
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter

A Pilot Fortran Software Library
for the Solution of Laplace’s
Equation by the Boundary
Element Method
Stephen Kirkup and Javad Yazdani

Abstract

The boundary element method (BEM) is developed from the standpoint of
software design. The Fortran language is used to produce a structured library for
solving Laplace’s equation in various domain topologies and dimensions with
generalised boundary conditions. Subroutines that compute the discrete Laplace
operators, which are the core components for populating the matrices in the BEM,
are developed. The main subroutines for solving Laplace’s equation in 2D, 3D and
axisymmetric cases for open and closed boundaries are introduced. The methods
are demonstrated on test problems.

Keywords: boundary element method, Laplace’s equation, Fortran

1. Introduction

The boundary element method (BEM) has established itself as an important
numerical technique for solving partial differential equations (PDEs) over the last
half century [1, 2]. It distinguishes itself from competing methods, such as the finite
element method (FEM) [3] in that the latter method requires a mesh of the domain,
whereas the BEM only requires a mesh of the boundary (of the domain). The BEM
is not as widely applicable as the FEM, particularly in that it is much more of a
struggle to apply the BEM to non-linear problems. However, for problems to which
the boundary element method is viable, the advantage of only requiring a boundary
mesh is a significant one; the BEM is likely to be more efficient but also the relative
simplicity of meshing, and the method is easier to use and is more accessible. This
advantage is more notable for exterior problems; the domain is infinite, and
‘domain methods’ such as the FEM require special treatment, but for the BEM, only
a (finite) boundary mesh is required. Computational methods may be combined or
coupled [2].

The boundary element method is derived through the discretisation of an inte-
gral equation that is mathematically equivalent to the original partial differential
equation. The essential reformulation of the PDE that underlies the BEM consists of
an integral equation that is defined on the boundary of the domain and an integral
that relates the boundary solution to the solution at points in the domain. The
former is termed a boundary integral equation (BIE), and the BEM is often referred
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to as the boundary integral equation method or boundary integral method. There
are two classes of boundary element method, termed the direct and indirect
method. The direct method is based on Green’s second theorem, whereas the
indirect method is based on describing the solution in terms of layer potentials. In
this work the direct boundary element method is developed.

The simplest partial differential equation that is amenable to the BEM is
Laplace’s equation:

∑
N

i¼1

∂
2φ pð Þ

∂x2i
¼ 0 (1)

where N is the dimension of the space or, more concisely,

∇2φ ¼ 0: (2)

Laplace’s equation therefore acts as a model problem for developing the BEM.
Laplace’s equation also has a number of applications; steady-state heat conduction,
steady-state electric potential, gravitation and groundwater flow [4–13].

Initially, in this paper, the derivation of the direct boundary element method is
introduced for the interior two-dimensional Laplace problem. The boundary ele-
ment method is developed in Fortran for the 2D Laplace problem; then this is
extended to axisymmetric three-dimensional problems and to both interior and
exterior problems. The boundary element method can be extended to problems
where the body being modelled is ‘thin’, like a screen or discontinuity, and these are
also included. Test problems are applied to the codes, and the results are given for
all problem classes. There are a number of studies on numerical error in the bound-
ary element method [14–16].

There have been a number of works on coding the boundary element method
[17–19]. The focus of this work is the algorithms and the software for solving
Laplace problems by the BEM. As with the earlier works by the first author on
Laplace and Helmholtz (acoustic) problems [20–24], this is about continuing with
the development of a base library of methods and corresponding software. The
codes and guides can be found on the first author’s website [25].

The codes have been developed in Fortran 77, but the language is just used to
provide a simple template for exploring the methods and the organisation of coding.
The algorithms and coding for Laplace’s equation considered in this work also
provide a useful basis for the development of the BEM for other problems and add
to the library of numerical software [26].

2. The BEM and the 2D interior Laplace problem

The Laplace equation provides a useful model problem for the boundary element
method. The two-dimensional case is the simplest of these and is the best place to
start to learn about the method. In this section the solution of Laplace’s equation
in an interior domain by the direct BEM is outlined, and this also provides the
foundation for the 3D BEM development in later sections.

