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Chapter

Quantum Algorithms for Fluid 
Simulations
René Steijl

Abstract

This chapter describes results of a recent investigation aiming to assess the 
potential of quantum computing and suitably designed algorithms for future com-
putational fluid dynamics applications. For quantum computers becoming available 
in the near future, it can be expected that applications of quantum computing 
follow the quantum coprocessor model, where selected parts of the computational 
task for which efficient quantum algorithms exist are executed on the quantum 
hardware. For example, in computational fluid dynamics algorithm, this hybrid 
quantum/classical approach is discussed, and in particular it is shown how the 
approximate quantum Fourier transform (AQFT) can be used in the Poisson solvers 
of the considered method for the incompressible-flow Navier-Stokes equations. 
The analysis shows that despite the inevitable errors introduced by applying AQFT, 
the method produces meaningful results for three-dimensional example problems. 
A second example of a quantum algorithm for flow simulations is then described. 
This method based on kinetic modeling of the flow was developed to reduce the 
information transfer between quantum and classical hardware in the quantum 
coprocessor model. It is shown that this quantum algorithm can be executed fully 
on quantum hardware during a simulation. The conclusion summarizes further 
challenges for algorithm developments and future work.

Keywords: quantum algorithms, computational fluid dynamics, rarefied flows, 
kinetic modeling

1. Introduction

In recent years, the field of quantum computing [1] has developed into an active 
and diverse field of research, and significant progress has been made in a number of 
important areas. For a relatively small number of applications, quantum algorithms 
have been developed that provide a significant speedup relative to classical meth-
ods. Shor’s algorithm for factoring composite integers and Grover’s algorithm for 
quantum search were key developments in establishing quantum computing. More 
recently, significant progress has been made in the area of quantum chemistry and 
quantum physics. Beyond those two fields, only recently have quantum computing 
applications appeared in other areas of science and engineering, e.g., work in com-
putational electromagnetics [2, 3], mixing in turbulent flow [4], and computational 
fluid dynamics [5]. More general applications have been developed which take 
advantage of the unique capabilities of quantum computing platforms, e.g., meth-
ods for the solution of linear systems of equations [6] and Poisson equation [7].
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In recent years significant progress has been made in designing and construct-
ing quantum computers. Currently available quantum computers are relatively 
small-scale and have become known as noisy intermediate-scale quantum (NISQ ) 
computers. These machines have a limited number of qubits (expected to increase 
to 50–100 in coming years), a limited connectivity between these qubits, a small set 
of available quantum gates, and typically very little or no quantum error correction.

This chapter describes results of a recent investigation aiming to assess the 
potential of quantum computing and suitably designed algorithms for future com-
putational fluid dynamics application, particularly for NISQ-type quantum hard-
ware. In this work, the quantum circuit model is used for a “universal” or “digital” 
quantum computer, i.e., work on adiabatic quantum computing is not considered 
here. In the absence of the required quantum hardware, large-scale parallel simula-
tions on parallel classical computers are required in developing such algorithms. 
In this work the recently developed quantum simulator [5] included in the MΦC 
multi-physics CFD framework is used [8, 9].

In the near future, the most likely scenario for the introduction of quantum 
computing hardware is through the quantum coprocessor model, i.e., where a 
quantum processing unit (QPU) is loosely coupled to a classical computer with one 
or more CPUs [10]. In current designs, the quantum processor requires storage at 
low temperatures in a cryostat leading to a distinct physical separation between 
the classical and quantum hardware. Coupling takes place by exchanging clas-
sical information. In application of this hybrid quantum/classical approach, the 
quantum processor acts like a coprocessor with the quantum processor dealing 
with selected computationally demanding tasks. The quantum processor receives 
information from the CPU, and this is used to initialize the quantum state in the 
quantum processor. During the quantum simulation, the quantum state is trans-
formed by application of quantum gates in quantum circuits. Then measurement 
operations are used to extract classical information from this quantum state, and 
this is subsequently passed to the CPU. Since in quantum mechanics a measurement 
leads to the (partial) collapse of the quantum state, in the hybrid classical/quantum 
approach, typically multiple realizations of the quantum state are needed to obtain 
classical information with acceptable levels of noise and uncertainty. It is important 
to recognize that, since initializing a particular quantum state in quantum computer 
can be a significant challenge, this hybrid approach can only be expected to lead to 
significant computational speedups in case the quantum simulation is significantly 
faster for the selected problem than conventional solution methods.

