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Inflammatory Muscle Diseases
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Abstract

Inflammatory myopathies, also called idiopathic inflammatory myopathy or 
myositis, are rare conditions characterized by the involvement of various organs 
in addition to muscle tissue. These changes can lead to severe impairments and 
adversely impact the quality of life of affected individuals. The diagnosis and treat-
ment of inflammatory myopathies involve the participation of an interdisciplinary 
team, due to the complexity of the disease and the high variety of possible signs 
and symptoms. In this chapter we will discuss the epidemiology and characteristics 
of the main subtypes of inflammatory myopathies, such as polymyositis, dermato-
myositis, necrotizing myopathy, overlap myositis, and myositis of inclusion bodies. 
Next, we will discuss the existence of crosstalk between inflammatory processes 
in the oral cavity and their consequences on skeletal muscle. As oral inflammation 
can increase infiltration of macrophages in muscle tissue and this increase is related 
to the production of proinflammatory cytokines in this tissue, these cytokines 
can cause muscle weakness. It is important to consider the prevention of chronic 
inflammatory processes in order to maintain muscle integrity or even prevent the 
worsening of the clinical condition of patients with inflammatory muscle diseases.

Keywords: myositis, dermatomyositis, polymyositis, inclusion body myositis, 
inflammation

1. Introduction

Inflammatory myopathies, also called idiopathic inflammatory myopathy or 
myositis, are rare conditions characterized by the involvement of various organs 
in addition to muscle tissue. These changes can lead to severe impairments and 
adversely impact the quality of life of affected individuals [1, 2].

The diagnosis and treatment of inflammatory myopathies involve the participa-
tion of an interdisciplinary team, due to the complexity of the disease and the high 
variety of possible signs and symptoms. The integration of subspecialties, such 
as rheumatologist, neurologist, dermatologist, pulmonologist, cardiologist, and 
physiotherapist, among others, is necessary to achieve the ideal treatment plan. 
Diagnosis of inflammatory myopathies involves several steps and often requires 
autoantibody testing and histological evaluation of a muscle tissue biopsy in 
addition to several other tests, including muscle magnetic resonance imaging and 
electromyography. Typical symptoms of inflammatory myopathies include muscle 
weakness in the arms and legs, which may manifest in a few days or even several 
weeks. Muscular weakness is reflected in difficulties in performing daily activities 
such as walking, climbing stairs, or lifting an object above the head. In addition to 
muscle weakness, it is observed that pain is also a frequent detectable symptom in a 
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patient with inflammatory myopathies. Laboratory tests usually show a significant 
increase of creatine kinase and elevation in the concentration of liver enzymes that 
suggest the occurrence of damage to muscle cells [1, 3].

The adverse impact on quality of life highlights the importance of performing 
an accurate and reliable diagnosis from the combination of clinical and laboratory 
findings to establish the appropriate treatment for each individual [1, 2].

In this chapter we will discuss the epidemiology and subtypes of inflammatory 
myopathies. Next, we will discuss the existence of crosstalk between inflammatory 
processes in the oral cavity and their consequences on skeletal muscle.

2. Inflammatory myopathies

2.1 Epidemiology of inflammatory muscle diseases

All myositis subtypes can be considered rare diseases due to their relatively 
low prevalence. Studies indicate that overlap myositis represents the subtype of 
the disease that affects the largest number of people, comprising about half of the 
cases registered. Dermatomyositis accounts for more than a third of the cases of the 
disease and presents a prevalence of approximately 1–6 patients per 100,000 people 
in the United States [4–6].

It is important to emphasize that obtaining accurate epidemiological data is 
extremely difficult due to the different diagnostic criteria adopted in each study. 
Therefore, the information provided by the publications should be examined and 
evaluated with caution and attention [7].

A large study conducted from the analysis of 3067 patients from Belgium, 
China, Czech Republic, Hungary, Italy, Mexico, Norway, Sweden, Switzerland, 
the United Kingdom (UK), and Vietnam who were registered in the Euromyositis 
Registry demonstrated that the dermatomyositis was the most common disorder 
with 31% of the cases [7].

Data on the prevalence of necrotizing myopathy suggest that this subtype of the 
disease accounts for approximately one-fifth of the reported cases of inflammatory 
muscle diseases [4–6].

