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Introductory Chapter: Insight 
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Molecular Medicine
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1. Introduction

Molecular medicine aims to reveal molecules, such as genes, transcripts, pro-
teins, and metabolites, to underlie the mechanism behind the physicological pro-
cesses as well as alterations during the pathological conditions at the cellular level. 
Furthermore, molecular medicine intends to improve public healthcare and disease 
management through development of biomarker-based screening, diagnostic, 
and monitoring systems as well as target- and mechanism-based treatment strate-
gies. Human Genome Project has been completed in 2003, exactly 50 years after 
Watson and Crick invented DNA structure. Based on this valuable breakthrough, 
the twenty-first century’s molecular medicine approaches have been attributed to 
identify and understand functions and interactions of human genes to shed further 
light on health and disease mechanisms at the basic molecular and cellular level.

Published by James Watson in the first edition of “The Molecular Biology of the 
Gene” (1965), the central dogma of molecular biology was a complete demonstra-
tion of the flow of genetic information basically described as DNA makes RNA, 
which in turn makes proteins: DNA → RNA → protein [1]. However, later on the 
1980s–1990s by applying improved molecular biology methods, the single gene and 
inheritance concept has changed to multiple genes and inheritance with interac-
tions of genes, RNAs, proteins, and environment in a particular cell. Extinction of 
central dogma has led to proper and critical understanding of diseases and genera-
tion of molecular medicine. By this way, a new concept called phenome, as the total 
phenotypic characteristics of an organism, has emerged, which implies interaction 
of the whole genome with the environment [2].

Primary objectives of molecular medicine includes predicting potential future 
pathologies, identifying disease state through effective screening and early diag-
nosis systems, decision on effective treatment strategies, monitoring the prognosis 
and health care, and predicting recurrence earlier to apply alternative treatments. In 
this regard, molecular medicine aims to obtain decreased under/over/mis-diagnosis 
and generate effective targeted therapies without side effects. Here, we provide an 
overview of the latest headings of molecular medicine including promising research 
strategies and their emerging roles in biomedical research.

2. OMICS technology

The terms “Ome” derived from a Greek word and “Omics” are derivations of the 
suffix -ome which means “whole,” “all,” or “complete.” With the addition of -ome to 
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cellular molecules, such as gene, transcript, protein, metabolite, it can be referred as 
genome, transcriptome, proteome, metabolome, respectively [3, 4].

Omics technologies and systems biology are the emerging concept of molecular 
medicine (Figure 1). Omics refers to collective and high-throughput analyses 
including genomics, transcriptomics, proteomics, and metabolomics/lipidomics 
that integrated through robust systems biology, bioinformatics, and computational 
tools to study the mechanism, interaction, and function of cell populations’ tissues, 
organs, and the whole organism at the molecular level in a non-targeted and non-
biased manner [5].

Genomics is the systematic study of an organism’s entire genome [6]. The human 
genome is made up of DNA (deoxyribonucleic acid) comprising approximately 3 
billion base pairs of four chemical structures (adenine, guanine, cytosine, and thy-
mine), also called nucleotides. DNA contains genetic information required to build 
and maintain cells. A gene denotes a specific unit of DNA that hold information to 
make a specific functional unit named protein. It is estimated that the entire human 
genome contains approximately 21,500 genes. The order of the nucleotides reveals 
the meaning of the information encoded in DNA. Emergence of high-throughput 
sequencing technologies, such as next-generation sequencing, enables analysis of 
variations between individuals at the genomics level.

Transcriptomics is the study of transcriptome that comprises the entire collec-
tion of RNA (ribonucleic acid) sequences, called transcripts, in a cell. It is estimated 
that a human cell contains about 25,000 transcripts. RNAs are classified into two 
groups: (1) mRNA is the coding RNA that is translated into protein sequences.  
(2) Non-coding RNAs are also classified into two subgroups; short non-coding 
RNAs such as microRNA (miRNA) and long non-coding RNAs (lncRNA). Non-
coding RNAs are involved in gene regulation. Next-generation RNA sequencing 
technologies allow deeply understanding of variations and gene expression on 
various types of RNA molecules including miRNA, mRNA, and lncRNA [2].

