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Abstract

Previously, computational drag design was usually based on simplified laws of molecular
physics, used for calculation of ligand’s interaction with an active site of a protein-
enzyme. However, currently, this interaction is widely estimated using some statistical
properties of known ligand-protein complex properties. Such statistical properties are
described by quantitative structure-activity relationships (QSAR). Bayesian networks can
help us to evaluate stability of a ligand-protein complex using found statistics. Moreover,
we are possible to prove optimality of Naive Bayes model that makes these evaluations
simple and easy for practical realization. We prove here optimality of Naive Bayes model
using as an illustration ligand-protein interaction.

Keywords: quantitative structure-activity relationship, Naive Bayes model, optimality,
Bayes classifier, Bayesian networks, protein-ligand complex, computational drag design,
molecular recognition and binding, ligand-active site of protein, likelihood, probability

1. Introduction

The determination within the chapter is based on a paper [1]. Bayes classifiers are broadly

utilized right now for recognition, identification, and knowledge discovery. The fields of

application are, for case, image processing, personalized medicine [2], chemistry (QSAR (quan-

titative structure-activity relationship) [3, 4]; see Figure 1). The especial importance Bayes

Classifiers have in Medical Diagnostics and Bioinformatics. Cogent illustrations of this can be

found in the work of Raymer and colleagues [5].

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Let us give some example of using QSAR from papers [3, 4]:

“Molecular recognition and binding performed by proteins are the background of all biochem-

ical processes in a living cell. In particular, the usual mechanism of drug function is effective

binding and inhibition of activity of a target protein. Direct modeling of molecular interactions

in protein-inhibitor complexes is the basis of modern computational drug design but is an

extremely complicated problem. In the current paradigm, site similarity is recognized by the

existence of chemically and spatially analogous regions from binding sites. We present a novel

notion of binding site local similarity based on the analysis of complete protein environments

of ligand fragments. Comparison of a query protein binding site (target) against the 3D

structure of another protein (analog) in complex with a ligand enables ligand fragments from

the analog complex to be transferred to positions in the target site, so that the complete protein

environments of the fragment and its image are similar. The revealed environments are simi-

larity regions and the fragments transferred to the target site are considered as binding

patterns. The set of such binding patterns derived from a database of analog complexes forms

a cloudlike structure (fragment cloud), which is a powerful tool for computational drug

design.”

However, these Bayes classifiers have momentous property—by strange way the Naive Bayes

classifier more often than not gives a decent and great description of recognition. More

complex models of Bayes classifier cannot progress it significantly [1]. In the paper [6] creators

clarify this exceptional property. In any case, they utilize a few suspicions (zero–one misfor-

tune) which diminish all-inclusiveness and simplification of this proof. We allow in this

chapter a common verification of Naive Bayes classifier optimality. The induction within the

current chapter is comparative to [1]. The consequent attractive consideration of Naive Bayes

classifier optimality problem was made in [7, 8]. Be that as it may, shockingly these papers do

not incorporate any investigation of the past one [1].

We would like to prove Naive Bayes classifier optimality using QSAR terminology. Indeed, we

use QSAR only for clearness; the proof is correct for any field of use of Naive Bayes classifier.

Figure 1. Quantitative structure-activity relationship.
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Let us define the essential issue that we attempt to unravel within the chapter. Assume that we

have a set of states for a complex of ligand-active site of protein and a set of factors that

characterize these states. For each state, we know the likelihood dispersion for each factor. In

any case, we have no data of the approximate relationships of the factors. Presently, assume

that we know factor values for some test of the state. What is the probability that this test

corresponds to some state? It could be a commonplace issue of recognition over a condition of

incomplete data.

In the simplest case, we can define two states for “ligand-active site of protein” complex. It is 0

(ligand is not bound to active site of protein) or 1 (ligand is not bound to active site of protein).

The next step is definition of factors (reliabilities below) that characterize strength of a bond for

“ligand-active site of protein” complex. Let us grant an illustration of factors (reliabilities

below) from experience of QSAR in papers [3, 4]:

“First, consider the protein 5 A�-environment A = {a1, a2,…aN} of one ligand atom X in the

analog protein, that is, all atoms from the binding site that are in the 5 A�-neighborhood of X.

