
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter

Mathematical Analysis of
Memristor CNN
Angela Slavova and Ronald Tetzlaff

Abstract

In this chapter we present mathematical study of memristor systems. More
precisely, we apply local activity theory in order to determine the edge of chaos
regime in reaction-diffusion memristor cellular nanoscale networks (RD-MCNN)
and in memristor hysteresis CNN (M-HCNN). First we give an overview of math-
ematical models of memristors, CNN and complexity. Then we consider the above
mentioned two models and we develop constructive algorithm for determination of
edge of chaos in them. Based on these algorithms numerical simulations are pro-
vided. Two applications of M-HCNN model in image processing are presented.

Keywords: memristor, cellular nanoscale networks, reaction-diffusion systems,
hysteresis, edge of chaos, image processing

1. Introduction

Memristors form an important emerging technology for memory and
neuromorphic computing applications (Figure 1). Chua has developed the funda-
mentals of the memistor framework nearly 40 years ago [1]. Since then, the indus-
try has been engaged in the search for novel materials and technologies of these
nano-structures [2].

Mathematical models of the complex dynamics which can be exhibited by nano-
devices is presented in [3]. General and simple models are very important in the
investigations of nonlinear dynamics in memristors [4]. Such models of memristor-
based circuits are presented in [5, 6]. In order to develop novel hybrid [7] hardware
architectures combining memory storage and data processing in the same physical
location and at the same time [8] to explain the behavior of biological systems [9]
new accurate mathematical models need to be introduced (Figure 2). Although
several physical models [10–13] have been derived in order to study phenomena
characterizing these nano-devices, a circuit theoretic-based mathematical treatment
allowing the development of memristor circuits is still restricted to few cases. Most
of these mathematical models have been studied in [14]. The merit for the first
model of a titanium dioxide-based nano-structure may be ascribed toWilliams [15].
This model is simple not specifying boundary conditions in the state equation.
Literature was later enriched with a number of more complex models taking into
account nonlinear effects on ionic transport and defining behavior at boundaries.
The model proposed by Joglekar and Wolf [16] may allow for single-valued state-
flux characteristics only, under any sign-varying periodic input with zero mean. By
contrast, only multi-valued state-flux characteristics may be reproduced by Biolek’s
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model [17] under the same type of excitation. A comparison of the dynamic behav-
ior of titanium dioxide memristor circuits assuming different boundary models
including the BCM model is given in [18]. The results underline the sensitivity of
these nonlinear circuits to the modeling accuracy. In the following, models have
been proposed also for memristors based on other materials, e.g., for a tantalum
oxide element [13, 19] and for a niobium dioxide memristors [12]. Nevertheless,
recent investigations [14] uncover numerical problems occurring in the numerical
solution of the strongly nonlinear differential-algebraic equations or in a SPICE
simulation [8] of these memristors.

Computing with memory is one of the main properties of neural networks, in
which the performance is within localized memory storage. Therefore, they can
provide high density analogue storage and can be integrated locally with computing
elements which is the main advantage of the network learning algorithms. The
memristive array works as a conventional memory, i.e., the weigh values can be
calculated outside the array and can be programmed to the correct addresses. The

Figure 1.
Crossbar architecture and crossbar elements of a memristor.

Figure 2.
Four basic circuit elements.
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algorithms are flexible because they can be implemented with an appropriate
design. Local and non-local learning algorithms can be implemented in a straight-
forward way. The disadvantage is that they cannot have high connectivity and
internal dynamics.