Proteomics is the study of proteome, which is defined as the set of all expressed 
proteins and interacting protein family networks, and biochemical pathways in a 
cell, tissue, or organism. Although, the exact number of proteins/peptides is still 
unclear, it is estimated to be around a few hundred thousand.

Figure 1. 
Building blocks of OMICS approach and systems biology in molecular medicine.
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Metabolomics is the study of metabolome within cells, biofluids, tissues, or 
organisms. Metabolome can be defined as the small molecules and their interactions 
within a biological system under a given genetic, nutritional, and environmental 
condition. Since the metabolome is the final downstream product, changes and 
interactions between gene expression, protein expression, and the environment are 
directly reflected in metabolome making it more physically and chemically complex 
than the other “omes.” The metabolome is the closest to the phenotype among other 
omics approaches. Metabolomics best modulates and represents the molecular 
phenotype of health and disease [7]. In this regard, metabolomics is a brilliant 
source for disease-associated biomarkers. Mass spectrometry-based metabolomics/
lipidomics provides a useful approach for both identification of disease-related 
metabolites in biofluids or tissue, and also encompasses classification and/or 
characterization of disease- or treatment-associated molecular patterns generated 
from metabolites [8, 9]. Metabolomics analysis identifies different metabotypes 
of disease severity and makes successful clinical and molecular phenotyping and 
patient stratification.

3. Application field of OMICS technology in molecular medicine

Omics-based approaches have been significantly improved recently with the 
addition of novel concepts such as exposome/exposomics, the study of the envi-
ronmental exposure, to unravel the role of the environment in human diseases. 
Furthermore, the addition of adductomics, the study of compounds that bind DNA 
and cause damage and mutations, and volatilomics, the study of volatile organic 
compounds to the metabolomics/lipidomics analysis for comprehensive research 
of the metabolome have been newly emerging [2, 10, 11]. Exposome is a person’s 
total lifestyle and environmental exposures, which is not well understood yet. 
Researchers from NIH, Dr. Chao Jiang and his colleagues, have developed a method 
to capture and map an individual’s “exposome”—under the concept “exposing the 
human exposome—every breath you take, exposome tells where you have been and 
when.” Furthermore, they have designed a portable, battery-powered device com-
prising sensors, a collection container with filter, and a pump that simulates human 
breathing to be able to track and quantify personal environmental exposures. The 
sensors can detect different particles such as biologicals (biotics), chemicals (abiot-
ics), tobacco smoke, and automobile fumes. They have detected more than 2500 
species, including bacteria, fungi, plants, metazoa, and more than 200 viruses. One 
of them was remarkably called “brochosome” which look like viral particles, in a 
sense, but it is actually some sort of hydrophobic protein/lipid mixture made by 
insects as a waterproof mechanism on their body.

Systems biology, can be defined as the integration of omics-based systems, is a 
hypothesis-generating approach, while classical biology is hypothesis-driven  
[6, 12–14]. Bioinformatics is the application of computational tools and analysis 
used to capture, store, and interpret biological data. Focusing on large-scale data/
information obtained from a comprehensive, or global, assessment of a set of mol-
ecules, bioinformatics tools are then used to analyze the multi-dimensional amount 
of data to reveal metabotype, proteotype, and DNA-RNA panel biosignatures.

Analysis of multi-omics-based technologies through systems biology, bioin-
formatics, and computational power allows us to understand diversity of diseases, 
molecular heterogeneity of complex pathologies, mechanism involved in disease 
progression, and drug resistance. Subsequently, improvement has been made in the 
development of molecular-based screening, early detection, and monitoring sys-
tems as well as personalized treatment strategies [15, 16]. Omics-based integrative 
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identification and characterization of biomarker targets and their clinical transla-
tions are essential to develop comprehensive profiling, risk stratification, future 
cell-targeted early interventional and therapeutic strategies. First established, a 
decade ago, “multi-omics” approach to disease by integrative analysis of “single 
omics platforms” have been a paradigm shift attributed to personalized medicine 
[4, 15, 17, 18]. In this manner, Chakraborty and colleagues successfully documented 
“onco-multi-omics” approach in cancer research [17]. Systems biology integrated 
high-throughput multi-omics approach has been dedicated to understand complete 
molecular biosignature of health and disease.