As an example of this hybrid classical/quantum approach, the author intro-
duced a quantum computing application in which the vortex-in-cell method was 
used to solve the incompressible-flow Navier-Stokes equations in a regular domain 
[5]. In this algorithm, the Poisson solvers dominating CPU time requirements are 
based on the quantum computing equivalent of the fast Fourier transform, i.e., 
the quantum Fourier transform. In this chapter, this algorithm and its applica-
tion to example flow problems are investigated further. Specifically, the effect of 
applying an approximate QFT instead of the full QFT is analyzed for different 
levels of approximation or truncating of rotation gates in the quantum circuit 
implementation.

The second part of this chapter describes a more recent investigation into the 
development of quantum algorithms relevant for computational aerodynamics 
based on modeling at the kinetic level. The key innovation in these developments is 
the design targeting execution of the algorithm fully on the quantum processor. In 
particular, at the start of the simulation, multiple quantum states in the quantum 
processor would be initialized. Then, the quantum algorithms would perform 
a series of unitary transformations. Only at the end of the simulation would 
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measurements be performed to extract the required classical. A key question this 
study aims to answer is for which applications this approach is feasible.

This chapter is organized as follows. Section 2 describes key principles of quan-
tum computing relevant to the quantum algorithms for fluid simulations described 
here. Section 3 describes the hybrid quantum/classical implementation of the 
vortex-in-cell method along with a number of example applications. The quantum 
discrete-velocity algorithm for kinetic flow modeling is described in Section 4. 
Conclusions and future research directions are presented in Section 5.

2. Elements of quantum computing relevant in current work

The fundamental unit of quantum computation is the qubit [1]. Whereas a 
classical bit is confined to existing in either the 0 or 1 state, a qubit can be in a state 
of superposition, i.e., it exists in both states simultaneously. Upon measuring the 
qubit, the quantum state collapses to either of these two states, and the qubit is 
no longer in a state of superposition. The state of a qubit is defined through a pair 
of complex numbers [1]. A collection of  nq  qubits in a coherent state is termed a 
quantum register of size  nq  here. Its quantum state is defined by the wave function 
|Ψ> resulting from the tensor product of the quantum states of each qubit in the 
coherent register. The superposition in this coherent register then creates 2nq differ-
ent states that can be found upon measurement of the quantum state. In simulating 
this quantum state on a classical computer, a storage space of 2nq complex numbers 
is required.

In the present work, the quantum circuit model of quantum computing is 
used. In this case, the unitary operations on a quantum state allowed by quantum 
mechanics are represented by a series of quantum (logic) gates acting on the 
quantum state. A quantum logic gate is an elementary quantum computing device 
that performs a fixed unitary operation on selected qubits in a fixed period of time. 
Written in a matrix form, unitary means that the determinant of the transformation 
equals one.

2.1 Mapping a computational problem onto the quantum state vector

The quantum state |Ψ> for a register with  nq  coherent qubits is represented by a 
Hilbert space of dimension 2nq. In a quantum computer, different possibilities exist 
for the physical implementation of qubits, e.g., the “spin” of an electron (with the 
two possible states being “spin-up” and “spin-down”) or the plane of polarization 
of linearly polarized photon has been used. The discrete energy levels in an atom 
excited by laser pulses present an alternative to electron-spin and photon-based 
qubit implementations.

We will now describe how this quantum state can be used to represent the 
storage space required for the computational problems of interest here, represent-
ing discretized partially differential equations. As a first step, consider a function 
f discretized on a (regular) mesh with N mesh points. It follows that   log  2   N  qubits 
would suffice to create the required number of degrees of freedom in the quantum 
state vector.