2.1 Boundary integral equation formulation of the interior Laplace problem

Laplace’s equation (2) governs the interior domain D enclosed by a boundary S.
The solution must also satisfy a boundary condition, and it is important in terms of
maintaining the generality of the method that this is in a general (Robin) form:
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α pð Þφ pð Þ þ β pð Þ
∂φ

∂np
pð Þ ¼ f pð Þ p∈ Sð Þ: (3)

In the direct BEM, Laplace’s equation is replaced by an equivalent integral
equation of the form:

ð

S

∂G p; q
� �

∂nq
φ q
� �

dSq þ
1

2
φ q
� �

¼

ð

S
G p; q
� � ∂φ q

� �

∂nq
dSq p∈ Sð Þ, (4)

ð

S

∂G p; q
� �

∂nq
φ q
� �

dSq þ φ q
� �

¼

ð

S
G p; q
� � ∂φ q

� �

∂nq
dSq p∈Dð Þ: (5)

The terminology ∂ ∗
∂nq

represents the partial derivative of the function* with

respect to the unit outward normal at point q on the boundary. The function G is
known as Green’s function. Physically, G(p, q) represents the effect observed at
point p of a unit source at point q. For the Laplace equation, Green’s function is
denoted by G and is defined as

G p;qð Þ ¼ �
1

2π
ln r (6)

for two-dimensional Laplace problems, where r ¼ ∣q� p∣.
Integral Eqs. (4) and (5) can be derived from the Laplace equation by applying

Green’s second theorem. The power of the formulation lies in the fact that Eq. (4)
relates the potential φ and its derivative on the boundary alone; no reference is
made to φ at points in the domain in this particular boundary integral equation. In a

typical boundary value problem, we may be given φ(q),
∂φ qð Þ
∂nq

or a combination of

such data on S. The boundary integral equation is a means of determining the
unknown boundary function(s), followed by the domain solution from the given
boundary data.

2.2 Operator notation

Operator notation is a useful shorthand in writing integral equations. Moreover,
it will be shown that it is a very powerful notation in that it clearly demonstrates the
connection between the integral equation and the linear system of equations that
results from its discretisation.

Integral equations can always be written in terms of integral operators. For
example, if ζ is a function defined on a (closed or open) boundary Г, then applying
the following operation to ζ for all points p on Г

ð

Г

G p; q
� �

ζ q
� �

dSq ¼ μ pð Þ p∈ Sð Þ (7)

gives a function μ. This may be viewed as the application of an operator to the
function ζ to return the function μ. More simply we may write

Lζf g
Г
pð Þ ¼ μ pð Þ: (8)

In Eq. (8) L represents the integral operator, and the subscript (Г) refers to the
domain of integration. Г is used as a variable, representing either a whole boundary
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or a part of the boundary. The other three important Laplace integral operators are
defined as follows:

Mζf g
Г
pð Þ ¼

ð

Г

∂G p; q
� �

∂nq
ζ q
� �

dSq, (9)

Mtζf g
Г
p; vp
� �

¼
∂

∂vp

ð

Г

G p; q
� �

ζ q
� �

dSq, (10)

Nζf g
Г
p; vp
� �

¼
∂

∂vp

ð

Г

∂G p; q
� �

∂nq
ζ q
� �

dSq, (11)

where vp is any unit vector. In operator notation of the previous subsection, the
integral equation formulation (3) can be written in the following form:

Mþ
1

2
I

� �
φ

� �

S

pð Þ ¼ Lvf gS pð Þ p∈ Sð Þ, (12)

φ pð Þ ¼ Lvf gS � Mφf gS p∈Dð Þ, (13)

where v q
� �

¼
∂φ qð Þ
∂nq

.

2.3 Direct boundary element method

For the direct boundary element method solution of the interior Laplace prob-
lem, that is, developed in this section, the initial stage involves solving boundary
integral Eq. (4), returning (approximations to) both φ and ∂φ/∂n on S. The second
stage of the BEM involved finding the solution at any chosen points in the domain
D. The most straightforward method for solving integral equations like Eq. (4) is
that of collocation. Collocation may be applied in a remarkably elementary form,
which is termed C�1 collocation in this text since it is derived by approximating the
boundary functions by a constant on each panel. In this subsection the C�1 colloca-
tion method is briefly outlined.