Suppose that the complete target binding site T consists of N0 atoms: T = {t1, t2,…tN’} and there

exists a subset T0 ⊆ T of size n (N0
≥ n ≥ 4) such that n atoms from T0 are similar to n atoms

A0 = {ai1, ai2,…ain} ⊆ A in their chemical types and spatial arrangement. The search for A0 and

T0 is performed using a standard clique detection technique in the graph whose nodes repre-

sent pairs (ai, ti) of chemically equivalent atoms and edges reflect similarity of corresponding

pairwise distances. If the search is successful, the optimal rigid motion superimposing

matched protein atoms is applied both to the initial ligand atom X and its complete environ-

ment A (Figure 2(a) in [3]). The atoms are thus transferred to the target binding site. Then we

extend the matching between A0 and T0 by such atom pairs (ai,ti) that ai and ti have the same

chemical atom type in the coarser 10-type typification mentioned above, and the distance

between ti and the image a0i of atom ai is below a threshold. Next, a reliability value R, with

0 ≤ R ≤ 1, is assigned to the image X0 of X in the target site and reflects the similarity between

the environments of X and its image X0. If the environments are highly similar (R ≈ 1) we expect

that the position of X0 is the place where an atom with chemical type identical to X can be

bound by the target, since the environment of X0 contains only atoms required for binding with

no “alien” atoms. However, as illustrated in Figure 2(a) in [3], the analog site may contain

extra binding atoms (shown on the lower side) that decrease the reliability value. In a simple

form, the reliability R can be defined as the sum of the number of matched atoms divided by

the total number of analog and target atoms in the 5 A�-environments of X and X0, respectively

(Figure 2(b) in [3]):

R = 2n/(N + N0), using the notation presented above. In fact, we use a somewhat more

complicated definition that accounts for the quality of spatial superposition of matched atoms

and their distance from X0.”

We do not want to discuss here these definitions for these factors and states. Our purpose is not

the demonstration of effectiveness of these definitions or effectiveness of QSAR. The interested

reader can learn it from papers [3, 4] and references inside of these papers. As we said above,
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we use QSAR only for clearness; the proof is correct for any field of use of Naive Bayes

classifier.

Let us consider the case when no relationships exist between reliabilities. In this case, the Naive

Bayes model is a correct arrangement of the issue. We demonstrate in this chapter that for the

case that we don’t know relationships between reliabilities even approximately—the Naive Bayes

model is not correct, but ideal arrangement in a few senses. More point by point, we demonstrate

that the Naive Bayes model gives minimal mean error over all conceivable models of relation-

ship. We assume in this confirmation that all relationship models have the same likelihood. We

think that this result can clarify the depicted over secretive optimality of Naive Bayes model.

The Chapter is built as described in the following statements. We grant correct numerical

description of the issue for two states and two reliabilities in Section 2. We characterize our

notations in Section 3. We define general form of conditional likelihood for all conceivable

relationships of our reliabilities in Section 4. We characterize the limitations of the functions

depicting the relationships in Section 5. We find the formula for an interval between two

models of probability (correlation) in Section 6. We discover constraints for our fundamental

functions in Section 7. We illuminate our primary issue; we demonstrate Naive Bayes model’s

optimality for uniform distribution of all conceivable relationships in Section 8. We discover

mean error between the Naive Bayes model and a genuine model for uniform distribution of all

conceivable relationships in Section 9. We consider the case of more than two states and reliabil-

ities in Section 10. We make conclusions in Section 11.

2. Definition of the task

Suppose that A is a state for “ligand-active site of protein” complex. It is 0 (ligand is not bound

to active site of protein) or 1 (ligand is not bound to active site of protein). Accept that the

apriori likelihood P Að Þ ¼ P A ¼ 1ð Þ is known, and indicate it by θ. Let X1, X2 be two reliability

values (defined above), with values in a set 0; 1½ �. However, for generality, we will define X1, X2

in a set [�∞;+∞], but probability density to find X1, X2 in [�∞; 0] or [1;+∞] is equal to zero. We

Figure 2. Function Γopt α; β;θ
� �

: 0; 1½ �3 ! 0; 1½ �.
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have the taking after data: X1 ¼ x1 and X2 ¼ x2 (gotten through estimation). Moreover, we

have two functions, “classifiers,” which for given x1 and x2 give us

P A ¼ 1=X1 ¼ x1ð Þ ¼ P A=x1ð Þ � α,

P A ¼ 1=X2 ¼ x2ð Þ ¼ P A=x2ð Þ � β:

We want to find the likelihood

P A ¼ 1=X1 ¼ x1;X2 ¼ x2ð Þ ¼ P A=x1; x2ð Þ

in terms of α, β and θ. More particularly we wish to discover a function Γopt α; β;θ
� �

which on

the average is the most excellent estimation for P A=x1; x2ð Þ in a sense to be characterized

expressly within the following consideration (see Figure 2).

3. Notation and preliminaries

rX1,X2
x1; x2ð Þ—joint PDF (probability density function) for X1 and X2.

rX1,X2=A x1; x2ð Þ ¼ h x1; x2ð Þ—joint PDF for X1 and X2, known A ¼ 1. In terms of h x1; x2ð Þ and θ,

we can find P A=x1; x2ð Þ as follows:

P A=x1; x2ð Þ ¼
θh x1; x2ð Þ

θh x1; x2ð Þ þ 1� θð Þh x1; x2ð Þ
, (1)

here

h x1; x2ð Þ � r
X1 ,X2=A

x1; x2ð Þ—joint PDF for X1 and X2, known A ¼ 0.