Accurate determination and validation of disease-related biomarkers neces-
sitates the development of biorepository systems with a large collection and storage 
of patient biospecimens such as tissue, blood, and other bodily fluids, and well 
annotated clinical and pathological data [19–21]. By this way, biorepository systems 
enable integration of basic, translational, and clinical research to lead the discovery 
of hindered relevant biomarkers and emerging personalized diagnostic/therapeutic 
strategies on reliable big sample sizes associated with specific diseases [19, 20]. In 
another aspect, a recent Nature editorial (2019) critically highlights focusing on 
to study healthy individuals biobanking rather than people with diseases to better 
understand the exact definition of health with all its manifestations [22]. Projects 
such as “100K Wellness Project” and “The All of Us Research Program” have been 
producing next-generation sequencing data through specimens from healthy 
individuals to obtain molecular, lifestyle, and environmental measurements  
(http://allofus.nih.gov/), in particular for future drug discovery studies.

Genomic diversity and molecular heterogeneity of complex diseases obscure 
the discovery of theranostic, prognostic, and predictive biomarkers as well as their 
translation into personalized medicine at the single-cell level. In this aspect, promis-
ing single-cell studies formed another emerging concept in the field of the molecu-
lar medicine. Single-cell level analysis has been suggested to be crucial for a better 
and precise enrichment of biomarkers related to complex heterogeneous nature of 
diseases [23]. Omics-based analysis at the single-cell level comprises epi/genomics, 
epi/transcriptomics, epi/proteomics, and metabolomics/lipidomics approaches. 
These technologies facilitated our understanding of variations, interactions, biologi-
cal functions, and disease heterogeneity at the single-cell level which paves the way 
for a personalized medicine-based smart healthcare system [24, 25]. Lately, one 
of the hottest research fields emerged as molecular characterization of circulating 
biomarkers composed of circulating tumor cells (CTCs), cell free DNA (cfDNA) 
and/or exosomes as liquid biopsies to assess disease management and evolution 
in real time [26]. Exosomes have been described as microvesicules (50–150 nm) 
released into the extracellular region by a variety of cells. Exosomes contain intact 
oligonucleotides, protein, and metabolites and have been identified in a vast range 
of biofluids including serum, urine, plasma, breast milk, saliva, pleural effusions, 
bronchoalveolar lavage fluid, ocular samples, tears, nasal lavage fluid, semen, 
synovial fluid, amniotic fluid, and pregnancy-associated serum [27]. With the 
development of high-throughput omics technologies, liquid biopsy has settled in the 
center of non-invasive or minimally invasive applications of easily accessible bioflu-
ids to detect disease-associated CTCs for diagnostic, monitoring, and therapeutic 
approaches. Isolation, detection, and molecular characterization of CTCs have been 
performed in a variety of diseases mostly in cancers. Due to high heterogeneity and 
resistance to treatment observed in tumor biology, single-cell CTC characterization 
allows clinical profiling and targeted treatment strategies and monitoring.

