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Chapter

Optimal Trajectory Synthesis and
Tracking Control for Spacecraft
Large Attitude Manoeuvers
Ranjan Vepa

Abstract

The classical approach to the problem of synthesizing an optimal attitude
manoeuver trajectory, involves the use of the calculus of variations and the use
Lagrange multipliers or co-states. The nonlinear large attitude manoeuver trajectory
is controlled by a set of nonlinear evolving co-states. In this paper, following a
review of the methodologies available for trajectory synthesis followed by tracking
control, the optimal trajectory for a typical optimal attitude manoeuver is synthe-
sized by solving for the states and co-states defined by a two point boundary value
problem. Gravity gradient torques are included as a matter of course. Following the
synthesis of the optimal attitude-rate trajectory, tracking control laws are synthe-
sized by re-formulating the optimal control as a feedback law. The approximate
linear tracking feedback controls are evaluated by relating the optimal state and co-
state vector by a linear relation. The control laws are synthesized numerically. The
problem of optimal attitude orientation trajectory synthesis is also addressed. The
methodologies are applied to typical sample problems and results are presented.
Quantitative comparisons of the results of the methods are made to the results
obtained by the application of other linear and nonlinear methods, to illustrate the
key features of the methodologies.

Keywords: attitude manoeuvers, optimal manoeuver trajectory, trajectory
optimization, trajectory tracking, feedback control laws

1. Introduction

The need for designing fast attitude and angular rate acquisition manoeuvers for
a spacecraft with restricted or low actuation torqueing capacity arises in many space
recent applications. Spacecraft are usually equipped with an attitude control system
(ACS), which operates in one of two modes; the first mode involves maneuvering
for attitude or angular rate acquisition while the second is to ensure stability. In the
first mode, the ACS is responsible for acquiring and tracking an attitude or an
angular rate state trajectory which could include a steady state. The requirements
for this mode are set by the need to remotely capture an orbiting body, de-tumble a
spacecraft, synchronize with another orbiting body or point at a specific direction in
space. Although a large number of publications have appeared before the end of the
last millennium on the subject of attitude stabilization and feedback control, a few
recent papers have focused on the construction of optimal maneuvering trajectories
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synthesis for attitude or angular rate acquisition. There have been some publications
related to the synthesis of optimal maneuvering trajectories for attitude or angular
rate acquisition during the last two decades of the preceding millennium. Yet some
significant advances have been made in the early part of this century. This includes
papers by Lee et al. [1], Yoshida et al. [2], Aghili [3, 4], Yang and Wu [5], Liu et al.
[6], and Zhang et al. [7], who have considered the maneuvering for attitude or
angular rate acquisition problems using classical methodologies. Sharma and Tewari
[8] have addressed the issue of nonlinear tracking of spacecraft attitude
manoeuvers while Hegrenas et al. [9] have considered the maneuvering for attitude
or angular rate acquisition problem by means of explicit model predictive control,
via a nonlinear programming approach.

In dealing with the optimal attitude trajectory synthesis, several real world effects
such as gravity gradient torques are generally neglected. Neglecting the gravity gra-
dient torques can have a serious effect on the trajectory synthesis problem as (i) the
gravity gradient torques can influence the stability of the spacecraft and (ii) they tend
to couple the attitude rate dynamics with the quaternion kinematics. For this reason,
it is not always advisable to ignore these torques on grounds of “smallness” as even
the smallest of these perturbations can not only trigger instability but also induce the
bifurcation of the orbit. It is the gravity that is primarily responsible for the orbital
motion and the attitude stability of a spacecraft. The importance of gravity gradient
torques has also been underscored by Lobo et al. [10].

The classical methodologies for trajectory synthesis compare well with other
nonlinear and deterministic artificial intelligence approaches such as those devel-
oped by Sands et al. [11], Nakatani and Sands [12] and Baker et al. [13].

