirror-neuron like premotor representation with neurons 
that become activated either when the infant plans to look at a certain location or when the 
infant sees the mother looking in the direction of that location.  

5.2 Attention-gated reinforcement learning  

Attention-Gated Reinforcement Learning (AGREL) (Roelfsema & Ooyen, 2005) is a link be-
tween supervised and reinforcement learning for 1-of-n classification tasks. In supervised 
learning of such tasks the teacher’s learning signal is 1 for the correct output unit and 0 for 
the other output units, and is given for every data point. The rules of reinforcement learning 
are that if the network – of which the output will be stochastic winner-take-all – guesses 
correctly, then a reward signal is given, else not. AGREL gives learning rules which in this 
case lead to the same average weight changes as supervised backpropagation learning, 
albeit learning is slower due to insufficient feedback when the network guesses incorrectly.  

Fig. 4. Architecture of AGREL. One-in-n of the output units is active at a time, just like in 
TD-learning and SARSA. The input and hidden layers, however, may have a distributed 
code.  

The AGREL architecture is that of a multilayer perceptron and shown in Fig. 4. An input 
unit i conveys its activation xi via weight vji to the activation yj of hidden layer unit j which 
has a logistic transfer function 

Activations are then conveyed to an output unit k, while the output units compete via a soft-
max function: 
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The actual, binary output zk of the neuron follows the probability ek of being active, which is 
thus the average activation.  
Learning  

In order to understand AGREL, lets first consider error backpropagation6. The average 
update of a weight wkj from a hidden unit j to an output unit k is:  

 (1) 

where tk is the teacher signal and ek is, in backpropagation, the continuous activation on 
output neuron k. Unlike supervised backpropagation, AGREL considers only the winning 
output neuron, k = s, for learning. Now we apply Eq. 1 for reinforcement learning in which 
we distinguish two cases, unrewarded and rewarded trials. For unrewarded trials, which 
means ts =0, Eq. 1 becomes  

and for rewarded trials, where ts = 1, Eq. 1 becomes (defining  := ts  es)

In order to make both weight update steps consistent, one defines  

 for unrewarded trials, and  for rewarded trials. 
To complete our brief treatment of AGREL,the top-down feedback weights wjk to the hidden 
layer learn with the same rule as the wkj. A weight vji from an input unit i to a hidden layer 
unit j is updated according to:  

Hence, learning of the weights from the input to hidden unit j scales with the weight wjs that this 
unit receives from the only active output unit s. The term f( ) depends on whether the winning 
unit equals the correct output.  
Applications  

AGREL works only with immediate rewards and does not build up action strategies as TD-
learning does. While TD-learning requires that only one input unit is active at a time, AGREL 
accepts a distributed code as input. Applications are therefore in the sensory system where a 
classification of a stimulus needs to be made, and where some kind of reward signal is promptly 
available.  
For example, monkeys had previously been trained to categorize faces, and it emerged that 
neurons in the inferotemporal cortex preferentially encode diagnostic features of these faces, i.e. 
features by which categories can be distinguished, as opposed to features that vary irrespective of 
categories. Roelfsema and Ooyen (2005) showed that neurons of the hidden layer  

6 Here we outline chapter “4.1 Average Weight Changes in AGREL” of Roelfsema and Ooyen (2005) 
from back to front. 
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in AGREL also learn preferentially to code for diagnostic features. This explains that 
feature representations in the sensory cortex are not merely dependent on the (statistics 
of) sensory input, but are tailored to decisions, and thereby aimed at rewards.  
Another example is the simulation of the abovementioned experiments of Schoups et al. 
(2001): orientation selective neurons in V1 (AGREL’s hidden layer) adjust their tuning 
curves to distinguish orientations that are being classified, while neurons that are as often 
activated, but without action relevance, do not adjust their tuning curves.  
In Franz and Triesch (2007), vergence eye movements were trained using AGREL so to 
fixate an object with both eyes in depth. No external reward was given, but a successful 
focusing of both eyes on a single point  in space led to binocular zero-disparity cells 
having a particularly high activation, which was regarded as a reward. The model 
predicts a variety of disparity tuning curves observed in the visual cortex and thereby 
presents additional evidence that purely visually-induced activation can constitute a 
reward signal.  