Cellular Nonlinear/Nanoscale Networks (CNN) have been introduced in 1988 by
Chua and Yang [20, 21] as a new class of information processing systems which
show important potential applications (Figure 3). By endowing a single CNN cell
with local analog and logic memory, some communication circuitry and further
units, the CNN Universal Machine (CNN-UM) has been invented by Roska [22–24].
Analog CNN-UM chip hardware implementations have been developed some time
ago. A CNN-UM chip represents a parallel computer with stored programmability
allowing real-time processing of multivariate data. CNN have very promising
applications in image processing and pattern recognition [22, 25–27]. Although,
recently realized systems, e.g., the EyeRis 1.3 system, the MIPA4k, and SCAMP-5,
are characterized as sensor-processor systems for high speed vision by reaching
frames rates more than 20 kHz, their low resolution (e.g., 176 � 144 pixel in the
EyeRis 1.3 system) limits the applicability to certain problems in practice only. Since
the cell size cannot be decreased considerably in conventional CMOS technology,
nano-elements will play an important role in future CNN-UM chip realizations.
Especially, memristors [28] which are considered for synaptic connections in first
realizations [29], will play an important role for the realization of future CNN-UM
sensor-processor systems by taking their rich dynamical behavior into account.
However, a deep mathematical treatment of CNN with memristors, briefly called
memristor CNN in the following, has not been provided so far. Especially, the
derivation of methods allowing the determination of the parameter space of a
memristor CNN showing emergent complex behavior, is being essentially impor-
tant in the development of CNN-based computational methods.

Many scientists have struggled to uncover the elusive origin of “complexity” and
its many equivalent jargons, such as emergence, self-organization, synergetics,
collective behaviors, non-equilibrium phenomena, etc. [22, 30–32]. In his works,
Schrödinger [31] defines the exchange of energy as a necessary condition for com-
plexity of open systems. Prigogine [32] states the instability of the homogeneous
systems as a new principle of nature, whereas Turing finds the origin of morpho-
genesis in symmetry breaking. In [31] Smale considers a reaction-diffusion system

Figure 3.
CNN architecture.
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which has properties such that it makes the Turing interacting system to oscillate.
Recent laboratory observations suggesting that chaotic regimes may in fact repre-
sent the ground state of central nervous system point to the intriguing possibility of
exploiting and controlling chaos for future scientific and engineering applications.

Among other things, a mathematical proof is given in [22, 30, 33, 34] showing
that none of the complexity related jargons cited above can explain emergent
complex behavior in reaction-diffusion system without introducing local activity.
The theory of local activity offers a constructive method for determination of
complexity. We shall propose algorithm for hysteresis CNN which defines the
domain of the cell parameters in which the system is capable of exhibiting com-
plexity. The main advantage of local activity theory is that the complex behavior of
reaction-diffusion system can be explained in a rigorous way by explicit mathemat-
ical formulas determining a small subset of locally active parameters’ region called
edge of chaos. Cell kinetic equations which are locally active can exhibit limit cycles
or chaos if the cells are uncoupled from each other by letting all diffusion coeffi-
cients to be zero. In this case complex spatiotemporal phenomena arise, such as
spatiotemporal chaos or scroll waves.

In particular, constructive and explicit mathematical inequalities can be
obtained for identifying that region in the CNN parameter space. By restricting the
cell parameter space to the local activity domain, a major reduction in the comput-
ing time required by the parameter search algorithms is achieved [33, 34].

In the next sections we shall present two mathematical models of memristor
CNN. First one is reaction-diffusion memristor CNN, and the second one is
memristor hysteresis CNN. We shall derive algorithm for determination of edge of
chaos regime in these models based on local activity theory [33].

2. Reaction-diffusion memristor CNN (RD-MCNN)

Nonlinear reaction-diffusion types of equations are widely used to describe
phenomena in different fields. We shall determine for reaction-diffusion CNN the
domain of the cell parameters in which the cells are locally active and therefore they
can exhibit complex behavior. Edge of chaos (EC) is associated with a region of
parameter space in which complex phenomena and thus information processing can
appear.

In this section the principle of local activity will be applied in studying complex
behavior of reaction-diffusion CNN with memristor synapses (RD-MCNN). Semi-
conductor reaction-diffusion (RD) large scale circuits (LSI) implementing RD
dynamics, called reaction-diffusion chips, are mostly designed by digital, analog, or
mixed-signal complementary-metal-oxide-semiconductor (CMOS) circuits of CNN
and cellular automata (CA).