To begin with, the boundary S is assumed to be expressed as a set of panels:

S ≈ eS ¼ ∑
n

j¼1
∆eSj : (14)

Usually the panels have a characteristic form and cannot represent a given
boundary exactly. For example, a two-dimensional boundary can be approximated
by a set of straight lines. In order to complete the discretisation of the integral
equations, the boundary functions also need to be approximated on each panel. In
this work, it is the characteristics of the panel and the representation of the bound-
ary function on the panel that together define the element in the boundary element
method. By representing the boundary functions by a characteristic form on each
panel, the boundary integral equations can be written as a linear system of equa-
tions of the form introduced earlier.

The term element refers not only to the form of ΔSj but also to the method of
representing the boundary functions on ΔSj. The C

�1 collocation method involves
representing the boundary function by a constant on each panel:

φ pð Þ ≈ φj, v pð Þ ≈ vj p∈ΔeSj

� 	
: (15)
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The substitution of representations of this form for the boundary functions in
the integral equation reduces it to discrete form. The simplifications allow us to
rewrite Eq. (11) as the approximation:

∑
n

j¼1
Mþ

1

2
I

� �
e

� �

Δ~Sj

pð Þφj ≈ ∑
n

j¼1
Lef gΔ~Sj pð Þvj p∈eS

� 	
, (16)

where e is the unit function (e � 1). Lef gΔ~Sj pð Þ, for example, for a specific point

p, are the numerical values of definite integrals that together can be interpreted as
the discrete form of the L integral operator.

The constant approximation is taken to be the value of the boundary functions at
the representative central point (the collocation point) on each panel. By finding the
discrete forms of the relevant integral operators for all the collocation points, a
system of the form

∑
n

j¼1
Mþ

1

2
I

� �
e

� �

Δ~Sj

pSi

� �
φj ≈ ∑

n

j¼1
Lef gΔ~Sj pSi

� �
vj pSi ∈

eS
� 	

, (17)

for i = 1, 2 and n is obtained by putting p ¼ pSi in the previous approximation. Note
that because of the approximation of the boundary functions (and also the boundary
approximation, if applicable), the discrete equivalent of Eq. (12) is an approximation
relating the exact values of the boundary functions at the collocation points.

This system of approximations can now be written in the matrix-vector form:

MSS þ
1

2
I

� �
φ̂
S
¼ LSSv̂S, (18)

with the matrix components defined by LSS½ �ij ¼ Lef gΔ~Sj pSi

� �
,

MSS½ �ij ¼ Mef gΔ~Sj pSi

� �
. The vectors φ̂

S
and v̂S are representative or approximate

values of φ and v at the collocation points. In the first stage of the boundary element,
the system (18) is solved alongside the discrete form of the boundary condition (3):

αiφi þ βivi ¼ f i for i ¼ 1, 2,…n: (19)

The discrete forms are definite integrals that need to be computed usually by
numerical integration. For the solution of Eqs. (18) and (19), the (approximation
to) boundary data is known at the collocation points.

Once the (approximations to) functions on the boundary are known, after
completing the initial stage of the boundary element method, the domain solution
can be found. In the case of the interior Laplace problem, Eq. (13) will yield the
domain solution. Similarly, the discrete equivalent of Eq. (11) may be derived:

φ pDi

� �
¼ ∑

n

j¼1
Lef gΔ~Sj pDi

� �
v̂j � ∑

n

j¼1
Mef gΔ~Sj pDi

� �
φ̂j pDi ∈

eD
� 	

, (20)

for each point pDi in the domain eD. Let the solution be sought at m domain
points pDi for i ¼ 1, 2,…m, and then the equation above, for all the domain points, is
written as

φ̂
D
¼ LDSv̂S �MDSφ̂S

, (21)

where LDS½ �ij ¼ Lef gΔ~Sj pDi

� �
, MDS½ �ij ¼ Mef gΔ~Sj pDi

� �
.
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2.4 LIBEM2 and L2LC modules, test problem and results

This section includes an outline of the Laplace interior BEM 2D (LIBEM2) and
Laplace 2D linear boundary approximation constant element (L2LC) modules, and
they are demonstrated by means of a test problem. The LIBEM2 module solves
Laplace’s equation in an interior two-dimensional domain. L2LC is the most impor-
tant component module.