The information regarding the epidemiology of polymyositis varies and depends 
on the methodology and location of the study ranging from the largest fraction with 
prevalence of approximately 10 cases per 100,000 people in the United States [1–3], 
27% in the Euromyositis Registry [7], to the rarest subtype that should be diagnosed 
only by exclusion [4–6].

Currently there is some consensus that overlap myositis, necrotizing myopathy, 
and dermatomyositis represent about 90% of the cases of inflammatory muscle 
diseases [4–6]. It is estimated that the inclusion body myositis occurs with a preva-
lence of up to 14 per million people [8].

2.2 Dermatomyositis

Dermatomyositis is typically characterized by the development of proximal 
muscle weakness and cutaneous manifestations that may arise over a period of 
weeks to months. However, there are cases in which muscular impairment is not 
significant without signs and symptoms of muscle weakness, elevated muscle 
enzymes or changes in electromyography, magnetic resonance imaging (MRI), and 
muscle biopsy [9].

Skin signs frequently seen in dermatomyositis include an exacerbated periorbital 
rash with edematous features and erythematous lesions involving the extensor 
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surfaces of the joints. In some cases, myalgia and pruritus may also be observed 
as important symptoms of the disease. Muscle enzyme concentrations tend to 
be elevated, and electromyography commonly shows a myopathic pattern [10]. 
Intramuscular T2 hyperintensities resulting from inflammation or muscle necrosis 
can be observed on MRI. Dermatomyositis may present a characteristic less frequently 
observed in other types of inflammatory myopathies, which involves the presence of 
T2 hyperintensities around individual muscles due to fascial involvement [11].

Muscular biopsies in patients with dermatomyositis have perifascicular atrophy 
as a feature of high specificity [12]. Evidences show that the expression of peri-
fascicular human myxovirus resistance protein 1 and retinoic acid-inducible gene 
1 have higher diagnostic sensitivity than perifascicular atrophy with equivalent 
specificity [13]. Muscular biopsies of dermatomyositis patients usually present cel-
lular infiltrates composed of plasmacytoid dendritic cells, B cells, CD4 T cells, and 
macrophages. These cells usually involve medium-sized blood vessels and invade 
the perimysium [14]. However, it is possible that dermatomyositis biopsy does not 
present this cellular infiltrate. Predominantly, necrotic pathologically indistinguish-
able from immune-mediated necrotizing myopathy may be observed. Some early 
features of dermatomyositis involve deposition of membrane attack complex and 
presence of microtubular inclusions on intramuscular capillaries [11]. In addition, 
like other inflammatory myopathies, class-1 major histocompatibility complex 
(MHC) is generally upregulated in the sarcolemma of muscle fibers. In patients 
with dermatomyositis, class-1 MHC upregulation and other pathological findings 
may be characteristically prominent in perifascicular regions [14].

Studies have shown that dermatomyositis autoantibody can be found in a con-
siderable proportion of patients with dermatomyositis [15]. Typical features of 
dermatomyositis, including proximal muscle weakness and prominent cutaneous 
manifestations have been associated with the presence of autoantibodies recognizing 
the nuclear antigen Mi2 [16]. Patients with dermatomyositis and autoantibodies that 
recognize nuclear matrix protein (NXP) 2 are more predisposed to be affected by 
proximal and distal muscular weakness, subcutaneous edema, and dysphagia [17].

Patients with dermatomyositis who are positive for anti-NXP2 or anti-
transcription intermediary factor (TIF)-1 autoantibodies are at increased risk for 
malignancy development; thus making comprehensive cancer screening 13–15 or 
positron emission tomography–computed tomography (PET-CT) scans is extremely 
important in these cases [18]. In cases of dermatomyositis patients who have 
autoantibodies recognizing the small ubiquitin-like modifier activating enzyme or 
melanoma differentiation-associated gene 5 (MDA5), it is observed that cutaneous 
tissue impairment is more prominent than in muscle. In addition to most commonly 
present cutaneous manifestations, these patients may develop ulcerous lesions on 
the flexor surface of the fingers and palm [19, 20].

Most patients with anti-MDA5 autoantibodies are hypomyopathic or amyo-
pathic. In addition, it should be noted that unlike patients with other autoantibodies 
of dermatomyositis, those who are anti-MDA5 positive often develop an aggressive 
form of interstitial lung disease, reinforcing the importance of assessment through 
periodic lung function tests and high-resolution computed tomography [20–22].