In our model each cell will be arranged on a two-dimensional square grid and will
be connected to adjacent cells through coupling devices that mimic 2-D spatial
diffusion and transmit the cell’s state to its neighboring cells, as in conventional CNN.

We shall consider a discrete medium of identical cells which interact locally and
therefore the homogeneous medium exhibits a non-homogeneous static or spatio-
temporal patterns under homogeneous initial and boundary conditions. The theory of
local activity will be formulated mathematically and implemented in circuit models.
We shall start with reaction-diffusion CNN equations as a special class of spatially
extended dynamical systems and we shall define the principle of local activity which
will not be based on observations but on rigorous mathematical analysis.
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2.1 Definition of local activity for reaction-diffusion equations

We call reaction-diffusion CNN equations locally active if and only if their cells
are locally active at some cell equilibrium points [33].

In [34] principle of local activity is explained with the assumption of zero energy
at the zero time. Therefore we can say that the cell is acting as a source of small
signal energy and it is able to give rise to an initially very small input signal to a
larger energy signal.

From mathematical point of view the signal should be very small in order to take
the linear terms of Taylor series expansion of the cell model. In this way we can
derive explicit analytical inequalities for the cell to be locally active at some equi-
librium points in which the Taylor series expansion is computed. In other words, we
can say that complex behavior of cells arises from infinitesimal small perturbations.

In this section we shall consider reaction-diffusion system [35, 36]:

∂u xð Þ

∂t
¼ gu∇

2u xð Þ þ f u u xð Þ; v xð Þð Þ

∂v xð Þ

∂t
¼ gv∇

2u xð Þ þ f v u xð Þ; v xð Þð Þ

(1)

where gu,v are the diffusion coefficients, f u,v :ð Þ state for the reaction model.

In (1) u(x) and v(x) are represented by voltages on the RD hardware, and the
gradient is represented by linear resistors.

Let us discretize first equation of (1) in space:

d uj tð Þ

dt
¼

gu uj�1 � uj
� �

þ gu ujþ1 � uj
� �

∆x2
þ f u :ð Þ, (2)

where j is the spatial index, ∆x is the discrete step in space, terms gu uj�1 � uj
� �

and gu ujþ1 � uj
� �

represent respectively current flowing into the jth node from
( j� 1)th and ( j + 1)th nodes via two resistors whose conductance is represented by gu.

We consider the memristor model [9], in which the resistors are replaced with
memristors:

i ¼ gu wð Þv,
dw

dt
¼ i, (3)

where the voltage across the memristor is v, the current of the memristor is i, the
nominal internal state of the memristor corresponding to the charge flow is w, and
the monotonically non decreasing function is gu wð Þ when w is increasing.

We shall replace resistors for diffusion in analog RD LSIs with memristors
(Figure 4).

Then we obtain the resulting point dynamics

duj
dt

¼
gu wl

j

� �

uj�1 � uj
� �

þ gu wr
j

� �

ujþ1 � uj
� �

Δx2
þ f u :ð Þ,

dvj
dt

¼ f v :ð Þ,

(4)

where gu :ð Þ is the monotonically increasing function defined by:
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gu wl, r
j

� �

¼ gmin þ gmax � gmin

� � 1

1þ e�βwl, r
j

, (5)

where β is the gain, gmin and gmax are the minimum and maximum coupling

strengths, respectively, and wl, r
j denotes the variables for determining the coupling

strength (l—leftward, r—rightward).

We introduce the following memristive dynamics for wl, r
j :

τ
dwl, r

j

dt
¼ gu wl, r

j

� �

:η1: uj�1 � uj
� �

, (6)

where the right-hand side represents the current of the memristors in (2), η1
denotes the polarity coefficient—η1 = + 1: wl

j, η1 = �1: wr
j .

In the next we shall study RD-MCNN model of FitzHugh-Nagumo system.
Simplification of Hodgkin-Huxley model (Figure 5) can be given by FitzHugh-

Nagumo system consisting of two coupled partial differential equations with two
diffusion coefficients. In generally it describes the electrical potential across cell
membrane when the flow of ionic channels is changed. It also can be presented as
the model of electrical waves of the heart.