6. Beyond behaviourism  

Reinforcement learning (RL) theory has probably been the most influential outcome of be-
haviourist psychology, and neuroscientific support for it continues to grow. It seems very 
likely that there is RL in the basal ganglia, complemented by unsupervised learning in the 
cortex and supervised learning in the cerebellum (Doya, 1999), possibly building upon ge-
netic ‘learning’ in the reticular formation.  
However, the brain still resists a unifying description. Baum (2004) argues that either 
cognitive behaviour can be described in a compressed way using a few theories like RL. 
Or it has been reasonably well optimized by evolution, and theories which are simple 
enough to comprehend inevitably miss out a lot of significant detail. In attempting to 
uncover simple psychological principles, the behaviourists have left a legacy in which the 
same theories which illuminate brain activity, can render us blind to other significant 
aspects.  

6.1 Experimental conditions  

In the early 1970’s, every psychology department still had a “rat lab”. The researchers did 
what they could to control the experimental conditions. But a rat swimming in a water 
maze is still aware that light glistens off the water in subtly different ways according to its 
direction, and although the walls were white and high, the sounds of birdsong outside the 
window or footsteps in the corridor were still there, providing good orientation cues. 
While human beings are often only vaguely aware of their surroundings, animals are 
highly attuned to their environment. A neuroscientist recounts how simply wearing a 
different lab coat can radically change an animal’s behaviour (Panksepp,1998, p.18).  
Also, the fashion at the time was to write up experiments on living animals in the same 
formal manner that has proven so useful when dealing with non-living subject matter. 
Conceptual analysis, a view of the world in stimulus-response terms, left no place for 
context (either external or internal). An observer at the time might see that the written 
accounts of the experiments were patently not portraying what was happening. They were 
merely reporting how the researchers interpreted what they saw, suppressing often more 
interesting behaviours as “irrelevant”. The purpose of the experimental conditions was to 



Reinforcement Learning: Theory and Applications 136

effectively deprive the animals of every possible natural behaviour apart from the sought-
for response. Much of the time, the animals would do anything except the behaviour under 
test.
The first legacy of the behaviourists has been an oversimplified account of the experimental 
conditions under which RL was investigated. We have attempted to demonstrate that the 
maths of RL can be formulated under assumptions that are also supported by the behaviour 
of animals in their natural environment. Oversimplification can be avoided with a careful, 
honest eye on neuroscientific results and the use of robots to test the theories in a practical 
context.  

6.2 Embedded behaviours  

The founder of ecology, Konrad Lorenz, identifies adaptation (including RL) as merely one 
of nine types of cognitive behaviour (Lorenz, 1996). He claims RL is a phylogenetically 
significant information acquiring system, but one which requires sophisticated subsystems 
for its operation. For example, both stimulus recognition and adaptive modifiability must be 
attuned to the message of success or failure coming from the activities terminating the 
whole action, which also must be capable of appraising significance. Mechanisms which 
enable the organism to distinguish reliably between biological success and failure are rarely 
as simple as the binary or scalar values used by RL.  
Innate behaviours such as eat, fight and flee7 have been described as mutually incompatible 
modes of vertebrate behaviour (Kilmer et al., 1969), and the candidate brain system for se-
lecting between these kinds of action is the reticular formation in the brainstem. Without a 
cortex (and basal ganglia), electrical stimulation in the brainstem can induce complex and 
coordinated behaviours, including eating, grooming and attack (Berntson & Micco, 1976). 
These behaviours are modifiable in complex ways. Very little is understood concerning 
emotion or motivation, yet these are clearly crucial to a full understanding of RL in animals. 
Lorenz’s cognitive behaviours include exploratory behaviour. This requires coherent 
activity concerning something which has not been learned, by definition. Yet it also has a 
rationale and a logic which is adaptive, distinguishing it from the blind randomness of 
behaviourists’ descriptions, and of the standard RL protocols. 
But just as the study of adaptation has grown significantly since the behaviourists’ first for-
mulations, so has RL. For some time, neuroscientific evidence has implicated the basal 
ganglia in RL. Panksepp (1998) (ch.8) revisits the literature on self-stimulation reinforcement 
and concludes that dopamine activity does not reinforce consumatory but anticipatory 
behaviours. So it is more akin to “the joy of the hunt”. If this is the case, the old view of a 
specific stimulus becoming linked to a response via some general reinforcer seems unlikely. 
A better interpretation is that a stimulus set (which includes what is relevant in the wide-
ranging context) is linked to the response via a reinforcer that is appropriate given that 
context 
Hence, the second legacy of the behaviourists has been to encourage the widening of the 
scope of behaviours we study. It is inadequate to describe primitive behaviours as merely 
“innate” as this fails to account for the variety of their expression. Likewise, RL is not a 