L2LC. The L2LC module computes the discrete Laplace operators for two-
dimensional problems. In the notation of this article, the routine computes

Lef gΔ~Sj pð Þ, Mef gΔ~Sj pð Þ, Mtef gΔ~Sj pð Þ and Nef gΔ~Sj pð Þ, where ΔeSj is the panel that is
the domain of integration and p is any point. The call to the subroutine has the
following form:

SUBROUTINE L2LC(P,VECP,QA,QB,LPONEL, LVALID,EGEOM,LFAIL,
* NEEDL,NEEDM,NEEDMT,NEEDN,L0,M0,M0T,N0),

where P is point p; VECP is a unit directional vector that passes through p; QA
and QB are the points, either side of the panel and hence defining the panel;
LPONEL is a logical switch that declares whether p is on the panel; and NEEDL is a
logical switch that states whether the discrete L operator is required and similar to
the other operators. The computed values for the integrals are output in L0, M0,
M0T and N0. For the straightforward direct BEM, developed in the previous sec-
tion, only L and M operators are required.

In general L2LC simply implements a Gaussian quadrature rule in order to deter-

mine the integral, using a higher-order rule when point p is close to the panel ΔeSj .
However, when point p is on the panel, then an exact integration is used [21, 22].

LIBEM2. The LIBEM2 module solves the interior Laplace problem and has the
following form:

LIBEM2(MAXNODES,NNODE,NODES,MAXPANELS,NPANEL,PANELS,
* MAXPOINTS,NPOINT,POINTS,
* SALPHA,SBETA,SF,SINPHI,PINPHI,
* LSOL,LVALID,TOLGEOM,
* SPHI,SVEL,PPHI,
* L_SS,M_SSPMHALFI,L_PS,M_PS,
* PERM,XORY,C,workspace)

The boundary is set up through listing a set of nodal coordinates, and each panel
is determined through the two nodal indices for the endpoints of the panel. The
nodal coordinates are input through NODES and the panel information through
PANELS. The nodes are oriented clockwise on each panel for an outer boundary and
anticlockwise for any inner boundary. Usually, a solution in the domain is sought,
and for this a set of (interior) domain points are set in POINTS. The boundary
condition is set with the parameters SALPHA, SBETA and SF, setting αi, βi and f i
values in Eq. (19) for each panel.

Test problem. The test problem is that of solving Laplace’s equation on a unit
square with the boundary conditions defined as shown in Figure 1. The solution is
sought at the five interior points (0.25, 0.25), (0.75, 0.25), (0.25, 0.75), (0.75, 0.75)
and (0.5, 0.5), and these are also illustrated in the figure.

The test problem is set up in the file LIBEM2_T.FOR. The boundary is defined by
32 nodes and panels. The nodes are indexed, starting with 1: (0.0, 0.0), 2: (0.0, 0.125),
3: (0.0, 0.25) and continue clockwise around the boundary until the final node 32:
(0.125, 0.0). The panels are similarly set up in the clockwise sense with panel 1:1–2
(panel 1 links node 1 with node 2) and 2:2–3 until the final panel 32:32–1, linking the
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final node with the first node to complete the boundary. The boundary conditions
shown in Figure 1 are then applied.

The exact solution is φ pð Þ ¼ 10þ 10x; this is clearly a solution of Laplace’s
equation and satisfies the boundary conditions. The exact solution at the interior
points is therefore φ ¼ 12:5 at the two points on the left, φ ¼ 17:5 at the two points
on the right and φ ¼ 15:0 at the central point. The exact and computed results are
shown in Table 1.

A set of nodal coordinates and each panel is determined through the two nodal
indices for the endpoints of the panel.

The results from this test problem are also intuitively correct. With the left and
right sides of the square at different potentials, it is common sense to expect the
potential in the middle to be halfway between etc. The potentials can—most simply—
be interpreted as temperatures in a steady-state heat conduction problem.

3. The BEM and 3D Laplace problems

In this section, the boundary element method—introduced for two-dimensional
problems in the previous section—is extended to include three-dimensional prob-
lems in this section. In this section, the three-dimensional boundary may be general,
but the special case of axisymmetric problems is also developed in the modules
LBEM3 and LBEMA. The modules can solve interior and exterior Laplace problems.

For interior three-dimensional problems, the basic integral formulation is the
same as for 2D problems (12) and (13), except that Green’s function for three-
dimensional Laplace problems is

Figure 1.
The test problem of the unit square domain with boundary conditions.

Index Point Exact Computed (5 d.p.)