Molecular medicine applications not only improved the basic understanding 
of disease mechanism, but also contributed to the understanding of mechanism 
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of drug action, identification of theranostic targets, and hence a paradigm shift 
in drug discovery [28]. Molecular theranostics can be defined as integration 
of disease diagnosis and treatment with the same molecular target. Promising 
oligonucleotide-based (DNA or RNA) therapeutics and vaccines such as gene 
therapy, DNA vaccines, and RNA pharmaceuticals have been successfully 
developed in the last 2 decades using antibodies and aptamers. Regarding 
DNA, viral or bacterial vectors are used and polymeric materials such as poly 
lactic-co-glycolic acid (PLGA), chitosan, and polyethylenimine (PEI) have been 
applied for efficient delivery [29]. Aptamers or antibodies can be conjugated to 
theranostic biomarkers and nanomaterials for specific targeting [30]. Aptamer-
based applications include imaging, targeted drug delivery, and treatment such 
as targeted phototherapy, gene therapy, and chemotherapy [31]. Limitations in 
non-toxic specific targeting and delivery encouraged researchers to use drug 
carriers such as liposomes and nanoparticles for encapsulation of oligonucleotide 
therapeutics [32]. Studies on some tumor types including lung, pancreas, and 
breast have demonstrated successful results with encapsulated antisense oligo-
nucleotides [33, 34]. RNA oligonucleotides using the antisense gene silencing 
technology has given promising results to inhibit disease-related mRNA gene 
expression. RNA therapeutics including antisense RNA, small interfering RNA 
(siRNA), and anti-miRNA (anti-miR) are promising for the treatment of a num-
ber of diseases including chronic complex diseases. Furthermore, their impact 
has been evaluated in the different stages of development from preclinical to 
Phase III clinical trials [35–39]. Major challenges dealing with efficient delivery 
include biocompatibility, protection from nucleases, distribution location, and 
persistence. Peter and colleagues have identified suicide/killer RNA molecules 
(siRNA, shRNA, miRNA, siRNA+miRNA complex) on numerous cancer types. 
In addition, they have shown that specific toxic RNAi-active sequences present in 
the genome can kill cancer cells [40–44]. Rozowsky and colleagues have gener-
ated a comprehensive analytic platform for extracellular RNA profiling called 
“exceRpt” [45].

Murillo and colleagues have created exRNA Atlas Analysis, and explored how 
RNA transmits information through cell-to-cell communication, known as extracel-
lular RNA or exRNA [46]. Moreover, they have identified complexity in steps of 
transport exRNA molecules, types, carriers between cells, target cells, and func-
tions, and found that even the type of carrier affected how exRNA messages were 
sent and received which may suggest potential novel disease-associated biomarkers 
and therapeutic targets. To date, exRNA-originated potential biomarkers have been 
identified in 13 biofluids like plasma, saliva, and urine in over 50,000 samples 
from over 2000 donors for nearly 30 diseases including cardiovascular diseases, 
diseases of the brain and central nervous system, pregnancy complications, glau-
coma, diabetes, autoimmune diseases, and multiple types of cancer. Thus, exRNA 
profiles could be an individualized source and for personalized treatment of various 
diseases.

Examples of current and future applications in molecular medicine may also 
include DNA/RNA chips, peptide/antibody arrays, aptamer/antikor-based immu-
noassays, and/or sensor systems for disease screening, diagnosis, and monitoring. 
Molecular tools/devices such as lab-on-chips combined with sensors using micro-
array techniques have been developed which are able to perform patient stratifica-
tion based on specified clinical and molecular features [47]. Those tools are assessed 
to capture very low concentrations of biochemical substances at the early disease 
phase, and result in effective/sensitive treatment and eradicate and/or reduce over-/
undertreatment, and side effects [48–50].
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4. Conclusions

In contrast to one single gene disease concept of Mendelian inheritance, chronic 
complex diseases are result of alterations in multiple genes and signaling pathways. 
Furthermore, these diseases are generally characterized with heterogeneity at the 
cellular/tissue level. Therefore, identification and omics-based profiling of multiple 
biomarker profiles rather than one single gene/biomarker possess greater statisti-
cal power and reliability for future screening/diagnosis/monitoring/treatment 
strategies. In this aspect, molecular medicine applications have brought novel and 
significant outputs to the research as well as challenges that require further preclini-
cal and clinical studies. Development of omics-based discriminatory biomarkers for 
early detection, as well as novel targeted interventional and therapeutic strategies 
are crucial for a personalized healthy life as well as disease management.
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