7 Kilmer, McCulloch and Blum (1969) list the following: sleep, eat, drink, fight, flee, hunt, search / 
explore, urinate, defecate, groom, mate, give birth, mother the young, build a nest, and special 
speciesdependent forms of behaviour such as migrate, hibernate, gnaw, and hoard. 
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single, monolithic mechanism. What counts as a “stimulus” can range from a single 
neuron’s activation to widely distributed patterns. Dopamine is unlikely to be the only 
reinforcer and the “response” can be as varied as any animal  behaviour.  

6.3 Neuroconstructivism  

Lorenz has also criticized the assumption that the human mind, before any experience, was 
a tabula rasa, and the equivalent assumption that “learning” must “enter into” any 
physiological behaviour process whatever. The most common response to this is to claim 
that anything not learned must be innate. But this is an artificially narrow choice which 
follows from the philosophical assumptions science has inherited from Plato and Descartes. 
Science proceeds on the assumption that the only things that count are ideas which can be 
considered independent of anything else: objects which can be observed. This has served us 
well for centuries, and will continue to do so. But as psychology has already found out, 
studying cognitive behaviour in the same way leads to a number of difficulties. Inevitably, 
this will also become a problem for RL too, at some point. 
Fortunately, there is an alternative viewpoint which promises to avoid many of the 
problems inherited from Cartesianism. Rather than assuming that things can be “atomic” as 
Plato suggested, Heidegger (1927/1962) emphasizes that all behaviour is executed in some 
context. We are thrust into a rich, pre-existing world and are actively living out our 
purposes in it from the start. There is no such thing as an object which has no context. 
Attempts to isolate things like “stimuli” and “responses” involve very high-level, 
sophisticated abstractions which Heidegger called present-at-hand, that is, we can examine 
them.
The neuroconstructivism of Mareschal et al. (2007) is typical of this more modern approach. 
They still expect all science to rest upon processes in the physical world, but this is in terms 
of a “coherent account”. Components are intelligible as contributory constituents of the 
whole which gives them meaning. The system in turn is defined in terms of its components 
and their mutual relationships. One advantage of this formulation is that it simultaneously 
avoids the behaviourists’ narrowness and the equally  beguiling trap of modularity8. It is 
simply inappropriate in the real world to consider a “stimulus” as a single entity. Their 
conceptualization of “response” is equally sophisticated. According to neuroconstructivism, 
the outcome of almost every event is a distributed set of partial representations which are 
inevitably context dependent. All living systems (including cells) are considered proactive in
the sense that they can be seen to be “active on their own behalf”. This leads to an interactive 
interdependence between components, characterized by processes of cooperation and 
competition.  

8 Mareschal et al. cite Marr (1982) as their straw man here. According to them, Marr distinguishes 
independent computational, algorithmic and implementational levels. “For example, the same 
algorithm can be implemented in different technologies, or the same goals can be reached via different 
representational formats and transformations. The implication is that one can study and understand 
cognitive information processing without reference to the substrate in which it is implemented.” 
Mareschal et al. (2007) (p.209) radically reject this view as an intelligent system must function in real 
time. Any sub-task is constrained not only by its functional definition but also by how it works, as it 
mustn’t take too long. The implementation level cannot therefore be independent of the algorithmic. 