We can find

rX1
x1ð Þ ¼

ð

þ∞

�∞

rX1,X2
x1; x2ð Þdx2,

rX2
x2ð Þ ¼

ð

þ∞

�∞

rX1,X2
x1; x2ð Þdx1,

h1 x1ð Þ � rX1=A x1ð Þ ¼

ð

þ∞

�∞

h x1; x2ð Þdx2,

h2 x2ð Þ � rX2=A
x2ð Þ ¼

ð

þ∞

�∞

h x1; x2ð Þdx1,
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h1 x1ð Þ � r
X1=A

x1ð Þ ¼

ðþ∞

�∞

h x1; x2ð Þdx2,

h2 x2ð Þ � r
X2=A

x2ð Þ ¼

ðþ∞

�∞

h x1; x2ð Þdx1:

4. Generic form of P A=x1; x2ð Þ

Let us define the function g x1; x2ð Þ and g x1; x2ð Þ

g x1; x2ð Þ �
h x1; x2ð Þ

h1 x1ð Þh2 x2ð Þ
,

g x1; x2ð Þ �
h x1; x2ð Þ

h1 x1ð Þh2 x2ð Þ
:

Let us say that if X1 and X2 are conditionally independent, i.e.,

h x1; x2ð Þ ¼ rX1X2=A x1; x2ð Þ ¼ rX1=A x1ð ÞrX2=A x2ð Þ

¼ h1 x1ð Þh2 x2ð Þ,

then

g x1; x2ð Þ ¼ g x1; x2ð Þ ¼ 1:

Let us define the following monotonously nondecreasing probability distribution functions:

H1 x1ð Þ �

ðx1

�∞

h1 zð Þdz,

H2 x2ð Þ �

ðx2

�∞

h2 zð Þdz,

H1 x1ð Þ �

ðx1

�∞

h1 zð Þdz,

H2 x2ð Þ �

ðx2

�∞

h2 zð Þdz:
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Take attention that since H1 x1ð Þ, H2 x2ð Þ, H1 x1ð Þ and H2 x2ð Þ are monotonous (At this point we

can assume that h1 x1ð Þ, h2 x2ð Þ, h1 x1ð Þ, h2 x2ð Þ > 0 so that H1 x1ð Þ, H2 x2ð Þ, H1 x1ð Þ and H2 x2ð Þ are

monotonously increasing. However, such limitation will be unnecessary as we will see within

the following conclusion.), the inverse functions H�1
1 x1ð Þ, H�1

2 x2ð Þ, H
�1

1 x1ð Þ and H
�1

2 x2ð Þ must

exist. As a result, we can characterize

J a; bð Þ � g H�1
1 að Þ;H�1

2 bð Þ
� �

,

J a; bð Þ � g H
�1

1 að Þ;H
�1

2 bð Þ
� �

:

To be brief, let us use the following concise designation:

J � J H1 x1ð Þ;H2 x2ð Þð Þ ¼ g H�1
1 H1 x1ð Þð Þ

� �

, H�1
2 H2 x2ð Þð Þ ¼ g x1; x2ð Þ,

J � J H1 x1ð Þ;H2 x2ð Þ
� �

¼ g H
�1

1 H1 x1ð Þ
� �

;H
�1

2 H2 x2ð Þ
� �

� �

¼ g x1; x2ð Þ:

By the definition

h x1; x2ð Þ ¼ Jh1 x1ð Þh2 x2ð Þ, (2)

h x1; x2ð Þ ¼ J h1 x1ð Þh2 x2ð Þ: (3)

We currently obtain

h1 x1ð Þ � rX1=A
x1ð Þ ¼

rX1
x1ð ÞP A=x1ð Þ

P Að Þ
¼

αrX1
x1ð Þ

θ
, (4)

h2 x2ð Þ � rX2=A x2ð Þ ¼
rX2

x2ð ÞP A=x2ð Þ

P Að Þ
¼

βrX2
x2ð Þ

θ
, (5)

h1 x1ð Þ � r
X1=A

x1ð Þ ¼
rX1

x1ð ÞP A=x1
� �

P A
� � ¼

1� αð ÞrX1
x1ð Þ

1� θ
, (6)

h2 x2ð Þ � r
X2=A

x2ð Þ ¼
rX2

x2ð ÞP A=x2
� �

P A
� � ¼

1� αð ÞrX2
x2ð Þ

1� θ
: (7)