Although the etiology of dermatomyositis is not fully elucidated, it is suggested 
that a combination of genetic risk factors and exposure to environmental factors may 
trigger the disease. In this sense, several immunogenetic risk factors, including certain 
class-2 human leukocyte antigen (HLA) alleles, have been implicated in dermatomyo-
sitis pathogenesis [23]. Studies suggest that exposure to ultraviolet light may also be 
considered an important risk factor for the development of dermatomyositis [24].

Regardless of the origin of dermatomyositis, it is not known which mechanisms 
are involved in the development of muscle damage and weakness. Studies suggest 
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that muscle damage may result from hypoperfusion due to endothelial destruc-
tion [14]. In addition, the presence of plasmacytoid dendritic cells, along with the 
increase in expression of type-1 interferon-inducible proteins in the perifascicular 
area, suggests that interferon may mediate perifascicular atrophy [12, 25].

Overlap myositis is being recognized as an individual form of myositis. This 
myositis manifests itself without a rash typical of dermatomyositis, with prominent 
pathologic changes in the perifascicular, interfascicular, and perimysial regions, and 
is frequently associated with anti-synthetase antibodies [2].

Laboratory evaluation shows a significant elevation of muscle enzymes includ-
ing creatine kinase (CK), which is generally present [3]. Approximately 30% of 
patients with myositis were positive for Jo-1O antibody (most common of the eight 
anti-synthetase antibodies) [26].

2.3 Polymyositis

Polymyositis is a rare disease, which belongs to the various idiopathic inflam-
matory myopathies. It is estimated that the incidence of polymyositis is 5% of all 
cases of myositis [2, 5, 27]. Polymyositis consists of muscle weakness, elevated 
creatine phosphokinase concentrations, and myopathic electromyography features 
[2]. However, rash or other signs of skin inflammation do not occur in polymyositis. 
Therefore, its diagnosis is by exclusion [3].

Histopathological hallmarks of polymyositis include invasion of endomysial 
cytotoxic CD8 T cells and widespread upregulation of class I MHC in muscle fibers 
[2, 24]. Polymyositis is a chronic, degenerative disease that has no cure. The treat-
ment consists in the relief of the symptoms with the use of corticosteroids, such 
as prednisone, intravenous glucocorticoids (when weakness at onset is severe or 
rapidly worsening), azathioprine, methotrexate, mycophenolate, cyclosporine, and 
intravenous immune globulin [3].

2.4 Inclusion body myositis

Inclusion body myositis is a very common disease among inflammatory myopa-
thies affecting mainly men from the age of 50. The disease begins insidiously and 
develops over a period of years, sometimes asymmetrically; it may begin with 
unilateral affection of a leg or arm, progress steadily, and lead to deep muscular 
atrophy [2]. Laboratory evaluation shows that an elevated CK is much blander. Skin 
changes are not present [3].

There is a higher mortality rate in patients with inclusion body myositis, since 
muscle weakness (long flexors of the fingers, quadriceps, anterior tibial, and, to a 
lesser extent, all other muscles of the arms and legs) usually leads to harmful falls 
and dysphagia can cause aspiration pneumonia [3].

The antibody, identified a few years ago, that is present in inclusion body 
myositis is cN1A (5NT1A/5NTC1A) [3]. The frequency of this antibody is about 
30%; other forms of myositis such as dermatomyositis and other conditions such as 
Sjögren’s syndrome and systemic lupus erythematosus (SLE) were also positive even 
in the absence of any muscle symptoms [3, 28, 29]. Study suggested that the pres-
ence of cN1A is associated with a more severe course of disease, dysphagia [3, 30], 
and increased mortality [3, 31]. However, in another study in German patients, the 
presence of cN1A did not correlate with the severity of dysphagia or muscle impair-
ment [3, 32].

In the histopathological hallmarks, the distribution and the immunophenotypic 
profile of the inflammatory cells are similar to those seen in polymyositis macro-
phages and CD8+ T cells which invade nonnecrotic muscle fibers that express MHC 
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class I antigen on the sarcolemma [33], signs of protein accumulation by detection 
of amyloid (Congo red, thioflavin S, immunohistochemistry for p62 or TDP-43), 
detection of tubulofilaments on EM, vacuoles and signs of mitochondrial damage as 
evidenced by histochemical proof of COX-deficient muscle fibers, and paracrystal-
line inclusions [3, 34, 35].