In this paper, the optimal trajectory for a typical attitude rate manoeuver is
synthesized by solving for the states and co-states defined by a two point boundary
value problem. Gravity gradient torques are included as a matter of course. Following
the synthesis of the optimal attitude-rate trajectory, tracking control laws are synthe-
sized by re-formulating the optimal control as a feedback law. The approximate linear
tracking feedback controller gains are evaluated by relating the optimal state and co-
state vector by a linear relation. The feedback control laws are synthesized numeri-
cally. The problem of optimal attitude orientation trajectory synthesis is also
addressed. The optimization methodologies are applied to typical sample problems
and results are presented. Quantitative comparisons of the results of the optimization
method are made to the results obtained by the application of other linear and
nonlinear control methods, to illustrate the key features of the methodologies.

2. Spacecraft attitude dynamics and quaternion kinematics

In matrix form, when the inertia matrix is not diagonal the equations of attitude
motion of chaser spacecraft are

I _ω þΩIω ¼ MþMgg þMd, (1)

where I is the moment of inertia matrix which is assumed to be

I ¼

I11 I12 I13

I12 I22 I23

I13 I23 I33

2

6

4

3

7

5
,ω �

ω1

ω2

ω3

2

6

4

3

7

5
,Ω ¼

0 �ω3 ω2

ω3 0 �ω1

�ω2 ω1 0

2

6

4

3

7

5
(2)

Md are the disturbance torques and Mgg are the gravity gradient torques.
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It is important to emphasize that the targets dynamics are irrelevant to us as
there is little or no chance of acquiring the target’s inertia properties. However the
target’s angular velocity vector is assumed to be given by ωd, its attitude quaternion
relative to the chaser’s body frame is assumed to be qd or its relative attitude
quaternion Δq, relative to the chaser’s body frame, can in principle be measured
from within the chaser spacecraft.

Expressions for the gravity gradient moment are obtained assuming that z axis
of the spacecraft body is nominally pointing to the Earth. The direction vector the
center of gravity of the spacecraft pointing to the Earth is given by the last column
of TBR, the transformation from the Earth orbiting frame to the body fixed frame of
the spacecraft as

c ¼ c1 c2 c3½ �T : (3)

The corresponding cross product operator c� is defined as

c� ¼

0 �c3 c2

c3 0 �c1

�c2 c1 0

2

6

4

3

7

5
: (4)

Hence the gravity gradient moments acting on the spacecraft and manipulator
body are:

Mgg ¼ 3n2c�Ic � 3n2c�Ic ¼ Lgg Mgg Ngg

� �T
: (5)

Thus,

Mgg ¼

Lgg

Mgg

Ngg

2

6

4

3

7

5
¼ 3n2

c2c1I31 þ c22I32 þ c2c3 I33 � I22ð Þ � c3c1I21 � c23I23

c3c1 I11 � I33ð Þ þ c2c3I12 þ c23I13 � c21I31 � c1c2I32

c21I21 þ c1c2 I22 � I11ð Þ þ c1c3I23 � c22I12 � c2c3I13

2

6

4

3

7

5
: (6)

If we express the transformation from the orbiting frame to the body coordi-
nates in terms of an attitude quaternion of the chaser spacecraft with components
ε1, ε2, ε3 and η as

TBR qð Þ ¼

η2 þ ε21 � ε22 � ε23 2 ε1ε2 þ ε3ηð Þ 2 ε1ε3 � ε2ηð Þ

2 ε1ε2 � ε3ηð Þ η2 � ε21 þ ε22 � ε23 2 ε2ε3 þ ε1ηð Þ

2 ε1ε3 þ ε2ηð Þ 2 ε2ε3 � ε1ηð Þ η2 � ε21 � ε22 þ ε23

2

6

4

3

7

5
, (7)

then from the last column, the Earth pointing direction vector is:

c ¼

c1

c2

c3

2

6

4

3

7

5
¼

2 ε1ε3 � ε2ηð Þ

2 ε2ε3 þ ε1ηð Þ

η2 � ε21 � ε22 þ ε23

2

6

4

3

7

5
: (8)