1 (0.25, 0.25) 12.5 12.49568

2 (0.75, 0.25) 17.5 17.50432

3 (0.25, 0.75) 12.5 12.49568

4 (0.75, 0.75) 17.5 17.50432

5 (0.5, 0.5) 15.0 15.00000

Table 1.
The results from the two-dimensional interior problem.
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G p; q
� �

¼
1

4πr
, (22)

where r is the distance between points p and q and the integrals are over surfaces
rather than lines. The equations for the exterior problem are the same as for the
interior problem, but for some changes of sign

M�
1

2
I

� �
φ

� �

S

pð Þ ¼ Lvf gS pð Þ p∈ Sð Þ, (23)

φ pð Þ ¼ Mφf gS � Lvf gS p∈Eð Þ: (24)

For general three-dimensional problems, the simplest elements are triangular
panels, and for axisymmetric problems, they are lateral sections of a cone, with
surface functions approximated by a constant on each panel.

3.1 LBEMA and L3ALC modules, test problems and results

Let us start on the introduction of three-dimensional problems with the
axisymmetric codes. These codes are used in a very similar manner. As with the
two-dimensional problem, the component module L3ALC computes the integrals
over the panels and is called as follows:

SUBROUTINE L3ALC(P,VECP,QA,QB,LPONEL,LVALID,EGEOM,LFAIL,
* NEEDL,NEEDM,NEEDMT,NEEDN,DISL,DISM,DISMT,DISN).

For axisymmetric problems, the surface is defined by conical panels, which are
defined by piecewise straight lines along the generator. The parameters follow a
similar pattern as L2LC, except the points and vectors are in cylindrical r; zð Þ
coordinates. QA and QB are the two points either side of the panel on the generator.

The LBEMA subroutine computes the solution of the Laplace equation by the
direct boundary element method and has the following form:

LBEMA(MAXNODES,NNODE,NODES,MAXPANELS,NPANEL,PANELS,
* LINTERIOR,MAXPOINTS,NPOINT,POINTS,
* SALPHA,SBETA,SF,SINPHI,PINPHI,
* LSOL,LVALID,TOLGEOM,
* SPHI,SVEL,PPHI,
* L_SS,M_SSPMHALFI,L_PS,M_PS,
* PERM,XORY,C,workspace)

In LBEMA, NODES lists the r; zð Þ coordinates of the nodes on the generator of
the surface, and PANELS states the two nodes that together define each panel.
LINTERIOR is a logical input, which is set to TRUE if an interior problem is to be
solved and FALSE for an interior problem.

The interior test problem is in file LBEMA_IT. The test problem is the unit
sphere with the exact solution:

φ ¼ r2 � 2z2, (25)

which is easily shown to be a solution of Laplace’s equation by writing
r2 ¼ x2 þ y2: A Dirichlet boundary condition is applied; the solution is sought at four
interior points, and the results for 18 elements are given in Table 2.

The exterior test problem is in file LBEMA_ET. The test problem is the unit
sphere (approximated by 18 elements) with the exact solution:
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φ ¼
1

r
, (26)

where r is the distance from the origin. φ is a solution of Laplace’s equation as it
is a simple multiplication of Green’s function (22). A Dirichlet boundary condition
is applied to the upper hemisphere, and a Neumann boundary condition is applied
on the lower hemisphere. The solution is sought at four interior points, and the
results are given in Table 3.

3.2 LBEM3 and L3LC modules, test problems and results

The LBEM3 and L3LC subroutines implement the boundary element method
for general three-dimensional problems. As with the two-dimensional and
axisymmetric codes, the component module L3LC computes the integrals over the
panels. The L3LC subroutine is called as follows:

SUBROUTINE L3LC(P,VECP,QA,QB,QC,LPONEL,LVALID,EGEOM,LFAIL,
* NEEDL,NEEDM,NEEDMT,NEEDN,DISL,DISM,DISMT,DISN)

The parameters follow a similar purpose as did in the L2LC, except that the
points and vectors have three values. QA, QB and QC are the coordinates of the
vertices of the triangular panel.