As a result from Eqs. (2) and (3)

h x1; x2ð Þ ¼ J
αβrX1

x1ð ÞrX2
x2ð Þ

θ2
,

h x1; x2ð Þ ¼ J
1� αð Þ 1� β

� �

rX1
x1ð ÞrX2

x2ð Þ

1� θð Þ2
:
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Now from Eq. (1)

P A=x1; x2ð Þ ¼

J

θ
αβrX1

x1ð ÞrX2
x2ð Þ

J

θ
αβrX1

x1ð ÞrX2
x2ð Þ þ

J

1� θð Þ
1� αð Þ 1� β

� �

rX1
x1ð ÞrX2

x2ð Þ

¼
αβ

αβþ
J

J

θ

1� θ
1� αð Þ 1� β

� �

:

(8)

Note, that for values of J ¼ J ¼ 1 (conditional independence of x1 and x2) equation (8) becomes

the exact solution for the optimal model:

Γ α; β;θ
� �

¼ P A=x1; x2ð Þ:

5. Limitations for the functions J a; bð Þ and J a; bð Þ

We can write

h1 x1ð Þ ¼

ð

þ∞

�∞

J H1 x1ð Þ;H2 x2ð Þð Þh1 x1ð Þh2 x2ð Þdx2: (9)

As a result

1 ¼

ð

þ∞

�∞

J H1 x1ð Þ;H2 x2ð Þð Þh2 x2ð Þdx2 ¼

ð

1

0

J H1 x1ð Þ;H2 x2ð Þð ÞdH2 x2ð Þ: (10)

Thus, we obtain the following condition:

ð

1

0

J a; bð Þdb ¼ 1, (11)

and similarly

ð

1

0

J a; bð Þda ¼ 1: (12)

Similarly, we can get
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ð

1

0

J a; bð Þda ¼ 1

ð

1

0

J a; bð Þdb ¼ 1:

(13)

Obviously

J a; bð Þ, J a; bð Þ ≥ 0, (14)

ð

1

0

ð

1

0

J a; bð Þdadb ¼

ð

1

0

ð

1

0

J a; bð Þdadb ¼ 1: (15)

All the solutions of Eqs. (11)–(15) together with (8) can define the set of all possible realizations

of P A=x1; x2ð Þ.

Let us give some example of a solution of (11), (12) and (14), (15):

Let r xð Þ be a function such that r xð Þ ≥ 0 and

ð

1

0

r xð Þdx ¼ 1

J a; bð Þ ¼
r a� bð Þ , a ≥ b

r a� bþ 1ð Þ , a < b

�

,

satisfy Eqs. (11), (12), (14), and (15).

6. Definition of distance

We define the distance between the proposed approximation of P A=x1; x2ð Þ-Γ α; β;θ
� �

and the

actual function P A=x1; x2ð Þ as follows:

Γ α; β;θ
� �

� P A=x1; x2ð Þ
�

�

�

� ¼

ð ð

þ∞

�∞

rX1X2
x1; x2ð Þ Γ α; β;θ

� �

� P A=x1; x2ð Þ
� 	2

dx1dx2:

Now we have from Eqs. (2) and (3) and Eqs. (4)–(7)

rX1X2
x1; x2ð Þ ¼ θh x1; x2ð Þ þ 1� θð Þh x1; x2ð Þ

¼ θJh1 x1ð Þh2 x2ð Þ þ 1� θð ÞJh1 x1ð Þh2 x2ð Þ

¼ J
αβ

θ
þ J

1� αð Þ 1� β
� �

1� θð Þ


 �

rX1
x1ð ÞrX2

x2ð Þ,
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Γ α; β;θ
� �

� P A=x1; x2ð Þ
�

�

�

� ¼

ð ð

þ∞

�∞

rX1
x1ð ÞrX2

x2ð Þ J
αβ

θ
þ J

1� αð Þ 1� β
� �

1� θð Þ


 �

� Γ α; β;θ
� �

� P A=x1; x2ð Þ
� �2

dx1dx2

¼

ð

1

0

ð

1

0

Jαβ

θ
þ
J 1� αð Þ 1� β

� �

1� θð Þ

" #

� Γ α; β;θ
� �

� P A=x1; x2ð Þ
� �2

dF1 x1ð ÞdF2 x2ð Þ:

(16)

Here

F1 x1ð Þ ¼

ðx1

�∞

rX1
zð Þdz,

F2 x2ð Þ ¼

ðx2

�∞

rX2
zð Þdz:

7. Constraints for basic functions

We will consider further all functions with arguments 1 ≥F1, F2 ≥ 0, but not x1, x2. We have six

functions of F1, F2, which define Eq. (16): J, J, H1, H2,α, β. Let us to write the functions by help

these functions (F1, F2) and find restrictions for these functions:

α ¼ P A=x1ð Þ ¼ θh1 x1ð Þ=rX1
x1ð Þ ¼ θðdH1=dx1Þ= dF1=dx1ð Þ ¼ θ

dH1

dF1
:

By the same way

β ¼ θ
dH2

dF2
:

We know that functions H1, F1, H2, F2 are cumulative distribution functions of x1,x2, corre-

spondingly. These functions are monotonously nondecreasing and change from 0 to 1 from the

definition of cumulative distribution functions. Therefore, we can conclude the following

restraints for functions H1, H2 as functions of F1, F2 exist:

H1 1ð Þ ¼ H2 1ð Þ ¼ 1,

H1 0ð Þ ¼ H2 0ð Þ ¼ 0,

0 ≤ α ¼ θ
dH1

dF1
, β ¼ θ

dH2

dF2
≤ 1,

0 ≤ θ ≤ 1,
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H1 x1ð Þ ¼

ðx1

�∞

h1 x1ð Þdx1

¼

ðx1

�∞

1� αð ÞrX1
x1ð Þ

1� θ
dx1

¼
1

1� θ

ðx1

�∞

rX1
x1ð Þdx1 �

θ

1� θ

ðx1

�∞

αrX1
x1ð Þ

θ
dx1

¼
F1

1� θ
�

θ

1� θ
H1 x1ð Þ:

By the same way

H2 x2ð Þ ¼
F2

1� θ
�

θ

1� θ
H2 x2ð Þ,

J H1 F1ð Þ;H2 F2ð Þð Þ : J H1 F1ð Þ;H2 F2ð Þð Þ ≥ 0
ð1

0

J a; bð Þdb ¼ 1

ð1

0

J a; bð Þda ¼ 1,

J H1 F1ð Þ;H2 F2ð Þ
� �

: J H1 F1ð Þ;H2 F2ð Þ
� �

≥ 0
ð1

0

J a; bð Þdb ¼ 1

ð1

0

J a; bð Þda ¼ 1,

P A=x1; x2ð Þ ¼
Jαβ
θ

Jαβ
θ þ

J 1�αð Þ 1�βð Þ
1�θ

: (17)

8. Optimization

We shall find the best approximation of Γ α; β;θ
� �

as follows:

minΓ α;β;θð ÞE Γ α; β;θ
� �

� P A=x1; x2ð Þ
�

�

�

�

� 	

! Γ α; β;θ
� �

,

where the expected value (or expectation or mathematical expectation or mean or the first

moment) E…½ � is taken with respect to the joint PDF of possible realizations of J, J,α, β, H1, H2

for given F1 and F2.

For the sake of brevity, we denote

C �
Jαβ

θ
þ
J 1� αð Þ 1� β

� �

1� θ

D �
Jαβ

θ
:
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Then from Eqs. (17) and (16)

Γ α; β;θ
� �

� P A=x1; x2ð Þ
�

�

�

� ¼

ð

1

0

ð

1

0

C Γ α; β;θ
� �

�D=C
� �2

dF1dF2

¼

ð

1

0

ð

1

0

dF1dF2 D2Cþ Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� 	

:

(18)

Thus

minΓ α;β;θð ÞE Γ α; β;θ
� �

� P A=x1; x2ð Þ
�

�

�

�

� 	

¼ minΓ α;β;θð ÞE

ð

1

0

ð

1

0

dF1dF2 D2Cþ Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� 	

2

4

3

5

¼ minΓ α;β;θð ÞE

ð

1

0

ð

1

0

dF1dF2 D2C
� 	

2

4

3

5

þminΓ α;β;θð ÞE

ð

1

0

ð

1

0

dF1dF2 Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� 	

2

4

3

5

¼ ConstþminΓ α;β;θð ÞE

ð

1

0

ð

1

0

dF1dF2 Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� 	

2

4

3

5:

(19)

It remains to calculate the expected value in Eq. (19).

We have by obvious assumptions

rJ, J,α,β,H1H2=F1 ,F2
J; J;α; β;H1;H2=F1; F2
� �

¼ rJ=H1,H2
J=H1;H2ð ÞrJ=H1 ,H2

J=H1;H2

� �

rα=F1 α=F1ð Þ

� rH1=αF1 H1=α; F1ð Þrβ=F2 β=F2
� �

rH2=β,F2 H2=β; F2
� �

:
(20)

Lemma 1

E J a; bð Þ½ � ¼

ðþ∞

0

rJ a;bð Þ=a,b J a; bð Þ=a; bð ÞJ a; bð ÞdJ ¼ 1,

E J a; bð Þ
� 	

¼

ðþ∞

0

rJ a;bð Þ=a,b J a; bð Þ=a; b
� �

J a; bð ÞdJ ¼ 1:

Proof: We can take into the consideration the function rJ a;bð Þ=a,b. The domain of the function

J a; bð Þ is square 0 ≤ a, b ≤ 1. By dividing this square into small squares i; jð Þ, we can get sampling

of the function J. Then, on every square i, j, we can define the value of the function Jij. We can

write the following restraints for function J ∗∗∗ð Þ:
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Jij ≥ 0,

1

N

X

N

i¼1

Jij ¼ 1,

1

N

X

N

j¼1

Jij ¼ 1:

Here i ¼ 1,…, N, j ¼ 1,…, N.