The quaternion kinematics satisfies

dq

dt
¼

1

2
Aω ωð Þq,qT � q ¼ 1 (9)

where the quaternion q ¼ ε1 ε2 ε3 η½ �T, consists of a vector part,

ε ¼ ε1 ε2 ε3½ �T and the scalar η so,
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q ¼
ε

η

� �

and Aω ¼
�Ω ωð Þ ω

�ω
T 0

� �

,Ω ωð Þ ¼

0 �ω3 ω2

ω3 0 �ω1

�ω2 ω1 0

2

6

4

3

7

5
: (10)

The quaternion kinematics may also be compactly expressed as

dq

dt
¼

d

dt

ε

η

� �

¼
1

2
Γ qð Þω, (11)

Γ qð Þ ¼
ηI3�3 þ S εð Þ

�ε
T

� �

,S εð Þ ¼

0 �ε3 ε2

ε3 0 �ε1

�ε2 ε1 0

2

6

4

3

7

5
, (12)

where I3�3 is the 3� 3 unit matrix. These relations may be inverted as

ω ¼ 2 ηI3�3 þ ST εð Þ �ε
� �

_ε _η½ �T ¼ 2Γ�1 qð Þ _ε _η½ �T: (13)

The desired attitude quaternion relative to the chaser’s body frame which is
assumed to be qd and the relative attitude quaternion Δq, relative to the chaser’s
body frame are related to the chasers attitude by

qd ¼ Δq⊗q: (14)

Given two quaternions, Δq ¼ Δq1 Δq2 Δq3 Δq4
� �T

, q ¼ ε1 ε2 ε3 η½ �T,

the quaternion product qd ¼ Δq⊗q is defined as

qd ¼

q1d
q2d
q3d
q4d

2

6

6

6

4

3

7

7

7

5

¼

η ε3 �ε2 ε1

�ε3 η ε1 ε2

ε2 �ε1 η ε3

�ε1 �ε2 �ε3 η

2

6

6

6

4

3

7

7

7

5

Δq1
Δq2
Δq3
Δq4

2

6

6

6

4

3

7

7

7

5

¼

Δq4 �Δq3 Δq2 Δq1
Δq3 Δq4 �Δq1 Δq2
�Δq2 Δq1 Δq4 Δq3
�Δq1 �Δq2 �Δq3 Δq4

2

6

6

6

4

3

7

7

7

5

ε1

ε2

ε3

η

2

6

6

6

4

3

7

7

7

5

:

(15)

Hence it is expressed in matrix form as

qd ¼ C0Δq,C0 ¼

η ε3 �ε2 ε1

�ε3 η ε1 ε2

ε2 �ε1 η ε3

�ε1 �ε2 �ε3 η

2

6

6

6

4

3

7

7

7

5

,C0 ¼
ηI3�3 þ ST εð Þ q1:3

�q1:3 η

" #

: (16)

Similarly,

qd ¼

q1d
q2d
q3d
q4d

2

6

6

6

4

3

7

7

7

5

¼

Δq4 �Δq3 Δq2 Δq1
Δq3 Δq4 �Δq1 Δq2
�Δq2 Δq1 Δq4 Δq3
�Δq1 �Δq2 �Δq3 Δq4

2

6

6

6

4

3

7

7

7

5

ε1

ε2

ε3

η

2

6

6

6

4

3

7

7

7

5

¼
Δq4I3�3 þ S Δq1:3

� �

Δq1:3

�Δq1:3 Δq4

" #

q:

(17)

The traditional method of defining the attitude of a spacecraft is by the use of
Euler angle sequences. The conversion of Euler angles defined as Euler angle
sequences, may be converted to an equivalent quaternion set, using well-known
conversion formulae, such as, those given by Smeresky et al. [14].
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3. Formulation of the optimal angular rate trajectory synthesis problem