Reinforcement Learning: Theory and Applications 138

6.4 Perception is an active process  

Constructivists like Piaget (1953); Glasersfeld (1995) and Bickhard (2000) have emphasized 
that perception is essentially an active process. Psychological and physiological evidence 
(Gibson, 1979; Jeannerod, 1997; Noë, 2004) seems to indicate this is a viable theory. Although 
the basal ganglia are closely linked to action selection, there is a strong link with attention as 
well (Fielding, Georgiou-Karistianis & White, 2006). It is natural for researchers to focus on 
the most visible aspect of selected behaviour, the movement. But an action which has been 
selected is also being attended to. The implication of basal ganglia deficiencies in Attention 
Deficit Hyperactivity Disorder, following Teicher et al. (2000), confirms this compound 
nature of attention and action, as does the equitable treatment of sensory and motor basal 
ganglia afferents.  
The model of Brown et al. (2004) illustrates this broader view of RL. It approximates the 
thousands of millions of interconnecting neurons in a model of less than 100 units, and 
tackles the complexity of the brain in a modular architecture9. It is sufficiently complex to 
take motivation and attention into account, as well as “learning”. Indeed, the ability of the 
basal ganglia model to select between competing afferents may well provide a basis for 
choice – that element which distinguishes psychological learning from mere adaptation. In 
their words, “The basal ganglia interact with the laminar circuits in the frontal cortex and 
the superior colliculus to help satisfy the staging requirements of conditional voluntary 
behaviour.” In the process they demonstrate that RL establishes stimulus control over plans,
not responses, and provide a coherent alternative model of working memory.  
The complexity of the basal ganglia, and their sensitivity to context, suggest a broadening of 
the simple stimulus-response view. Previous research becomes a special case. Stimuli 
become more natural and responses can be more than some action, as perception and 
attention are implicated in basal ganglia processing too.  
The Heideggerian view that context is primary and conceptual data10 is derivative, finds 
newfound support here and opens new possibilities. Many of the difficulties faced by 
Artificial Intelligence are the direct result of the Cartesian viewpoint that all context must be  
constructed from nothing. The recent success of embodied-embedded robotics research 
supports Heidegger’s proposal that context is “given” (Wheeler, 2005). We have indicated 
above that the basal ganglia architecture seems to especially facilitate the processing of 
context alongside RL.  
The understanding of RL has also widened. The change from a generally applicable 
pleasure-or-pain (with no clear cognitive implication) to a much more specific “sought-for” 
success (the cognitive link predicted by Interactivism (Bickhard, 1999)) means that RL is 
poised to address specific instances in a realistic way. RL, therefore, has much more in 

9 The assumption of modularity helps us conceptualize what is going on and formulate testable 
hypotheses, but it must be borne in mind that modularity is a function of our worldview, supported by 
its success in fields like computing and business systems. Writers like Braitenberg and Schüz (1998) go 
to great lengths to convey the messiness of the cortex. Overviews like Shepherd (2004) and Kandel, 
Schwartz and Jessell (2000) always indicate that, while neural pathways are a convenient way of getting 
to grips with the material, there are always exceptions and complications. Modularity is more an 
artefact of our scientific understanding than it is an aspect of the subject matter being explored. 
10 Heidegger would class this as “present-at-hand” – the stuff of scientific theories, or the disembodied 
“ideas” of Plato. Also the Cartesian view that things may be conceived of in isolation (that things-
inthemselves are primary) is undermined by the same neuroscientific evidence. 
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common with the natural world and the variety of animal behaviour indicated by Lorenz 
(1996) than is warranted by the behaviourist evidence alone. This wider view places RL 
alongside other modern developments in philosophy and robotics. Such a combination  
must surely be grounds for hope that we will continue to see more robust and successful 
developments in artificial intelligence.  
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