However, it is important to stress that the quantum state vector only represents 
the likelihood that upon measurement the quantum state collapses into a particular 
state [1]. In other words, with  nq =  log  2   N , we cannot extract the full information for 
all N degrees of freedom using a single realization of this quantum state. However, 
for as long as this classical information is not needed, the quantum state has the 
required number of degrees of freedom. This superposition-based principle for 
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storage of discrete data can be extended to multidimensional problems as well. For 
example, 24 qubits suffice to store a single discretized function on a 2563 regular 
mesh. In application in which multiple variables are to be stored in each mesh point, 
as in the discrete-velocity method discussed in the second part of this chapter, we 
add further qubits to the quantum register. Specifically, for each qubit added in the 
coherent register, the number of degrees of freedom is doubled. Once a mapping 
of the considered computational problem onto the quantum state vector has been 
designed, calculations are then performed through application of quantum gates as 
in the quantum circuit model.

2.2 Approximate quantum Fourier transform (AQFT)

The ability to implement the quantum Fourier transform (QFT) efficiently on 
a quantum computer is of paramount importance for many quantum algorithms. 
Figure 1 shows the “standard” quantum circuit implementation of the QFT for an 
example register with 6 qubits. In Figure 1, “H” represents the one-qubit Hadamard 
gate, and the “Rk” gates are controlled rotation gates over an angle defined by index 
“k,” i.e.,  2π /  2   k  . In this circuit and all subsequent quantum circuits shown in this 
chapter, the qubit register is represented vertically, with the leftmost qubit in the 
register at the top. The horizontal direction determines the sequence of gates that 
are applied to the quantum state. In the QFT example shown, it can be seen that 
the qubit indices have been reversed in the output state (right-hand side) relative 
to the input, to represent that this standard QFT circuit returns the discrete Fourier 
transform in bit-reversed ordering.

A particular challenge is presented by the controlled rotation gates particularly 
those involving small angles. The QFT can be implemented approximately by 
removing all rotation gates with angles smaller than a certain threshold value, 
resulting in the approximate QFT (AQFT). In particular for fault-tolerant imple-
mentations, this is desirable as it greatly reduces the gate count. In the following, we 
define the approximation or “band-limiting” in the AQFT as follows. The rotation 
gates are eliminated above a limit value “k,” i.e., for an angle smaller than 2 π /  2   k  , the 
rotation gate is not included in the quantum circuit.

3. Hybrid quantum/classical vortex-in-cell method

The vortex-in-cell method is a well-studied hybrid particle-mesh method for 
incompressible flows and is particularly well suited for flows in regular domains 
such that efficient Poisson solvers can be used. In the present work, the Fourier 

Figure 1. 
Quantum circuit for QFT on six-qubit register.
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analysis approach to solving the problem in a fully periodic domain is used, using 
the QFT for the required discrete Fourier transforms.

The vortex-in-cell (VIC) method solves the incompressible-flow Navier-Stokes 
equations, transformed into the Helmholtz equations for vorticity evolution [5]:

    ∂ ω →   ___ 
∂ t

   +  u →     ∂ ω →   ___ 
∂ x →  

   =  ( ω →   . ∇)  u →   + νΔ ω →  ;  ω →   = ∇ x  u →    (1)

In simulations using the VIC, the flow evolves through a (large) number of time 
steps. During each of these time steps, the velocity field is recomputed using solu-
tions of three Poisson problems for stream function   A 

→

   :

  ∆ A 
→

   = −  ω →  ;  u →   = ∇ x  A 
→

    (2)

This part of the VIC is of particular interest here, as it represents the part that 
would be performed by the quantum processor in the quantum coprocessor model.