The first task is to formulate the optimal control problem, so it can be solved
numerically. This is briefly reviewed. The attitude equations of the spacecraft may
be expressed in state space form as

dq

dt
¼

1

2
Aω ωð Þq,qT � q ¼ 1, (18)

I _ω þΩIω ¼ Mc þMgg þMd, (19)

whereMc is the control torque vector acting on the spacecraft. For our purposes it
will be assumed that it can be expressed as,Mc ¼ ITWu, where T is the scalar
magnitude of the specific torque or torque per unit inertia,W is a symmetric, positive-
definite, torque transformation weighting matrix and u defines the direction of the
torque vector. It is the attitude steering control input to the spacecraft. Thus Eq. (19) is

_ω ¼ I�1Mgg qð Þ � I�1
ΩIωþTWu, (20)

with

u ¼ sin α cos β cos α cos β sin β½ �T: (21)

When one is interested in the problem of finding the steering control

u ¼ u tð Þ, t0 ≤ t≤ tf , (22)

the torque direction time history is sought, such that it minimizes the cost
functional:

J ¼ 0:5 ω tð Þ � ωdð ÞTQ f ω tð Þ � ωdð Þ
�

�

�

t¼tf
¼ Φ ω tð Þf g

�

�

�

t¼tf
, (23)

subject to, Eqs. (18), (20) and (21).

Introducing the single state vector, x ¼ qT
ω

T
� �T

, so the Eqs. (18), (20) and
(22) are expressed as

d

dt
xT ¼

d

dt
qT

ω
T

� �

¼ fT,qT � q� 1 � g ¼ 0 (24)

To solve the optimization problem, seven Lagrangian multipliers or co-states are
introduced given by the two vectors λq tð Þ and λω tð Þ, and a scalar λc denoted by a
single column vector, λ tð Þ. Following Bryson and Ho [15], a Hamiltonian function is
defined as

H ¼ λ
T tð Þ fT tð Þ g

� �T
: (25)

Hence,

H ¼ λ
T
q

1

2
Aω ωð Þq

	 


þ λ
T
ω

I�1Mgg qð Þ � I�1
ΩIω

� �

þ λ
T
ω
TWuþλcg: (26)

The necessary conditions (Bryson and Ho [15], Conway [16]) for the first
variation of J to be zero include the co-state differential equations
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d

dt
λ
T tð Þ ¼ �

∂H

∂x
: (27)

Explicitly the co-state equations are

_λqi
tð Þ ¼ �

∂H

∂qi
¼ � λ

T
q

1

2
Aω ωð Þ

∂

∂qi
q

	 


þ λ
T
ω

I�1 ∂

∂qi
Mgg qð Þ

	 
� �

, (28)

_λωi
tð Þ ¼ �

∂H

∂ωi
¼ � λ

T
q

1

2

∂

∂ωi
Aω ωð Þq

	 


�λ
T
ω
I�1 ∂

∂ωi
ΩIωð Þ

� �

, (29)

_λc ¼ 0: (30)

The optimality conditions are

∂H

∂α
¼ λ

T
ω
� TW cos α cos β � sin α cos β 0½ �T ¼ 0, (31)

and

∂H

∂β
¼ λ

T
ω
� TW � sin α sin β � cos α sin β cos β½ �T ¼ 0: (32)

Hence,

Wλω ¼ Wλωj j sin α cos β cos α cos β sin β½ �T ¼ � Wλωj ju: (33)

Thus the two-parameter control vector u, can be expressed as

u ¼ �Wλω= Wλωj j: (34)

The choice of the sign in Eq. (34) will depend on the direction of the desired
torque, forward or reverse torque. Thus the closed-loop equations of motion are

d

dt
x ¼ f ,qT � q� 1 � g ¼ 0,u ¼ �Wλω= Wλωj j: (35)

To complete the definition of the optimal solution, the boundary conditions at
t ¼ tf for the co-state system are found by applying the transversality conditions.