2.5 Immune-mediated necrotizing myopathy

Immune-mediated necrotizing myopathy is an acute or subacute proximal weak-
ness of the arms and legs, most prominent in the lower limbs [3]. It often affects adults, 
but it can also occur in children [3]. The progression of the disease is constantly more 
rapid and severe compared to other myopathies (dermatomyositis and polymyositis) 
[3]. Laboratory evaluation shows very high muscle enzymes, with an elevated CK of 
20–50 times [3]. Neck muscle weakness and dysphagia are common [3].

Approximately 10–20% of patients with immune-mediated necrotizing myopa-
thy have anti-signal recognition particle (SRP); however its detection varies from 
0 to 54% [36]. This antibody may be associated with cardiomyopathy and a severe 
disease with muscle atrophy, interstitial lung disease, and dysphagia [37, 38]. 
Another antibody that has been identified is reductase (HMGCR) antibody; its 
detection in certain cohorts was 60% [39].

Histopathological hallmarks in necrotizing myopathy show dispersed necrotic 
myofibers of varying degrees; moderate and predominantly MHC class I focal 
regulation, particularly in areas with necrotic fibers; and complement binding to 
the sarcolemma [2, 3, 40–42]. Some inflammatory T cells and other immune cells 
may be present around these focal points, but there are no primary inflammatory 
lesions. Necrotic fibers typically exhibit a secondary invasion by macrophages to 
clean the cell debris [3].

2.6 Crosstalk between oral cavity and skeletal muscle

In addition to these inflammatory muscular diseases mentioned above, a local-
ized inflammation at a distance from the skeletal muscle may promote change in 
this tissue. Recent study proposed the existence of crosstalk between oral cavity 
and skeletal muscle [43]. The researchers induced oral inflammation in rats and 
observed that the skeletal muscle was affected by increased infiltration of mac-
rophages, which was suggested by the authors as an explanation for the glucose 
intolerance shown in animals with oral inflammation [43].

Research conducted over the last 15 years has investigated possible mechanisms 
that cause changes in macrophages polarization and the effects of these changes 
on insulin signaling in metabolic organs [44]. These cells exhibit a high degree of 
functional plasticity, so that the nature of an inflammatory trigger, as well as the 
cytokines present, can determine their polarization and their functional status 
[44]. In analogy to the nomenclature T-helper cells (Th), Th1 Th2, macrophages can 
be classified into two distinct phenotypes: type 1 (M1) classically activated and type 
2 (M2) alternatively activated [45].