Figure 2. 
Vortex-in-cell simulation of leapfrogging vortex rings. Effect of mesh refinement is shown. “Noiseless” 
simulation using full QFT.
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Figure 2 shows an example of a VIC simulation of two leapfrogging vortex rings, 
i.e., flow structures of fundamental importance in fluid mechanics. The lower 
vortex ring is stronger than the ring above it, and it will therefore convect upward 
faster, leading to the interaction of the vortex rings as shown. The iso-surface rep-
resents vorticity strength, i.e., a direct indicator of the “strength” of the considered 
vortex. Results are compared for two different meshes, 1283 and 2563, to highlight 
the dependency of the solution on the chosen mesh size. Also, in the shown simula-
tion, no quantum errors were simulated, and the full QFT was used. If we now 
replace the QFT with the AQFT, the results shown in Figures 3 and 4 are obtained. 
In Figure 3, the “k” limit in the QFT is set to five for both meshes, showing that for 
the finer mesh this leads to unacceptable errors, while the coarser-mesh simulation 
still produces worthwhile results. If the “k” limit for the finer mesh is increased 
from 5 to 6, i.e., more controlled rotation gates are included in the AQFT circuit, the 
simulation on the finer mesh can also be made to produce similarly useful results. 
These example results show what level of approximation in the QFT is tolerable for 
application of the VIC method. For other QFT-based CFD solvers, a similar sensi-
tivity study would need to be conducted.

Figure 3. 
Vortex-in-cell simulation of leapfrogging vortex rings. For two different mesh resolutions, the effect of applying 
AQFT is shown (“k” limit is 5).
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4. Quantum algorithm for discrete-velocity method

In computational fluid dynamics, the most widely used methods involve solving 
the Navier-Stokes equations for a continuum fluid, i.e., where fluid density, veloc-
ity components, and energy in each location in the computational domain are to be 
found from conservation equations. The vortex-in-cell method used in the previous 
section employs the Navier-Stokes equations in a transformed form involving vortic-
ity rather than velocity, but importantly it still uses the continuum flow assumption.

An alternative approach to the Navier-Stokes-based modeling is a description 
of the flow at a more detailed level, i.e., at the kinetic level [11]. Instead of govern-
ing equations for mass, momentum, and energy conservation, the flow is now 
described by the Boltzmann equation governing a particle distribution function in 
state space (or 3D velocity space for a 3D monatomic gas flow) for each location in 
the considered domain [10].

For a monatomic gas, the distribution function  f ( x, →    c →  ; t)   with   x →    defining the 
coordinates in (physical) space and   c →    the molecular velocity (defined in “velocity 
space”) is governed by the Boltzmann equation:

Figure 4. 
Vortex-in-cell simulation of leapfrogging vortex rings. For 1283 mesh, AQFT (“k” limit 5) is used. For 2563 
mesh, “k” limit in AQFT is 6.
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    ∂f __ 
∂t

   +  c →     ∂f ___ 
∂ x →  

   = Q (f, f)   (3)

The distribution function defines for each point   x →    the likelihood that molecules 
have velocity   c 

→
   . On the right-hand side of the equation, the collision term  Q  (f, f)   

represents the effect of collisions between particles [12]. For each point in space, 
we can take moments of the distribution function to obtain the local fluid density, 
velocity components, and energy.

The key advantage of this approach is that non-continuum flows, i.e., flows for 
which the density is so low that we cannot assume it to act as a continuum, can also 
be modeled. However, the main problem is the large computational cost when using 
a direct discretization approach due to the high dimensionality, i.e., for a 3D flow 
problem, we have a six-dimensional solution space (or seven when including time).

A further main challenge is the cost of evaluating the collision term. For the 
free-molecular flows considered here, the collision term can be discarded, and we 
will use the collisionless Boltzmann equation instead.

In the discrete-velocity method used here, the velocity space is discretized using 
a uniformly spaced Cartesian mesh. A maximum molecular velocity magnitude is 
defined,   c  max   , so that the left and right domain boundaries in velocity space are at  
−  c  max    and  + c  max   , respectively, with a uniform spacing Δc separating each point in 
velocity space. These limits are problem dependent.

The discrete-velocity approach used here has a number of characteristics facili-
tating a quantum implementation:

1. A uniformly spaced Cartesian mesh is used for the spatial discretization as well 
as for the discretization of the velocity space.

2. In case solid objects are present in the computational domain, these are rec-
tangular, and its edges align with the mesh lines in the mesh. Specifically, solid 
bodies can be defined by “tagging” selected groups of cells in the mesh.