All matrixes Jij

� �

that satisfy the above conditions have the same probability. So we can define

probability density function

r J11;…; Jij;…; JNN

� �

:

This density function should be symmetric according to transpositions of columns and rows of

the matrix Jij

� �

, because the density function has the same probability for all matrixes Jij

� �

that satisfy the above conditions. Indeed, these conditions are also symmetric according to

transpositions of columns and rows of matrix Jij

� �

. From symmetry conditions that define this

function rð Þ according to transpositions of columns and rows of matrix Jij

� �

, it is possible to

conclude that this function rð Þ also does not transform according to these transpositions.

We can consider function ru=ij u=ijð Þ that is a discretization of the function rJ a;bð Þ=a,b J a; bð Þ=a; bð Þ:

ru=ij u=ijð Þ ¼

ð

…

ðþ∞

0

r J11;…Jnk;…Jij ¼ u;…; JNN

� �

Y

lmð Þ6¼ ijð Þ
dJlm:

We can transpose columns and rows Jij

� �

in such a way that element Jij will be replaced by the

other element Jnk, and after it the function r J11;…ð Þwill not be transformed. So from the above

equation, we can get

ru=ij u=ijð Þ ¼

ð

…

ðþ∞

0

r J11;…Jnk;…Jij ¼ u;…; JNN

� �

Y

lmð Þ6¼ nkð Þ
dJlm ¼ ru=nk u=nkð Þ:

From this equation we can conclude that ru=ij u=ijð Þ does not depend on ij so rJ=a,b J=a; bð Þ does

not depend on ab and

rJ=a,b J=a; bð Þ ¼ rJ Jð Þ,

and

E J a; bð Þ½ � ¼

ðþ∞

0

rJ Jð ÞJdJ ¼ Const, (21)
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From

ð

1

0

ð

1

0

J a; bð Þdadb ¼ 1,

we can conclude that

ð

1

0

ð

1

0

E J a; bð Þ½ �dadb ¼ 1:

So we can obtain that Const ¼ 1 in Eq. (21).

Lemma 2: Probability distribution functions α and β do not depend on F1 and F2:

rα=F1 α=F1ð Þ ¼ rα αð Þ,

rβ=F2 β=F2
� �

¼ rβ β
� �

:

Proof: Let us make sampling of the function α F1ð Þ by dividing the domain of this function

F1, 0; 1½ � on intervals of 1=N,N≫ 1. Then restriction conditions for αk, k ¼ 1,…, N

0 ≤ αk ≤ 1,

1

N

X

N

k¼1

αk ¼

ð

1

0

θdH1 F1ð ÞdF1dF1 ¼ θ:

All columns αkð Þ that are satisfied by these conditions have equal probability. We can consider

respective function r α1;…;αk;…;αl;…;αNð Þ. From symmetry conditions that define this func-

tion according to transpositions αk ! αl, function r α1;…;αk;…;αl;…;αNð Þ also does not

transform according to such transpositions. As a result, it is possible to write

rk uð Þ ¼

ð

1

0

r α1;…;αk ¼ u;…;αl;…;αNð Þ
Y

n 6¼k
dαn

¼

ð

1

0

r α1;…;αk;…;αl ¼ u;…;αNð Þ
Y

n 6¼l
dαn

¼ rl uð Þ:

From this equation, we can conclude that function rα=F1
α=F1ð Þ does not depend on F1:

rα=F1 α=F1ð Þ ¼ rα αð Þ:
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From (20) we obtain

E Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� 	

¼

ð

1

0

ð

1

0

rα αð Þrβ β
� �

dαdβ

�

ð

1

0

ð

1

0

rH1=α,F1 H1=α; F1ð ÞrH2=β,F2 H2=β; F2
� �

dH1dH2

ð

∞

0

ð

∞

0

rJ Jð ÞrJ J
� �

� Γ2 α; β;θ
� � Jαβ

θ
þ
J 1� αð Þ 1� β

� �

1� θ

" #

� 2Γ α; β;θ
� � Jαβ

θ

" #

dJdJ

¼

ð

1

0

ð

1

0

rα αð Þrβ β
� �

dαdβ

� Γ2 α; β;θ
� � E J½ �αβ

θ
þ
E J
� 	

1� αð Þ 1� β
� �

1� θ

" #

� 2Γ α; β;θ
� �E J½ �αβ

θ

" #

:

Let us define

C ¼
αβ

θ
þ

1� αð Þ 1� β
� �

1� θ
,

D ¼
αβ

θ
:

By Lemma 1, E J½ � ¼ E J
� 	

¼ 1. Hence

E Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� 	

¼

ð

1

0

ð

1

0

Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� 	

rα αð Þrβ β
� �

dαdβ:

It remains to find

minΓ α;β;θð Þ

ð

1

0

ð

1

0

dF1dF2

ð

1

0

ð

1

0

dαdβrα αð Þrβ β
� �

Γ2 α; β;θ
� �� �

C� 2Γ α; β;θ
� �

D�: (22)

Since

rα αð Þrβ β
� �

≥ 0,

if the expression in square brackets is minimized at each point, then the whole integral in

Eq. (22) is minimized. Thus, we may proceed as follows:
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∂

∂Γ
Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� 	

¼ 2Γ α; β;θ
� �

C� 2D ¼ 0:

Hence the optimum Γ α; β;θ
� �

is given by

Γopt α; β;θ
� �

¼
D

C
¼

αβ
θ

αβ
θ þ

1�αð Þ 1�βð Þ
1�θ

:

9. Mean distance between the proposed approximation of

P A=x1; x2ð Þ � Γ α;β;θ
� �

and the actual function P A=x1; x2ð Þ

The mean distance from (18) is

DIS ¼ E Γ α; β;θ
� �

� P A=x1; x2ð Þ
�

�

�

�

� 	

¼

ð1

0

ð

1

0

rα αð Þrβ β
� �

dαdβ Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� 	

þ Const,

where Const in this equation is defined by

Const ¼ E

ð

þ∞

�∞

ð

þ∞

�∞

rX1X2
x1; x2ð Þ P A=x1; x2ð Þ½ �2dx1dx2

2

4

3

5:

From this equation we can find boundaries of the Const. From 0 ≤ P A=x1; x2ð Þ ≤ 1 we can

conclude

Const ≤ E

ð

þ∞

�∞

ð

þ∞

�∞

rX1,X2 , x1; x2ð ÞP A=x1; x2ð Þdx1dx2

2

4

3

5 ¼ E θ½ � ¼ θ:

The second condition is

0 ≤ E

ðþ∞

�∞

ð

þ∞

�∞

rX1 ,X2
x1; x2ð Þ P A=x1; x2ð Þ � θ½ �2dx1dx2

2

4

3

5

¼ E

ðþ∞

�∞

ð

þ∞

�∞

rX1 ,X2
x1; x2ð Þ P A=x1; x2ð Þ2 þ θ2 � 2P A=x1; x2ð Þθ

h i

dx1dx2

2

4

3

5

¼ E

ðþ∞

�∞

ð

þ∞

�∞

rX1 ,X2
x1; x2ð Þ P A=x1; x2ð Þ½ �2dx1dx2

2

4

3

5� θ2:
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So from these two equations, we can conclude

θ2
≤ Const ≤ θ:

In the next step, we would like find function rα αð Þ (rβ β
� �

) in the equation for DIS.

Restrictions for function α F1ð Þ, 0 ≤ F1 ≤ 1 are the following:

ð

1

0

α F1ð ÞdF1 ¼ θ,

0 ≤ α F1ð Þ ≤ 1:

In discrete form (for N ! ∞), we can rewrite αset ¼ α1;α2;…;αNf g

1

N

X

N

i¼1

αi ¼ θ,

0 ≤ αi ≤ 1, i ¼ 1, 2,…, N:

Let us define a function U αsetð Þ in the following way:

U αsetð Þ ¼

PN

i¼1 αi for 0 ≤ αi ≤ 1 , i ¼ 1, 2,…, N

þ∞ otherwise

(

,

U αsetð Þ ¼
X

N

i¼1

Ui αið Þ,

Ui αið Þ ¼
αi for 0 ≤ αi ≤ 1

þ∞ otherwise

�

:

Then the function that satisfies equal probability distribution with considering restrictions (i)

and (ii) is the following:

rαset
αsetð Þ ¼

1

C
δ U αsetð Þ �Nθð Þ: (23)

here δ is the Dirac delta function.