The transversality conditions ensure that the initial and final states are selected
optimally within the feasible regions of the states. For the transversality conditions,
one may write

λq tf
� �

¼
∂Φ ω tð Þf g

∂q

�

�

�

�

t¼tf

¼ 0, (36)

λω tf
� �

¼
∂Φ ω tð Þf g

∂ω

�

�

�

�

t¼tf

¼ Q f ω tf
� �

� ωd

� �

: (37)

λc tf
� �

¼ 0: (38)

Thus, λc tð Þ ¼ 0 is a feasible solution. If it can be ensured that the constraint on
the quaternion, qT � q� 1 � g ¼ 0 is satisfied at each and every integration time
step, λc tð Þ could be set to zero for all time.
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The solution to the state and co-state equations, subject to the optimal control
defined by Eq. (34) and the boundary conditions defined by Eqs. (36) and (37),
may be found by solving a two point boundary value problem (TPBVP). This can be
done using MATLAB’s function, bvp4c.m.

Re-considering Eq. (34), the control input vector may be expressed as

u ¼ �Wλω= Wλωj j ¼ �r�1BT
λ, (39)

where BT is a projectionmatrix relating λ toWλω and r ¼ Wλωj j. It is important to
recognize that theweightingmatrixW also needs to be chosen.Onone hand it provides
a set of free parameters so one can construct an optimal solution, while on the other it
makes the solutionmuch harder to obtain. Its choice is discussed further in Section 8.

4. Feedback implementation of optimal co-states

Of interest at this stage is to be able to implement the controller, obtained in the
last section, as a feedback control law. Thus, inspired by linear optimal control, it
can be assumed that, locally, the co-state vector λ is proportional to the state vector
x. Hence one may express

λ ¼ Px: (40)

Furthermore it is assumed that the matrix P is slowly varying and hence does not
change appreciably as the time t changes from the current time t to t� Δt and to
t� nΔt, n ¼ 2, 3, 4. Thus the matrix P may be obtained by evaluating λ and x in
Eq. (40) at the times t� nΔt, n ¼ 0, 1,…,4, where Δt is a reasonably small time
step, over which both λ and x change appreciably. The solution for the matrix P is
obtained by differencing the data and solving an over determined system of linear
equations by a least squares approach over a moving time window. The matrix P is
also constrained to be a symmetric non-negative definite matrix. Moreover x is
expressed as

x ¼ x� xref

� �

þ xref , (41)

where xref is the optimal transfer trajectory for x obtained by solving the system

of equations for the states, parameters and co-states defined in Section 3, which
together constitute a TPBVP. By solving the system of equations for the states,
parameters and co-states defined in Section 3, one also seeks the trajectory coordi-
nates of the reference trajectory and the total transfer time. It is important that
the spacecraft’s attitude controller is able to track the reference trajectory.
Consequently the control input is expressed as

u ¼ �r�1BTP x� xref

� �

þ r�1BT
λref , λref ¼ Pxref : (42)

The second of Eq. (42) is used to obtain the matrix, P. Like in Eq. (34), the
choice of the sign in the first of Eq. (42) will depend on the direction of the desired
torque, forward or reverse torque.

5. Simplified formulation of the optimal angular rate trajectory
synthesis problem

Some authors (for example, see Aghili [4]) have formulated the attitude rate
acquisition problem without including the gravity gradient torques. Thus the
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quaternion kinematics could be ignored. Thus in this case one could set λq tð Þ � 0,
which results in considerable simplification of the trajectory synthesis problem. The
downside of the approach is that the quaternion kinematics is ignored and conse-
quently the quaternion attitude could be quite arbitrary. Quite often after a de-
tumbling manoeuver, a precise orientation must be acquired. The required attitude
could be acquired in an independent manoeuver and the methodology for this is
developed in the next section. The associated tracking problem, which involves
tracking the complete state vector set point, must then be separately addressed.
Typically this is done by using a barrier Lyapunov function as illustrated by Vepa [17].