In vitro, these subsets can be induced by stimulation with interferon gamma 
(IFN-γ) and lipopolysaccharides (LPS) for M1 or interleukin-4 (IL-4) for M2 [46]. 
The M1/M2 dichotomy is often used to classify macrophages into pro-inflammatory 
(M1) or anti-inflammatory (M2) [44]. Among the functions performed by the 
M1 macrophages, tumor necrosis factor-alpha (TNF-α) production is outstanding 
[47]. Saghizadeh [48] and collaborators observed that diabetic or insulin-resistant 
patients have increased expression of TNF-α in skeletal muscle when compared to 
normoglycemic individuals, suggesting that cytokine plays an important role in the 
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pathogenesis of insulin resistance. TNF-α impairs the insulin signal by decreasing 
the phosphorylation of insulin receptor substrate 1 (IRS-1) in tyrosine residues [49]. 
In addition, TNF-α can stimulate some serine kinases including IκB kinase (IKK) and 
c-Jun amino-terminal kinase (JNK), which promote IRS-1 phosphorylation in serine 
residues, resulting in insulin signal attenuation [50]. On the other hand, M2 macro-
phages are associated with tissue repair, angiogenesis, reduction of inflammation, 
and the improvement of insulin signaling in adipose tissue [45, 51]. In addition to 
the studies that relate obesity to insulin resistance, there are studies in the literature 
that demonstrate a correlation between this hormonal resistance and inflammatory 
processes, such as rheumatoid arthritis and oral inflammations [52–54]. In this con-
text, the apical periodontitis (AP), an oral inflammation, stands out. AP occurs as a 
consequence of various aggressions to the dental pulp, including physical, iatrogenic, 
infectious, and endodontic traumas. This inflammatory picture can cause a wide 
variety of immunological responses, in order to protect the dental pulp and periapi-
cal regions. The regulation of periapical inflammation is extremely complex, as it 
involves host mediators, including immunological components such as antibodies, 
cytokines, arachidonic acid metabolites, and neuropeptides [55]. The characteristic 
inflammatory process of AP presents different types of gram-negative anaerobic 
bacteria [56] with LPS in the cell wall [57]. Studies have reported that bacteria which 
are present in the oral cavity can release LPS into the systemic circulation [58]. This 
substance has the ability to activate toll-like receptors (TLRs), a cell surface receptor 
that activates innate immunity and induces inflammatory responses. LPS is a specific 
ligand for TLR2 and TLR4 but has a higher specificity for TLR4 [59, 60]. When 
released by gram-negative bacteria, LPS binds to a soluble plasma protein called LPS 
binding protein. LPS or LPS binding protein [61, 62] binds to the CD14 co-receptor 
via lipopolysaccharide binding protein (LPB), forming the LPS-CD14 complex. This 
complex, in turn, is recognized by the TLR4-MD-2 complex, present on the cell sur-
face, which is capable of promoting intracellular recruitment of adapter molecules 
with N-terminal TIR domain, such as myeloid differentiation primary response 88 
(MYD88). This molecule can activate the serine kinases JNK and IKKα/β, which 
promote activation of the activating proteins-1 (AP-1) and factor nuclear kappa B 
(NF-κB) transcription factors, respectively [63, 64]. NF-κB regulates the expres-
sion of several genes involved in different cellular processes such as inflammatory 
and immune responses and cell growth and development. In the absence of an 
NF-κB-activating stimulus, this protein is present in the cytoplasm inactive with an 
inhibitory protein, IκB [65]. Activation of NF-κB can occur not only by exposure 
of the cells to LPS but also by the action of inflammatory cytokines (TNF-α and 
IL-1), activation of T and B lymphocytes, UV radiation, and expression of products 
[66]. After stimulation, the IKK is phosphorylated and activated. The IKK complex 
consists of two catalytic subunits, IKK-α and IKK-β, in addition to the NF-kappa-B 
essential modulator (NEMO) or IKK-γ [67]. After activation, IKK recruits and 
phosphorylates the IκB that is recognized by the ubiquitin ligase machinery, which 
leads to its polyubiquitination and consequent degradation. In this way, the NF-κB 
dimers translocate to the nucleus, binding at specific sites of the deoxyribonucleic 
acid (DNA) and promoting the transcription of a large number of genes [65, 67].

In addition to activating the IKKα/β/NF-κB pathway, TLRs are capable of 
activating the JNK pathway [68]. The serine/threonine kinase group called JNK 
(JNK-1, JNK-2, and JNK-3) belongs to the family of mitogen-activated protein 
kinase (MAPKs), responsible for the regulation of various cellular functions. This 
regulation occurs largely because of its ability to control the transcription of specific 
genes by AP-1 [69]. AP-1 is a transcription factor that, when activated, promotes the 
expression of genes related to innate immunity [70]. In addition to LPS, the signaling 
pathway of TLRs can be activated by heat shock proteins [71]. Heat shock proteins 
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(HSP) are proteins characterized as chaperones because they have an important 
function in adaptation to stress and cellular protection, acting mainly in the synthe-
sis and protein degradation, besides regulating fundamental cellular processes [72]. 
The family of HSPs is divided into subfamilies, classified according to the molecular 
mass, being small HSPs (8–27 kDa) and large HSPs (100–110 kDa), among which 
stand out HSP90, HSP70, and HSP60 [73]. In addition to its essential functions as a 
chaperone [74], HSP70 has an anti-inflammatory effect by inhibiting the activation 
of NF-KB when present in the intracellular environment [75]. However, stimuli such 
as cell necrosis and bacterial products such as LPS can cause the passage of HSP70 
through the membrane into the extracellular environment [76, 77]. Studies have 
suggested that elevated serum levels of HSP70 may be correlated with cardiovascu-
lar disorder, pulmonary fibrosis, renal damage, oxidative stress, and inflammation 
[78]. The development of these conditions may occur due to the ability of HSP70 
to bind to TLR2 and TLR4, promoting the activation of the NF-κB pathway which, 
as mentioned above, induces the expression of inflammatory mediators related to 
insulin resistance [79]. Studies suggest that insulin sensitivity may undergo regula-
tory action by the adaptive immune system [80, 81]. This system is composed of 
different types of cells, among which the B and T lymphocytes [82] stand out. T 
lymphocytes are classified into two main classes: helper T lymphocytes, also known 
as T helper (Th), and cytotoxic T lymphocytes. The “naïve” Th1 lymphocytes, when 
interacting with antigen presenting cells, undergo activation and can differentiate 
into different subtypes [83]. The Th1 subtype expresses proinflammatory cytokines, 
such as TNF-α and IFN-γ; Th2 expresses mainly anti-inflammatory cytokines, such 
as interleukin-4 (IL-4) and interleukin-13 (IL-13), and regulatory T cells secrete 
predominantly anti-inflammatory cytokine and transforming growth factor-β 
(TGF-β) [84]. Th1 cells play a central role in the recruitment of macrophages and 
induction of insulin resistance in obesity-induced diabetes models. These effects are 
counterbalanced by the function of Th2 and Treg cells that maintain an anti-inflam-
matory state and increase insulin sensitivity [85]. Appropriate regulation of Th cells 
is of extreme importance for the control and prevention of various diseases [86]. An 
increase or decrease in the Th1 or Th2 subtypes, as well as the cytokines produced by 
these cells, indicates an imbalance that may be one of the factors responsible for the 
development of insulin resistance [87]. It is known that insulin resistance is one of 
the main characteristics of diabetes mellitus [88]. This disease is also closely related 
to muscle weakness due to altered insulin action [89], standing out that insulin is an 
important anabolic hormone for protein metabolism [90].