In this section we shall present the following FitzHugh-Nagumo system with
two diffusion terms:

Figure 5.
Memristive model.

Figure 4.
Circuit realization.
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∂u

∂t
¼ f 1 u; vð Þ þ d1∇

2u,

∂v

∂t
¼ f 2 u; vð Þ þ d2∇

2v,

(7)

where

f 1 u; vð Þ ¼ �
1

ε
u u� 1ð Þ u�

bþ v

a

� �

,

f 2 u; vð Þ ¼ f uð Þ � v,

(8)

f(u) is monotonically non decreasing function

f uð Þ ¼

0, 0≤ u≤
1

3

1�
27u u� 1ð Þ2

4
,

1

3
≤ u≤ 1

1 u. 1

8

>

>

>

>

<

>

>

>

>

:

The parameters ε, a, b are physical parameters, related to pressures of oxide,
carbon oxide and to the temperature.

We discretize spatially system (7) and the resulting point dynamics are given as:

duij
dt

¼ f 1 uij; vij
� �

þ d1 wl, r
� �

ui�1j þ uiþ1j þ uij�1 þ uijþ1 � 4uij
� �

dvij
dt

¼ f 2 uij; vij
� �

þ d2 wl, r
� �

vi�1j þ viþ1j þ vij�1 þ vijþ1 � 4vij
� �

,

(9)

where dk wl, r
� �

denotes the monotonically increasing function defined as

dk wl, r
� �

¼ dmin þ dmax � dminð Þ:
1

1� e�βwl, r
k

, k ¼ 1, 2 (10)

Then the memristive dynamics is defined as in (6).
We shall apply the constructive algorithm for determining edge of chaos (EC)

region for the memristive FitzHugh-Nagumo system (9) and (10).

• We map memristive FitzHugh-Nagumo system into the associated FitzHugh-
Nagumo CNN model:

duij
dt

¼ f 1 uij; vij
� �

þ d1 wð Þ ui�1j þ uiþ1j þ uij�1 þ uijþ1 � 4uij
� �

dvij
dt

¼ f 2 uij; vij
� �

þ d2 wð Þ vi�1j þ viþ1j þ vij�1 þ vijþ1 � 4vij
� �

,

(11)

• We find the equilibrium points of (11). According to the theory of dynamical
systems equilibrium points u ∗ , v ∗ are these for which:

f 1 u ∗
; v ∗ð Þ ¼ 0

f 2 u ∗
; v ∗ð Þ ¼ 0

(12)

System (12) may have one, two or three real roots u ∗
1 ; v ∗

1

� �

, u ∗
2 ; v ∗

2

� �

, u ∗
3 ; v ∗

3

� �

.

In general, these roots are functions of the cell parameters a, b, ε.
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• We calculate the four cell coefficients a11, a12, a21, a22 of the Jacobian matrix of
(12) about each system equilibrium point E ∗

k , k ¼ 1, 2, 3.

• Then we calculate the trace Tr E ∗
k

�

) and the determinant D E ∗
k

� �

of the Jacobian

matrix of (12) for each equilibrium point.

• We define locally active region for each equilibrium point E ∗
k :

LAR E ∗
k

� �

: a22.0, or 4a11a22, a12 þ a21ð Þ2

• Additional stability condition in this case is:

Tr E ∗
k

� �

,0 and D E ∗
k

� �

.0

It can be shown that this is the only region which corresponds to locally asymp-
totically stable equilibrium points of our model.

• We define the stable and locally active region SLAR E ∗
k

� �

:

• In our particular case, we have three equilibrium points

E1 ¼ 0;0ð Þ, E2 ¼ 1; 1ð Þ, E3 ¼
bþ1
a ; 1

� �

.

Then we check the conditions for the local activity and stability of the equilib-
rium points. The result is that only E1, E2 satisfy these conditions.