The LBEM3 module solves Laplace’s equation in a general interior or exterior
three-dimensional domain and is called as follows:

LBEM3(MAXNODES,NNODE,NODES,MAXPANELS,NPANEL,PANELS,
* LINTERIOR,MAXPOINTS,NPOINT,POINTS,
* SALPHA,SBETA,SF,SINPHI,PINPHI,
* LSOL,LVALID,TOLGEOM,
* SPHI,SVEL,PPHI,
* L_SS,M_SSPMHALFI,L_PS,M_PS,
* PERM,XORY,C,WKSPC1,WKSPC2,WKSPC3)

As with LIBEM2 and LBEMA, NODES and PANELS define the boundary. How-
ever, in this case, NODES lists the three coordinates of each surface node, and
PANELS lists the three nodal indices that make up each triangular panel.

Index Point Exact Computed (4 d.p.)

1 (0.0, 0.0) 0.0 �0.0013

2 (0.0, 0.5) �0.5 �0.4995

3 (0.0, �0.5) �0.5 �0.4995

4 (0.5, 0.0) 0.25 0.2477

Table 2.
The results from the axisymmetric interior problem.

Index Point Exact (4 d.p.) Computed (4 d.p.)

1 (0.0, 2.0) 0.5 0.4986

2 (1.0, 1.0) 0.7071 0.7051

3 (0.0, 100.0) 0.0100 0.0100

Table 3.
The results from the axisymmetric exterior problem.
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The interior test problem is that of a unit sphere approximated by 36 triangular
panels. The exact solution that is applied as a Dirichlet boundary condition is

φ ¼ xþ yþ z: (27)

The results at four interior points are given in Table 4.
The exterior test problem is that of a unit sphere approximated by 36 triangular

panels, as in the previous test. The exact solution that is applied as a Dirichlet
boundary condition is

φ ¼
1

r
, (28)

where r is the distance from 0;0;0:5ð Þ: The results at four exterior points are
given in Table 5.

4. The solution of the 3D Laplace equation around a thin shell

Let us now consider the integral equation formulation for thin shells. An illus-
tration of a typical problem of a hollow hemispherical cap is illustrated in Figure 2.
In the traditional boundary element method, the boundaries are closed. This analy-
sis and software design extends the boundary element method to open boundaries
or discontinuities in the potential field.

In this section, the integral equations that are a reformulation of Laplace’s equa-
tion surrounding a thin shell are stated. Fortran codes that implement the boundary
element method for axisymmetric and general three-dimensional problems are
outlined in this section and demonstrated on simple test problems, similar to the
modelling of the steady-state electric field in a capacitor in Kirkup [9].

4.1 Integral equations and boundary element equations for thin shells

Following the work of Warham [27], the first step is to designate an ‘upper’ and
‘lower’ surface of a shell Γ and denote them by ‘+’ and ‘�’. We then introduce the

Index Point Exact Computed (4 d.p.)

1 (0.5, 0.0, 0.0) 0.5 0.4772

2 (0.0, 0.5, 0.0) 0.5 0.4836

3 (0.0, 0.0, 0.5) 0.5 0.4817

4 (0.1, 0.2, 0.3) 0.6 0.5802

Table 4.
The results from the three-dimensional interior problem.

Index Point Exact (4 d.p.) Computed (4 d.p.)

1 (2.0, 0.0, 0.0) 0.4851 0.4969

2 (0.0, 4.0, 0.0) 0.2481 0.2536

3 (0.0, 0.0, 8.0) 0.1333 0.1360

4 (2.0, 2.0, 2.0) 0.3123 0.3189

Table 5.
The results from the three-dimensional exterior problem.
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quantities of difference and average of the potential and its normal derivative across
the surface:

δ pð Þ ¼ φ pþ

� �
� φ pþ

� �
p∈Γð Þ, (29)

Φ pð Þ ¼
1

2
φ pþ

� �
þ φ pþ

� �� �
p∈Γð Þ, (30)

ν pð Þ ¼ v pþ

� �
þ v pþ

� �
p∈Γð Þ, (31)

V pð Þ ¼
1

2
v pþ

� �
� v pþ

� �� �
p∈Γð Þ: (32)

The integral equation formulations for the Laplace equation in the exterior
domain can now be written using the operator notation introduced earlier:

φ pð Þ ¼ Mδf gΓ pð Þ � Lνf gΓ pð Þ p∈Eð Þ, (33)

Φ pð Þ ¼ Mδf gΓ pð Þ � Lνf gΓ pð Þ p∈Γð Þ, (34)

V pð Þ ¼ Nδf gΓ pð Þ � Mtνf gΓ pð Þ p∈Γð Þ: (35)

The boundary condition may be expressed in the following form:

α pð Þδ pð Þ þ β pð Þν pð Þ ¼ f pð Þ p∈Γð Þ, (36)

A pð ÞΦ pð Þ þ β pð ÞV pð Þ ¼ F pð Þ p∈Γð Þ: (37)

The discrete equivalents of Eq. (21) are as follows:

φ̂
E
¼ MEΓ δ̂Γ � LEΓ ν̂Γ, (38)

Φ̂Γ ¼ MΓΓ δ̂Γ � LΓΓ ν̂Γ, (39)

bV
Γ
¼ NΓΓ δ̂Γ �Mt

ΓΓ ν̂Γ: (40)

4.2 LSEMA module, test problem and results

The LSEMA subroutine computes the solution of Laplace’s equation surrounding
thin shells or discontinuities. As with the LBEMA, the subroutine relies on L3ALC
to compute the matrix components in the systems (38)–(40). In this subsection, the
LSEMA routine is demonstrated through solving a test problem.

Figure 2.
A hemispherical shell.
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The module LSEMA has the form:

LSEMA(MAXNODES,NNODE,NODES,MAXPANELS,NPANEL,PANELS,
* MAXPOINTS,NPOINT,POINTS,
* HA,HB,HF,HAA,HBB,HFF,
* HIPHI,HIVEL,PINPHI,
* LSOL,LVALID,TOLGEOM,
* PHIDIF,PHIAV,VELDIF,VELAV,PPHI,
* AMAT,BMAT,L_EH, M_EH,
* PERM,XORY,C,WKSPC1,WKSPC2,WKSPC3).

The LSEMA parameters are similar to the LBEMA ones. However the expres-
sions of the boundary condition and the boundary function are different.

HA stores the values of α on the shell panels, similarly HB, β; HAA, A; and HBB,

B: The main output from the subroutine is PHIDIF that corresponds to δ̂Γ; PHIAV,

Φ̂Γ; VELDIF, ν̂Γ; VELAV, V̂Γ; and PPHI, φ̂
E
.

The test problem is in file LSEMA_T. It consists of two circular coaxial parallel
plates in the r, θ plane, of radius 1.0 and a distance of 0.1 apart in the planes where
z ¼ 0:0 and z ¼ 0:1: A Dirichlet boundary condition is applied to both plates. On
the plate at z ¼ 0:0, the potential of 0.0 is applied, and a potential (δ = 0, Φ ¼ 0) of
1.0 is applied on the other plate (δ = 0, Φ ¼ 1). A complete analytic solution is not
available. However in the central region between the plates, a simple gradient of
potential is intuitive, as discussed. The results from the test problem are listed in
Table 6.

4.3 LSEM3 module, test problem and results

The LSEM3 module solves Laplace’s equation exterior to a thin shell in three
dimensions. The subroutine call has the following form:

LSEM3(MAXNODES,NNODE,NODES,MAXPANELS,NPANEL,PANELS,
* MAXPOINTS,NPOINT,POINTS,
* HA,HB,HF,HAA,HBB,HFF,
* HINPHI,HINVEL,PINPHI,
* LSOL,LVALID,TOLGEOM,
* PHIDIF,PHIAV,VELDIF,VELAV,PPHI,
* AMAT,BMAT,L_EH,M_EH,
* PERM,XORY,C,WKSPC1,WKSPC2,WKSPC3)

The definition of the important parameters can be found from the previous
notes on LBEM3 and LSEMA. The test problem is in the file LSEM3_T, and it is
similar to the test problem for LSEMA. This time, the open boundaries are two unit
square plates of in x� y planes. The two squares are 0.1 apart: one is at a potential of
zero and the other is at a potential of one. The squares are each divided into 32
panels. The results at points between the squares, along a central axis, are shown in
Table 7.

Index Point Expected (4 d.p.) Computed (4 d.p.)

1 (0.0, 0.025) 0.25 0.2495

2 (0.0, 0.05) 0.5 0.5000

3 (0.0, 0.075) 0.75 0.7506

Table 6.
The results from the axisymmetric shell problem.
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5. Conclusions

In this paper a design of a software library has been set out and implemented in
Fortran. In taking a ‘library’ approach, components can be developed that can be
shared. There is, therefore, an overall reduction in coding, in line with good soft-
ware engineering practice. For the three-dimensional problems, it is shown how
exterior problems can be solved with the same code as interior problems. It is also
shown how the core discrete operator components can be reused for codes solving
problems in the same dimensional space. The method for solving the linear system
of equations can also often be shared, as with LU factorisation, applied in these
codes. A test problem has been developed in order to demonstrate each code. The
library of codes and the way they are linked are set out in Appendix.