3. A constant velocity-space discretization is used in each point in space, i.e., the 
velocity-space boundaries defined earlier as well as the number of discrete 
velocities are identical in each cell.

4. The convection part of the Boltzmann equation (i.e., the second term on 
the left-hand side in the shown equation) along with gas-solid interactions 
determines the time evolution of the distribution function in the absence of 
interparticle collisions.

5. The time-integration method used here is based on the reservoir technique 
[13], such that during the time integration the convection step always exactly 
involves the distribution function defined in a cell of computational mesh 
to move to a cell that is a nearest neighbor. This is commonly referred to as 
“streaming” of data.

In the examples shown, problems are restricted to two-dimensional flows. For 
this case, the collisionless Boltzmann equation originally defined for 3D can be 
reduced to two kinetic equations for two reduced distribution functions:

    ∂f __ 
∂t

   +  c →     ∂f ___ 
∂ x →  

   = 0;   
∂g

 ___ 
∂t

   +  c →     
∂g

 ___ 
∂ x →  

   = 0  (4)
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where the velocity and coordinate vectors are now defined in 2D.
Inspired by the previous work on the Dirac equation [14], an efficient quantum 

circuit implementation of the streaming operations in x- and y-direction on a 
Cartesian 2D mesh can be created as shown in Figure 5. The example shows how a 
12-qubit register is used for a discretized function with 6 qubits defining the indices 
of 64 grid points in x- and y-coordinate directions. The circuits with the filled 
circles define streaming to “right” neighbors, i.e., when each control qubits has the 
|1> state, the target qubit gets negated (“X” symbol used here). Similarly, the left 
streaming operation employs multiple-control NOT gates with target qubits being 
negated when each control qubit is in state |0>.

For the streaming operations in quantum discrete-velocity method, further 
extensions are needed. First, the quantum register needs to be extended relative to 
that shown in Figure 5 to account for the storage of two discretized reduced distribu-
tions defined in the discretized velocity space. The additional distribution function is 
accounted for using an additional qubit termed “g” in the following quantum circuit 
diagrams. The number of additional qubits needed for the discrete-velocity mesh 
clearly depends on the number of discrete velocities used. For example, for a 16 × 16 
discrete-velocity mesh, we add 8 qubits (four for each direction in state space). The 
qubits are denoted by the “u0,”…, “v0,”… qubits in the quantum circuits. Finally, to 
account for solid objects, we use an additional qubit (“BC” in the diagrams) set to |1> 
to denote a cell within fluid and |0> for a cell within a solid. For a 64 × 64 Cartesian 
mesh and a 16 × 16 discrete-velocity mesh, Figure 6 shows the quantum circuit 
used to simulate the free-molecular flow around a rectangular body, for which the 
evolution of the flow field starting from an initial uniform flow is shown in Figure 7. 
The key feature in the quantum circuits shown in Figure 6 is the extended number 
of control qubits, i.e., beyond the checks on the qubits corresponding to spatial 
coordinates, control qubits also involve the “BC” qubit (fluid/solid flag) as well as 
the qubits related to the discrete-velocity indices. This least feature originates from 
the need to stream only data associated with selected discrete velocities in the used 
time-integration method.

Figure 5. 
Quantum circuit implementation of “left streaming” and “right streaming” in x- and y-direction on a 64 × 64 
Cartesian mesh.
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4.1 Quantum circuit implementation of specular-reflection boundary conditions

A key aspect of the flows simulated by the quantum algorithm described here 
are gas-solid interactions. In this work, specular-reflection boundary conditions are 
assumed. This means that upon hitting a solid surface, a gas particle will bounce off 
this surface with the wall-normal velocity component effectively getting reversed 
and the tangential-flow component being preserved. In Figure 7, the time evolution 
of a Mach 2 free-molecular flow is shown, starting from an initial flow at uniform 
velocity everywhere.