The study performed by Boon et al. [91] with healthy lean individuals observed 
that only 5 days of hyperlipidic diet promoted increased messenger ribonucleic 
acid (mRNA) expression of macrophage markers in skeletal muscle and reduced 
expression of the glucose transporter type 4 (GLUT-4) glucose transporter protein 
in this tissue. Similarly, Patsouris et al. [92] demonstrated increased macrophage 
content in skeletal muscle in diabetic patients independently of body mass index 
(BMI). An increased macrophage content (assessed by F4/80 protein detection) 
was observed in muscle tissue of rats with AP in the absence of obesity, highlighting 
the key role of these cells in the etiology of insulin resistance. It should be noted 
that only F4/80 detection is not able to provide details on M1-type and M2-type 
macrophage polarization although evidence demonstrates that under obesity condi-
tions, macrophages infiltrated into muscle tissue exhibit phenotype characteristic 
of M1 polarization [92–95]. The reprogramming of the M1 polarization toward the 
M2 polarization may represent a promising strategy for the treatment of glycemic 
homeostasis in patients with diabetes and insulin resistance [44].

As previously reported, inflammation causes insulin resistance. According to 
Pereira et al., rats with AP had increased IKKα/β and JNK phosphorylation status 
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in gastrocnemius muscle. These results are in agreement with the study of Yaspelkis 
et al. [96], who observed a higher IKKα/β phosphorylation status in the skeletal 
muscle of rats treated with a hyperlipidic diet for 12 weeks, and also the study by 
Todd et al. [97] that identified an increase in JNK activity in the skeletal muscle of 
rats subjected to 3 weeks of hyperlipidic diet. Kaneto et al. [98] reported that treat-
ment of diabetic rats with JNK inhibitors improved the insulin sensitivity of the 
animals. Similarly, studies by Yuan et al. [99] and Hundal et al. [100] have reported 
that inhibition of IKK-β by the administration of salicylates improves insulin action 
in obese and diabetic human and rats. Furthermore, it has been demonstrated that 
genetically modified mice, which do not express IKK-β or JNK, are protected from 
obesity-induced insulin resistance [99, 101–103].

In addition to stimulating inhibitory effects on insulin signal transduction, 
TNF-α may interact with tumor necrosis factor receptor 1 (TNFR1) in skeletal 
muscle [104] and thereby stimulate the NF-κB and/or MAPK pathway [105, 106], 
which are related to the phosphorylation of IKK and JNK and, in their turn, may 
impair insulin action. Pereira et al. [43] evaluated the plasma concentrations of LPS 
and HSP70 in AP models. Rats with AP showed a significant increase in both LPS 
and HSP70 when compared to the control group. Research on diabetes suggests that 
chronic elevation of LPS levels may play a key role in the development of insulin 
resistance [107, 108].