There are several areas for further development. It is good for software engi-
neering also to widen participation to provide strong validation in the BEM, so that
errors, for example, in the boundary mesh are noted before executing the BEM. In
this work the validation is developed through the VGEOM* modules.

In this paper, the BEM codes have been applied to a set of simple test problems.
It would be useful if a standard library of test problems emerged, so that all existing
and future codes can be benchmarked against the same tests, with information such
as error and processing time. More complex geometries—such as multiple surfaces
in exterior problems or cavities in the domain for interior problems—would benefit
from standard test problems. The codes are also adaptable to problems in which
there is an existing field that the boundary and boundary conditions modify (via the
*INPHI and *INVEL parameters), but these have not been tested.

Central to the efficiency of the method, as the number of elements increases, is
the method for solving the linear system of equations and the method of storing the
matrices. Computing the matrices in the BEM takes O n2ð Þ time and memory. Solv-
ing the linear system by a direct method, like LU factorisation used in this work,
takes O n3ð Þ time. Hence, in order to scale up the method, LU factorisation needs to
be replaced by an interative method, and methods of storing and computing the
matrices may also become an issue.

In the software engineering approach in this work, a generalised form of the
boundary condition is also operational, and interior and exterior problems in 3D are
dealt with in the same code. Further generality may be achieved by forming a
hybrid of the method that allows both open and closed surfaces [28–30].

A. Appendix

The main codes for solving Laplace problems by the boundary element method
in this work are LIBEM2 for the two-dimensional problem interior to a closed

Index Point Expected (4 d.p.) Computed (4 d.p.)

1 (0.5, 0.5, 0.1) 0.1 0.0962

2 (0.5, 0.5, 0.3) 0.3 0.02994

3 (0.5, 0.5, 0.5) 0.5 0.5000

4 (0.5, 0.5, 0.7) 0.7 0.7006

5 (0.5, 0.5, 0.9) 0.9 0.9041

Table 7.
The results from the three-dimensional shell problem.
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boundary, LBEM3 for the general three-dimensional problem interior or exterior to
a closed boundary, LBEMA for the axisymmetric three-dimensional problem inte-
rior or exterior to a closed boundary, LSEM3 for the general three-dimensional
problem exterior to an open boundary and LSEMA for the axisymmetric three-
dimensional problem exterior to an open boundary. The linkage between these and
the supporting codes in the library is shown in Table 8.

The main subroutines have the control parameters LSOL, LVALID and
TOLGEOM. LSOL is set to TRUE if the full solution is sought and FALSE if the
linear system is the output. LVALID is set to TRUE if validation is required and
FALSE if it is not. TOLGEOM sets the geometrical tolerance.

The GLS algorithm in file GLS2 carries out a column-swapping method [31] in
order to prepare the linear system for solution by a standard method. The standard
method in this work is LU factorization and back substitution in files LUFAC and
LUFBSUBS.

File/code Purpose of module LIBEM2 LBEMA LBEM3 LSEMA LSEM3

L2LC Computes the discrete Laplace operators

(2D)

X

L3ALC Computes the discrete Laplace operators

(axisym)

X X

L3LC Computes the discrete Laplace operators

(3D)

X X

GLS2 Solves a generalised linear system of

equations

X X X X X

LUFAC Carries out LU factorisation of the

matrix

X X X X X

LUFBSUB Carries out forward and back

substitution

X X X X X

GEOM2D Geometrical operations (2D) X X X

GEOM3D Geometrical operations (3D) X X X X

GLRULES Gauss-Legendre quadrature rules X X X

GLT7 7-point Gaussian quadrature rule for

triangle

X X

GLT25 25-point Gaussian quadrature rule for

triangle

X X

VGEOM2 Verifies the geometry (2D) X

VGEOMA Verifies the geometry (axisym) X X

VGEOM3 Verifies the geometry (3D) X X

VG2LC Verifies the use of the L2LC module X

L3ALCC Copy of L3ALC (to fake recursion) X X

Table 8.
The main codes and supporting library.
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