We can define the constant C by

ð

þ∞

�∞

…

ð

þ∞

�∞

rαset
αsetð Þdα1…dαN ¼ 1:
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It can be proved for N ! ∞ that distribution (23) is equal to the following distribution (from

“statistical mechanics” [9]; transform from microcanonical to canonical distribution):

rαset
αsetð Þ ¼

1

Z
e�KU αsetð Þ:

Here we can find Z and K from the following equations:

ð

þ∞

�∞

…

ð

þ∞

�∞

rαset
αsetð Þdα1…dαN ¼ 1, (24)

ð

þ∞

�∞

…

ð

þ∞

�∞

U αsetð Þrαset
αsetð Þdα1…dαN ¼ Nθ: (25)

Quest function rα αð Þ can be found by

rα αð Þ ¼

ð

þ∞

�∞

…

ð

þ∞

�∞

rαset
α1;…;αj ¼ α;…;αN

� �

Y

N

i¼1, i 6¼j

dαi ¼
1

D
e�KUj αJ¼αð Þ, (26)

where

DN ¼ Z: (27)

From Eqs. (24) and (25), we can find

1

Z
¼

K

1� e�K

� 
N

, (28)

θ ¼ Λ Kð Þ, (29)

where Λ Kð Þ is the decreasing function

Λ Kð Þ ¼

1 forK ¼ �∞

0 forK ¼ þ∞

1=2 forK ¼ 0

1

K
�

1

eK � 1
otherwise

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

:

If K is the root of Eq. (29), we can write from Eqs. (26)–(29) for function rα αð Þ
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rα αð Þ ¼

For K ¼ 0

1 for 0 ≤ α ≤ 1

0 otherwise α

8

>

>

<

>

>

:

For K ¼ þ∞

2δ αð Þ 0 ≤ α ≤ 1

0 otherwise α

8

>

>

<

>

>

:

For K ¼ �∞

2δ α� 1ð Þ 0 ≤ α ≤ 1

0 otherwise α

8

>

>

<

>

>

:

For otherwise K

1

D
e�Kα 0 ≤ α ≤ 1

0 otherwise α

8

>

>

>

<

>

>

>

:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

,

where 2

ð1

0

δ α� 1ð Þdα ¼ 2

ð

1

0

δ αð Þdα ¼ 1 and 1
D ¼ K

1�e�K :

10. The case of more than two states A and reliabilities X

Let A be a state, with values in set 0, 1,…, L. This number can characterize strength of a bond.

Assume that the apriori probability P A ¼ ið Þ is known, and denote it by θi; here i ¼ 1,…, L. Let

X1,…, XK be random variables, with values in some set, say � � ∞; þ ∞½. We have the following

information: X1 ¼ x1,...,XK ¼ xK (obtained through measurement). Furthermore, we have sys-

tems, “classifiers,” which for given x1,...,xK produce

P A ¼ i=Xj ¼ xj
� �

� αij:

We want to find the probability P A ¼ i=X1 ¼ x1;…;XK ¼ xKð Þ in terms of αij and θi. In more

detail, we want to find a function Γopt,M αij;θi

� �

, which is the best approximation for

P A ¼ M=x1;…; xKð Þ on the average. By the same way, in case of two variables, it is possible to

find that the Γopt,M αij;θi

� �

can be defined by the following equation:

Γopt,M αij;θi

� �

¼

QK
j¼1 αMj

� �

=θK�1
M

PL
i¼1

QK
j¼1 αij

� �

=θK�1
i

:

We have evidential restraints for αij,θi
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0 ≤ αij ≤ 1

XL

i¼1

αij ¼ 1,

0 ≤ θi ≤ 1

XL

i¼1

θi ¼ 1:

11. Conclusions

Using as an illustration the QSAR, we demonstrated effectively that the Naive Bayes model

gives minimal mean error over uniform dispersion of all conceivable relationships between

characteristic reliabilities. This result can clarify the portrayed over secretive optimality of

Naive Bayes model. We too found the mean error that the Naive Bayes model gives for

uniform distribution of all conceivable relationships of reliabilities.

Medicinal chemistry (quantitative structure-activity relationships, QSAR) prediction increas-

ingly relies on Bayesian network-based methods. Its importance derives partly from the diffi-

culty and inaccuracies of present quantum chemical models (e.g., in SYBYL and other

software) and from the impracticality of sufficient characterization of structure of drug mole-

cules and receptor active sites, including vicinal waters in and around hydrophobic pockets in

active sites. This is particularly so for biologicals (protein and nucleic acid APIs (nucleic acid

active pharmaceutical ingredients)) and target applications that exhibit extensive inter-

receptor trafficking, genomic polymorphisms, and other system biology phenomena. The

effectiveness and accuracy of Bayesian methods for drug development likewise depend on

certain prerequisites, such as an adequate distance metric by which to measure similarity/

difference between combinatorial library molecules and known successful ligand molecules

targeting a particular receptor and addressing a particular clinical indication. In this connec-

tion, the distance metric proposed in Section 6 of the chapter manuscript and the associated

Lemmas and Proofs are of substantial value in the future of high-throughput screening (HTS)

and medicinal chemistry.

However, our purpose here was not demonstration of effectiveness of these definitions or

effectiveness of QSAR. The interested reader can learn it from papers [3, 4] and references

inside of these papers. As we said above, we use QSAR only for clearness; the proof is correct

for any field of use of Naive Bayes classifier.
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