By the above presented algorithm we can prove the following theorem:

Theorem 1. We say that MCNN model of FitzHugh-Nagumo system (7) and (8)
operates in EC region if and only if the following conditions for the cell parameters are
satisfied:

ε≪ 1,
a� b� 1

a
, 1:

In other words there is at least one equilibrium point which is in SLAR E ∗
k

� �

:

In the simulations of the above algorithm we can see the cell parameter projec-
tion on the (T, ∆, a22)-plane (Figure 6). We have red subregion in which we have
three equilibrium points of our model and at least one is both stable and locally
active; blue subregion in which we have either one or three equilibrium points and
every equilibrium point is unstable; green subregion in which there is only
one equilibrium point and it is both stable and locally active. By definition, red and
green subregions in Figure 6a together constitute the edge of chaos. In Figure 6b
we can see the plot of edge of chaos regime in the parameter (a, b, ε) plane.

Through extensive numerical simulations we obtain that non uniform spatial
patterns are generated in our CNN model with memristor synapses depending on
initial conditions—see Figure 7.

Through the above numerical simulations, the following things were demon-
strated: (a) excitable waves propagating on the memristor can modulate the
memristor conductance which depends on the memristor’s polarity; (b) change of
memristor conductance can modulate the velocity of the excitable wave propaga-
tion, and it is inversely proportional to the time constant of the model; (c) the
model under consideration generates nonuniform spatial patterns which process
depends on the initial condition of FitzHugh-Nagumo system (7) and (8),
memristor polarity and stimulation.
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Figure 6.
Simulations.

Figure 7.
Pattern formation: (a) spatial pattern formation and (b) clockwise spiral wave patterns.
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3. Hysteresis CNN with memristor synapses

In this section we shall present mathematical study of hysteresis CNN (HCNN)
with memristor synapses. In our model the cells are of first order and they have
hysteresis switches. It is known from the literature [21–26, 35, 37–41] that such
models have many applications because they operate in two modes—bi-stable
multi-vibrator mode and relaxation oscillator mode. We shall consider HCNN
working in second one. When CNN operates in the relaxation oscillator mode then
various patterns and nonlinear waves can be generated. Associative (static) and
dynamic memories functions can be derived from the hysteresis CNN [35, 37, 41].

Let us consider hysteresis CNN with memristor synapses, which we shall call
memristor hysteresis CNN (M-HCNN):

duij
dt

¼ �m uij
� �

þ ∑
k, l∈Nij

ak�i, l�j f uklð Þ
� �

1≤ i, j≤ N, (13)

where uij denotes the state of the cell, the output yij ¼ f uij
� �

is dynamic hyster-

esis function defined by:

f u tð Þð Þ ¼

1, for u tð Þ. � 1, f u t�ð Þð Þ ¼ 1

�1, for u tð Þ ¼ �1

�1, for u tð Þ, 1, f u t�ð Þð Þ ¼ �1

1, for u tð Þ ¼ 1,

8

>

>

>

<

>

>

>

:

(14)

t� ¼ limε!0 t� εð Þ, ε.0, m :ð Þ is defined as m uij
� �

¼
uij
M tð Þ in which by M tð Þ we

denote the memristance. When we insert memristor [9] in HCNN model we expect
to obtain better resolution in static and dynamic images [41]. We introduce a
memristor in HCNN by replacing the original linear resistor. In this way it can
exhibit nonlinear current-voltage characteristic with locally negative differential
resistance. The main advantage of our memristor HCNN (M-HCNN) is the versa-
tility and compactness due to the nonvolatile and programmable synapse circuits. In
the circuit realization of M-HCNN the output function is not complex.

Let us consider M-HCNN model working in a relaxation oscillator mode
described by

duij
dt

¼ �m uij
� �

� 2 h uij
� �

þ bf uij
� �

, 1≤ i, j≤ N: (15)

Below is the picture of relaxation oscillator under consideration (Figure 8).
M-HCNN model (15) generates patterns close to the bifurcation point b = 3.