6. Optimal attitude orientation acquisition trajectory synthesis

To begin with the quaternion kinematics is given by Eqs. (9) and (11), and can
be expressed in one of two alternate forms as.

dq

dt
¼

1

2
Aω ωð Þq ¼

1

2
Γ qð Þω: (43)

In Eq. (43), the angular velocity vector is treated as a control variable and
expressed as

ω¼ ωj jmaxu, (44)

where the direction vector u is parametrized by an equation similar to Eq. (21).
Thus,

u ¼ sin α cos β cos α cos β sin β½ �T: (45)

When one is interested in the problem of finding the directional control

u ¼ u tð Þ, t0 ≤ t≤ tf , (46)

the angular velocity direction time history is sought, such that it minimizes the
cost functional:

J ¼ 0:5 q tð Þ � qd

� �T
Q f q tð Þ � qd

� �

�

�

�

t¼tf
¼ Φ q tð Þf gjt¼tf

, (47)

subject to, Eqs. (43), (44) and (45). The corresponding Hamiltonian function is

H ¼ λ
T
q

1

2
Aω ωð Þq

	 


¼λ
T
q

1

2
Γ qð Þω

	 


¼
ωj jmax

2
λ
T
qΓ qð Þ

 �

u: (48)

The corresponding co-state differential equations are

d

dt
λ
T
q tð Þ ¼ �

∂H

∂q
¼ �

1

2
λ
T
qAω ωð Þ: (49)

By using an argument similar to the one used in developing Eqs. (31)–(34), the
optimal control is given by

u ¼ �Γ
T qð Þλq= Γ

T qð Þλq
�

�

�

� ¼ Γ qð Þλq= Γ qð Þλq
�

�

�

�: (50)
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For the co-state boundary conditions one has

λq tf
� �

¼
∂Φ q tð Þf g

∂q

�

�

�

�

t¼tf

¼ Q f q tf
� �

� qd

� �

: (51)

Once the control is found from Eqs. (50) and (44) is used to define the angular
velocity vector and Eqs. (19) and (20) to define the optimal input control torque.

7. Shape based optimal trajectory synthesis

An alternative approach to the optimization based on the integration of co-states
is to use a shape based approach as outlined by Caubet and Biggs [18, 19]. For
purposes of comparison the shape based approach serves as a useful alternative. In a
shape based approach, each of the quaternion components are expressed as a sum-
mation of polynomials in terms of a time variable, multiplied by coefficients which
may be determined by applying the relevant boundary conditions at the initial and
final values of the time variable over a finite time frame. Thus, for example, the
quaternion components are expressed as

qi ¼ qi0 þ _qi0tf
t

tf

 !

þ _qi0 � _qi
�

�

t¼tf

 �

tf
t

tf

 !2

1�
t

tf

 !

þ qif � qi0 � _qi0tf

 � t2

t2f
3� 2

t

tf

 !

þ ∑
Nþ4

j¼5
eij�4 j� 4ð Þ

t

tf

 !2

� j� 3ð Þ
t

tf

 !3

þ
t

tf

 !j�1
0

@

1

A,

(52)

where the coefficients eij�4 are yet to be determined. They are determined by
minimizing the cost function

J ¼

ð

1

0

q21 þ q22 þ q23 þ q24 � 1
� �

d
t

tf

 !

0

@

1

A

2

: (53)

Once all the coefficients of the quaternion components qi are determined, the
angular velocity vector is defined by the inverse of the relation given by Eq. (43)
which is

ω ¼

q4 q3 �q2 �q1
�q3 q4 q1 �q2
q2 �q1 q4 �q3

2

6

4

3

7

5

_q1
_q2
_q3
_q4

2

6

6

6

4

3

7

7

7

5

: (54)

The angular velocity vector ω is evaluated for a range of non-dimensional time
values between 0 and 1. From the ratio of the maximum of this set, defining the
angular velocity time history in terms of the non-dimensional time variable, and the
maximum allowable angular velocity magnitude, the length of the time frame tf
over which the control torques must be applied may be found. From the angular
velocity vector ω the torques that must be applied to the satellite including
the gravity gradient torques may be found. From a range of choices for N
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(say 1≤N ≤ 6) in the Eq. (52) defining the quaternion, the one that gives the lowest
value for tf is selected.