As can be seen in Figure 7, the specular-reflection boundary conditions gradually 
make the velocity vectors align with the solid wall such that there is no longer a flow 
into the solid body. This is the physically correct behavior. In the quantum register, 

Figure 6. 
Quantum circuit implementation of streaming operations for discrete-velocity method (with 16 × 16 velocity 
mesh). Two-dimensional domain with 64 × 64 Cartesian mesh.
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the indexing for the velocity-mesh data is designed such that a change of the sign of 
the discrete velocity implies a bit negation of qubits representing the index of the 
considered discrete velocity. As an example, Figure 8 shows the quantum circuit 
implementation of the specular reflection for a rectangular body. In this case, only 
16 × 16 discrete velocities are used for clarity. It can be seen that control qubits are 
used to “select” cells in space for which to apply the boundary condition. A further 
control qubit involves the “BC” qubit representing the solid/fluid flag. The negation 
operation (“X”) is applied to the qubits representing the velocity-mesh index to 
create the “change of sign” of the considered discrete-velocity data. This circuit is 
shown as an illustration of the quantum algorithm design approach used here.

4.2 Circuit implementations using ancilla qubits

Although the circuits shown in Figure 6 perform the correct convection operations, 
an important practical constraint needs to be considered. For the quantum computer 
implementations achieved so far and those foreseen for the near future, the kind of 
multi-qubit-controlled NOT operations used here cannot be implemented. A small set of 
native gates will be available which most likely includes NOT, CNOT, and the Toffoli gate.

Figure 7. 
Discrete-velocity simulation of Mach 2 flow around rectangular body. 64 × 64 Cartesian mesh, velocity-space 
mesh with 64 × 64 discrete velocities.
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The solution around this limitation is the introduction of ancilla qubits, which can 
be regarded as the quantum equivalence of additional workspace in the memory of a 
classical computer. Then circuits involving multi-qubit operations involving a large 
number of control gates can be transformed into circuits with more qubits and a larger 
number of gate operations, however now with a smaller number of control qubits. As 
is typical in this context, we assume that the ancilla qubits are initially in |0>, and since 
these are to be reused multiple times, the transformed circuits need to reset the ancilla 
qubits of this state at the end of the operations. For the quantum circuits implementing 
streaming in positive x-direction considered previously, Figure 9 shows the required 
circuit transformations for the cases of 1, 2, or 3 ancilla qubits. Increasing the number 
of qubits will make the circuits more demanding to implement, so in the actual imple-
mentation there is an important trade-off between gate complexity (i.e., within the set 
of native gates available) and total number of qubits. For the 64 × 64 two-dimensional 
mesh and 16 × 16 discrete velocities considered in Figure 6, the transformed circuits 
show that with three ancilla qubits, the maximum number of control gates is reduced 
to four in a five-qubit-controlled negation gate. However, for most practical hardware 
implementations, further transformations would be required.

Figure 8. 
Quantum circuit implementation of specular-reflection boundary conditions for rectangular body. 64 × 64 
Cartesian mesh, 16 × 16 discrete-velocity mesh.
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5. Conclusions

This chapter presented two different quantum algorithms with possible applica-
tions in computational fluid dynamics. Beyond their very different areas of applica-
tion, the key differences are the computational model with regard the quantum 
coprocessor model of quantum computing. The hybrid quantum/classical algorithm 
for the vortex-in-cell method involves repeated exchanges of information between 
classical and quantum hardware, i.e., at each time step in the time integration. In 
contrast, the quantum algorithm implementing a discrete-velocity method for 
kinetic flow modeling can be performed on the quantum processor for the duration 
of the simulation, with classical information exchange only required at the start and 
end of the simulation.

This work addressed a number of key challenges that remain to be investigated 
further. Firstly, the need for further efficient quantum algorithms as well as a fur-
ther understanding of how to apply the quantum coprocessor model for this type of 
flow simulations was investigated. Secondly, the measurement-based extraction of 

Figure 9. 
Quantum circuit implementation of streaming operation. Circuit transformations are shown for addition of 1, 
2, and 3 ancilla qubits.
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classical information fundamentally changes the way quantum algorithms for CFD 
application will most likely be used. Finally, obtaining detailed information on the 
full flow field will be a challenge, so applications for which only certain character-
istics of the solution are desired would present a good choice for future applications.
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