Computer simulations of (15) when we use the Laplace template

0 1 0

1 �4 1

0 1 0

0

B

@

1

C

A

show the generation of spiral waves for b = 3 (see Figure 9):

3.1 Determination of edge of chaos domain in M-HCNN model

We shall apply theory of local activity [33, 34] in order to study the dynamics of
M-HCNN model (15). The theory which will be presented below offers both con-
structive analytical and numerical method for obtaining local activity of M-HCNN.
It is known [35, 41] that the cells of HCNN can exhibit complexity in the domain of
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cell parameters in which the cells are locally active. We shall develop constructive
and explicit mathematical inequalities for identifying the region in the M-HCNN
model (15) parameter space where complexity phenomena may emerge. By
restricting the cell parameter space to the local activity domain we can achieve a
major reduction in the computing time required by the parameter search algo-
rithms. This will allow to determine and control chaos which will be useful for the
future scientific and engineering applications [34, 41, 42].

We shall develop constructive algorithm for studying the dynamics of our M-
HCNN model (15) based on [33]:

(1) We chose the Laplace template of the following type

0 1 0

1 �4 1

0 1 0

0

B

@

1

C

A
in order

to discretize the M-HCNN model (15). Then in relaxation mode the dynam-
ics of an isolated cell when there are no control and threshold parameters can
be written:

duij
dt

¼ �m uij
� �

� 2h uij
� �

þ bf uij
� �

¼ F uij
� �

: (16)

Figure 8.
Relaxation oscillator defined by (15).

Figure 9.
Spiral waves in HCNN model (15).
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(2) We can find the equilibrium points Ek of (16), which satisfy the equation
F uij
� �

¼ 0. In general, this system may have four real roots as functions of
the cell parameters.

(3) We calculate the cell coefficients a11 Ekð Þ, a12 Ekð Þ, a21 Ekð Þ, a22 Ekð Þ,
k ¼ 1, 2, 3, 4.

(4) We denote the trace of the Jacobian matrix at equilibrium point by Tr Ekð Þ
and determinant by ∆ Ekð Þ.

Remark. In order to provide physical implementation it is important to have
appropriate circuit model for which we can use the results from the classical circuit
theory. In order to obtain locally active cells it is sufficient the cell to act as a source
of small signal in at least one equilibrium point. In this way the cell injects a net
small signal average power into the passive resistive grids.

Let us now define stable and locally active region for the M-HCNN model (16).
Definition 1. We say that the cell is both stable and locally active region at the

equilibrium point Ek for M-HCNN model (16) if

a22.0 or 4a11a22, a12 þ a21ð Þ2 and

Tr Ekð Þ,0 and ∆ Ekð Þ.0:

This region in the parameter space is called SLAR Ekð Þ.

(5) We shall define the EC region our M-HCNN model (16). According to
[33, 34] it is such region in the cell parameter space where we can expect
emergence of complex phenomena and information processing.

Definition 2. For M-HCNN model (16) edge of chaos region is such that there exists
at least one equilibrium point both locally active and stable.

Based on the above algorithm we can prove the following theorem:
Theorem 2. We say that M-HCNN model (16) is working in edge of chaos regime if

and only if the following conditions are satisfied: �1 < b < 3. In other words there is at
least one equilibrium point which is locally active and stable.

We obtain the following edge of chaos domain for our M-HCNN model (16)
through computer simulation:

The location of 16 cell parameter points arbitrarily chosen within the locally
active domain. We have locally active and stable (or edge of chaos) in red; locally
active and unstable in green; locally passive in blue (Figure 10).