8. Typical simulation examples

The first example considered the attitude dynamics is defined by Eqs. (18)
and (19). Thus the gravity gradient torques acting on the spacecraft are included in
the dynamic model and they are responsible for coupling the attitude quaternion
kinematics and the angular velocity dynamics. The objective is to spin the

spacecraft so the final angular velocity vector is given by ω ¼ 1 1 1½ �Trads=s. The

initial angular velocity vector is ω ¼ 0 0 0½ �T . The spacecraft is fitted with
magnetic torque actuators and the maximum three axis torques are limited to

Tc ¼ 0:62 1 1½ �TNm. The diagonal non-zero elements of the weighting matrix
W in Eq. (34) and the principal moment of inertia of the spacecraft are respectively
given by

Wdiag ¼ 0:24 0:9 1½ �, I ¼ 2:27293 3:27331 0:3989½ �kgm2: (55)

In all examples the solution of the TPBVP is done using MATLAB’s function,
bvp4c.m. Whenever there was a need to solve an initial value problem, the equations
were integrated using MATLAB’s ode45.m.

In all cases, the time variable was made non-dimensional so it raged from [0–1].
The integration time step was chosen to be relatively small initially (Δt ¼ 0:0001),
and automatically and iteratively reduced linearly as the final time was approached.
The iterations were terminated when no further improvement in the accuracy of
the predicted final time was feasible.

Figure 1 shows the time history of the reference quaternion components and
Figure 2 shows the corresponding angular velocities (p, q, r). Figures 3 and 4 show
the corresponding, actual, quaternion components and the corresponding angular
velocity components, where an approximate optimal linear feedback law based on
Eq. (42) is used to track the reference trajectory.

Figure 1.
Time history of the reference quaternion components for the first example.
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In the next example, the simplified attitude dynamics is used with the gravity
gradient torques neglected. This decouples the angular rate dynamics from the
attitude quaternion dynamics, which need to be considered for synthesizing the
reference trajectories. The reference angular velocities are then integrated to obtain
the spacecraft’s quaternion attitude time history. Figure 5 shows the reference
angular velocity components.

Figure 6 shows the errors in the actual angular velocity components when
compared with corresponding reference values and Figure 7 the corresponding
quaternion components. Figure 8 shows the attitude in terms of the Euler axis and
the Euler principal angle components.

In the final example it is desired to alter the attitude quaternion of the space-
craft, so as to point the spacecraft in a desired direction. In this case on the

Figure 2.
Time history of the corresponding reference velocity components for the first example.

Figure 3.
Time history of the actual quaternion components tracked by the feedback controller for the first example.
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quaternion kinematics defined by Eq. (44) are used. The maximum angular velocity
of the spacecraft is assumed to be limited to 0.001 rad/s. The desired pointing
direction is specified as a yaw, roll pitch Euler angle sequence given by
ψ θ ϕ½ � ¼ 22° 25° 30°½ � corresponding to the components of the quaternion
qd ¼ 0:2068 0:2518 0:1682 0:9303½ �.

In Figure 9 are shown the reference optimal quaternion components and in
Figure 10 are shown the corresponding angular velocity components. The optimum
torque components required to affect the attitude change are shown in Figure 11.

Figure 4.
Time history of the actual velocity components tracked by the feedback controller for the first example.

Figure 5.
Time history of the reference velocity components for the second example.
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These include compensation for the gravity gradient torques. They show that they
could be easily achieved by low thrust electric actuators such as electro-spray
thrusters.

When small reaction wheels are used Eq. (19) may be modified to include the
momentum of the wheels and the control inputs to the wheels could also be

Figure 6.
Time history of the errors in the actual velocity components corresponding to Figure 5, tracked by the feedback
controller.

Figure 7.
Time history of the corresponding quaternion components tracked by the feedback controller for the second
example.
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estimated. If reaction wheels are used much larger torques are possible and the time
over which they are used could be shortened. In Figure 12 are shown the attitude
time history components in terms of the Euler axis and Euler principal angle
components.

This example is also solved using the shape based approach discussed briefly in
Section 7. In Figure 13 are shown the required applied torque components obtained
by the shape based approach with N ¼ 1 in Eq. (52). The time frame over which
the control must be applied is tf ¼ 733:3s, which is the lowest for all N considered

and is about the same as the time required by the approach based on the integration

Figure 8.
Time history of the attitude components in terms of the Euler axis and the Euler principal angle components for
the second example.