Among the possible mechanisms involved in this alteration, we highlight the 
ability of LPS to bind to the TLR4 receptor, which may trigger the activation of 
inflammatory signaling pathways related to inhibition of the insulin signal [108]. 
Another mediator that plays an active role in the modulation of inflammation is the 
heat shock proteins. The study by Goodman et al. [109] reported higher expression 
of 44 HSP genes in periapical granulomas compared to healthy periodontal tissues. 
Elevation of HSP70 plasma concentrations observed in rats with AP may indicate 
that increased local HSP expression is associated with higher concentrations of this 
protein in serum [43]. Interestingly, studies have shown that serum concentrations 
of HSP70 are higher in diabetic patients [110, 111]. Asea et al. [79] reported that 
HSP70 can bind to the TLR4 receptor, suggesting a possible involvement of this 
protein in the development of insulin resistance. With regard to the adaptive immu-
nity markers, animals from the AP groups showed an increase in the Th1 response 
represented by increased T-bet expression in the spleen and elevated plasma con-
centrations of INF-γ [43]. A study carried out with knockout animals for the T-bet 
gene treated with hypercaloric diet showed that even with weight gain and increased 
adiposity, the animals were protected from insulin resistance [112]. The authors 
attributed the lack of insulin resistance to reduced production of INF-γ. These 
results are consistent with studies that reported that IFN-γ deficiency may improve 
glycemic homeostasis under obesity conditions [113–115]. In addition, treatment 
of adipocytes (3 T3-L1) with interferon gamma (INF-γ) reduces insulin signal and 
glucose uptake [116]. The functions of Th1 cells are antagonized by the Th2 subpop-
ulation presenting the transcription factor GATA3 and IL-4 as specific markers. The 
AP in rats promotes a reduction of IL-4 [43]. Chang et al. [117] reported that IL-4 
treatment promotes improved insulin sensitivity and glucose tolerance and simul-
taneously reduces body weight in obese rats. These findings suggest that IL-4 plays 
beneficial effects on glycemic homeostasis. The role of Th2 cells in insulin sensitivity 
was demonstrated in the study by Gonzales et al. [118]. In this study, a model of 
inactivation of Th2 response was developed through the inhibition of the activator 
of transcription 6 (STAT6) protein, in which it was observed that animals with Th2 
response deficiency were more prone to insulin resistance. Thus, the reduction of 
the Th2 response observed in rats with AP may contribute to the understanding of 
the mechanisms involved in insulin resistance observed in animals with AP [43, 54].
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Studies suggest that TNF-α contributes to age-related muscle loss and that resis-
tance exercise may attenuate this process by suppressing TNF-α expression in skeletal 
muscle [119]. Other findings demonstrate that decreased muscle strength in diabetic 
individuals is associated with elevated plasma concentrations of TNF-α and interleu-
kin-6 (IL-6) [120]. Therefore, considering that oral inflammation, such as AP, may 
increase infiltration of macrophages in muscle tissue and this increase is related to the 
production of proinflammatory cytokines, it is possible to suggest that prevention of 
chronic inflammatory oral diseases contributes to the maintenance of muscle integrity.

3. Conclusions

The main subtypes of inflammatory muscular diseases are polymyositis, derma-
tomyositis, necrotizing myopathy, overlap myositis, and myositis of inclusion bodies. 
The origin of these diseases is idiopathic, making it difficult to prevent them. As 
oral inflammation can increase infiltration of macrophages in muscle tissue and this 
increase is related to the production of proinflammatory cytokines in this tissue, these 
cytokines can cause muscle weakness. It is important to consider the prevention of 
chronic inflammatory processes in order to maintain muscle integrity or even prevent 
the worsening of the clinical condition of patients with inflammatory muscle diseases.
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Appendices and nomenclature

AP apical periodontitis
AP-1 activating proteins-1
BMI body mass index
CD14 cluster of differentiation 14
CD4 cluster of differentiation 4
CD8 cluster of differentiation 8
CK creatine kinase
COX cyclooxygenase
DNA deoxyribonucleic acid
GLUT4 glucose transporter type 4
HLA human leukocyte antigen
HMGCR 3-hydroxy-3-methylglutaryl-CoA reductase
HSP heat shock proteins
IFN-γ interferon gamma
IKK IkB kinase
IL-13 interleukin-13
IL-4 interleukin-4
IL-6 interleukin-6
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IR insulin resistance
IRS-1 insulin receptor substrate 1
JNK c-jun amino-terminal kinase
LPB lipopolysaccharide binding protein
LPS lipopolysaccharides
M1 M1-type macrophage polarization
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MAPKs mitogen-activated protein kinase
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