3.2 Simulation results and some applications

In this section we shall consider two applications of M-HCNN model (16) in
image processing. First one is for edge extraction and the second one is for noise
removal. In our simulations we use programing environment MATLAB and we use
a forward Euler algorithm with a time step size ∆t = 0.01. The dynamic hysteresis
function h(x) can be programmed applying this algorithm is:

h u tnð Þð Þ ¼

1, for u tnð Þ. � 1, h u tn�1ð Þð Þ ¼ 1

�1, for u tnð Þ ¼ �1,

�1, for u tnð Þ, 1, h u tn�1ð Þð Þ ¼ �1

1, for u tnð Þ ¼ 1,

8

>

>

>

<

>

>

>

:
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tn ¼ n∆t, n ¼ 1, 2,…

We shall start with the application of our M-HCNN model for edge extraction.
The simulations are presented below (see Figure 11):

It is known that for feature extraction we firstly extract the edges of the image,
which contain most of the information for the image shape. In the example provide
on Figure 11we show the original image—(a), and then the results which we obtain
simulating M-HCNN model—(b) and standard CNN model—(c). It can be seen
that the results from M-HCNN (16) model and CNN model are very similar.

Figure 10.
Edge of chaos domain for M-HCNN model (16).

Figure 11.
Example of edge extraction: (a) original image, (b) M-HCNN, and (c) standard CNN.
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Another application which we shall present is for noise removal. The results of
our simulations are given on the figure below (see Figure 12):

The applications of CNN show that the linear image processing can be compared
to spatial convolution with infinite impulse response kernels [21, 41, 42]. When
taking the image by a camera from the real world there is a possibility it to be
polluted with some noise. That is why noise removal is very important for CNN
applications such as AI devices, IoT. In our case, the simulations of M-HCNNmodel
(16) shown in Figure 12 present very good processing performance of noise
removal similar to the simulations of standard CNN.

4. Conclusions and discussion

In this chapter, we stated the local activity theory for reaction-diffusion equa-
tions and hysteresis systems. However it can be generalized to other systems. In
particular, the developed constructive procedure is applicable to any system whose
cells and couplings are described by deterministic mathematical models. The crux
of the problem is to derive testable necessary and sufficient conditions which
guarantee that the system has a unique steady state solution at t ! ∞. A homoge-
neous non conservative medium cannot exhibit complexity unless the cells, or the
coupling network is locally active.

In the second part of the chapter we focus our attention on HCNN model which
has memristor synapses. The concept of CNN is based on some aspects of neurobi-
ology and is adapted to integrated circuits. CNN are defined as spatial arrangements
of locally coupled dynamical systems, cells. The CNN dynamics is determined by a
dynamic law of an isolated cell, by the coupling laws between the cell and by
boundary and initial conditions. The dynamic law and the coupling laws of a cell are
often combined and described by a nonlinear ordinary differential- or difference
equation (ODE), the state equation of a cell. Thus a CNN is given by a system of
coupled ODEs with a very compact representation in the case of translation invari-
ant state equations. Despite of having a compact representation CNN can show very
complex dynamics like chaotic behavior, self-organization, pattern formation or
nonlinear oscillation and wave propagation. Analog CNN chip hardware
implementations have been developed [23]. The future of CNN implementation is
in nano-structure computer architecture. CNN not only represent a new paradigm
for complexity but also establish novel approaches to information processing by
nonlinear complex systems. CNN have very impressive and promising applications
in image processing and pattern recognition [22, 43]. After the introduction of the
CNN paradigm, CNN Technology got a boost when the analogic cellular computer

Figure 12.
Simulation of noise removal by M-HCNN model and by standard CNN model: (a) noise, (b) M-HCNN, and
(c) CNN.
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architecture, the CNN Universal Machine has been invented [24, 30]. The unique
combined property of memristors [44] to store the information for a very long time
after the power is switched off may allow the development and circuit implemen-
tation of memcomputing paradigms.

We develop algorithm for determination of EC domain of the cell parameter
space for M-HCNNmodel (16). Two applications are presented—for edge detection
and noise removal. The conclusions of the simulation results are that the image does
not change when we vary the memristor weights which is possible because of the
binary quantization of the output. The speed of the numerical simulations of our M-
HCNN model could be enlarged due to the need of more iterations of the algorithm
in order to obtain stable solutions. But the quality of the image does not change.
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