Figure 9.
Time history of the reference quaternion components for the final example.
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of co-states. However the reference torque components shown in Figure 13, are
much larger than those plotted in Figure 11, and for this reason, they are not
referred to as ‘optimum torques.’ The corresponding gravity gradient torques, act-
ing on a satellite orbiting the Earth at the geostationary orbit radius, are also shown
in Figure 14. Although the gravity gradient torques are of the same orders of
magnitude as the reference optimum torque components in Figure 11, they are
much smaller than the corresponding torque components obtained by the shape
based approach and shown in Figure 13. It must be recognized that the gravity
gradient torques become much larger as the spacecraft orbits the Earth at a much
closer orbit radius.

Figure 10.
Time history of the corresponding reference velocity components for the final example.

Figure 11.
Time history of the corresponding reference torque components for the final example.
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9. Discussion and conclusions

A close examination of the results in Figures 9 and 12 shows that while the
quaternion component time histories are not linearly varying, the Euler axis and
Euler principal angle components are almost linear. This allows for linear extrapo-
lation of the trajectories if when desired. It is also observed that the acquisition of

Figure 12.
Time history of the attitude components in terms of the Euler axis and the Euler principal angle components for
the final example.

Figure 13.
Time history of the applied torque components for the final example, obtained by the shape based approach.

16

Advances in Spacecraft Attitude Control



the Euler axis is relative fast in comparison with growth rate of the Euler angle
which is relatively slower. The kinematics of the Euler axis seems to represent a fast
sub-system while the growth of the Euler angle represents the slow sub-system.
This observation, facilitates the construction of approximate sub-optimal trajecto-
ries where in the Euler axis is acquired instantly and the Euler angle increases or
decreases linearly with time. Once a sub-optimal solution can be defined in terms of
interpolating polynomial it can also be further optimized by using Eq. (13) and
shape based methods as those proposed by Caubet and Biggs [18, 19], quite rapidly
and if need be, by the pseudo spectral method, or other direct collocation methods.
The advantage of further optimization using shape based methods is that the precise
shape of the desired output could be achieved avoiding overshoot. However
depending on the choice of the output shape function, the control could be restric-
tive and so the magnitudes of the torques required could be much larger in com-
parison with the co-states approach.

For the preceding example, where a set angular velocity components were
desired, the velocity components and the corresponding quaternion components
are shown in Figures 5–7 as they vary with time. Figure 8 also shows that the Euler
axis and Euler principal angle components are varying as quadratic functions of
time. A similar conclusion cannot be drawn as far as the angular velocity compo-
nents and the components of the quaternion. This again is extremely useful in
applying low order polynomials for developing formulae for extrapolating the
optimal trajectories, by converting the quaternion components to the domain of
the Euler axis and Euler principal angle components. It also facilitates the
integration of various optimal segments into a single trajectory over an extended
time frame.

From the first example, comparing Figures 1 and 2 with Figures 3 and 4, it is
seen that the optimum tracking feedback control law obtained by linearly approxi-
mating the relationship between the states and co-states by Eq. (40), performs well.
The errors between these two sets of trajectories, the reference trajectory and the
actual tracked trajectory, are always within 5% of the corresponding reference
value, over the time frame of the plots.

Figure 14.
Time history of the gravity gradient torque components for the final example, obtained by the shape based
approach.
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In this paper, either the simplest form of the attitude dynamics or the basic
kinematic equations alone are used to construct the optimal trajectories. The
required control torques are obtained from the inverse dynamic relations. The
usefulness of transforming the attitude representation to the Euler axis and Euler
principal angle components, as it facilitates the application of low order polyno-
mials for the construction of approximate sub-optimal trajectories, is demonstrated.
Furthermore it is shown how optimal feedback control laws may be constructed
from the solution for the optimal trajectories, for tracking the reference trajectories.
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