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Chapter

Host-Pathogen Interaction in the 
Lung of Patients Infected with 
Pseudomonas aeruginosa
Sandra Grumelli

Abstract

Pseudomonas aeruginosa is an opportunistic bacterium that can proliferate in 
the soil, water, and even humans if they are immunologically depressed. During 
lung infections, P. aeruginosa goes through significant morphological changes 
turning into the mucoid form after which its eradication becomes almost impos-
sible. Within this chapter, we explore the bioenergetics changes produced within 
P. aeruginosa during infections in humans and the metabolic pathways that are 
involved in those changes that lead to chronic infection.

Keywords: P. aeruginosa, host, bioenergetics, phosphate, choline

1. Introduction

There are many lung pathogens but one of the most studied is Pseudomonas 
aeruginosa because it cannot be eradicated under certain conditions. As an oppor-
tunistic pathogen, its interaction with the host has some particularities that we will 
explore in this chapter.

The Pseudomonadaceae comprise Gram-negative microorganism, nonsporulated, 
aerobic strict of wide distribution in the environment from the soil, water, and 
plants to humans; this is due to their nutritional versatility. Of this vast group, only 
Pseudomonas cepacia, mallei, and aeruginosa infect humans, of which aeruginosa is 
the more relevant because it is the most frequent cause of nosocomial infections [1].

It is often said that Pseudomonas aeruginosa does not infect healthy individu-
als but there are reports on the contrary, as swimmers otitis [2]. Because it is 
an opportunist pathogen, it does not need the host for its survival, and it may 
be lethal after becoming a chronic infection in susceptible patients with cystic 
fibrosis (CF) [3–5], cancer [6–8], hepatic cirrhosis [9], keratitis [10–13], or spon-
dylodiscitis [14]. This bacterium is most feared by pulmonologist because when 
acquired by nosocomial patients [15, 16], it complicates any existing conditions, 
and when it invades immune-compromised patients, its eradication may become 
impossible.

Colonization with P. aeruginosa is observed in all stages of chronic obstructive 
pulmonary disease (COPD), but the prevalence significantly increases with disease 
severity from 0.7%, in stage 1 of the Global Initiative for Obstructive Lung Disease, 
to 1.5% for stages 2 and 3 up to 2.6% for stage 4 [17, 18]. This prevalence rises to 
8–13% in acute exacerbations of COPD [19–21]. But still, the main susceptibility 
for the infection and death by P. aeruginosa [22, 23] are the mutations of the CF 
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transmembrane conductance regulator (CFTR) identified as F508, G542X, G551D, 
W1282X, R1162X, and N1303K [24, 25]. CF also has co-morbidity such as liver cir-
rhosis [26] with 18% prevalence [27, 28] of P. aeruginosa infection in this subset.

2. Host-bacteria interaction in acute infection

2.1 Lung changes upon bacterial invasion

The flagella and lipopolysaccharide (LPS) from P. aeruginosa are the first to 
contact the ciliated epithelial cells [29]. In the airways, these cells are covered by 
the surfactants containing 45% less NaCl and 600 more K+ than in plasma [30], 
while the alveolar epithelial cells are covered by a surfactant layer that contains 
mostly phosphatidylcholine (80%) [31] and surfactant proteins A, B, C, and D 
[32, 33] that bind LPS in a calcium-dependent manner [34]. After the surfactant 
layer is crossed, the flagellum binds to the epithelial cells through toll-like recep-
tors (TLR) 2, 3, 4 and 5 [35–40] that are quickly endocytosed to be degraded in 
the proteasome. The activated TLR5 induces the macrophages chemoattractants 
CXCL1, CXCL2, and neutrophil chemokine CCL20, which are inhibited by TLR5 
inhibitors [41]. The peptides digested are then presented to macrophages and 
dendritic cells.

When LPS binds to the host cells, where CFTR is also a receptor [42], it upregu-
lates NF-κB at the gene level (Table 1), promoting inflammation [43] by secretion 
of IL1, IL6, IL8, ICAM-1, and also CXCL1 [44–47], although in different degrees of 
regulation. For example, CXCL1 expression is orchestrated by a fatty acid-binding 
protein (FABP4) that delivers fatty acids from the cytoplasm to the nuclear recep-
tor PPAR. These prompt macrophage signaling through the myeloid differentiation 
protein-88 (MyD88) to induce cytokine production following engagement of 
TLRs with LPS [48–51]. Macrophages require MyD88 to produce CXCL1 but also 
eicosapentaenoic acid and docosahexaenoic acid, both substrates of FABP4. This 
demonstrates the importance of fatty acid metabolism to promote host resistance 
to P. aeruginosa, facilitating macrophage-neutrophil cross-talk during the infection 
[52, 53].

The T cells also play an important role in acute infection. IL17 producing 
T cells are expanded [54], via expression of STAT3 and retinoid orphan receptor 
[55]; these steps are crucial for B cell activation and immunoglobulin release for 
bacterial clearance [56]. On the contrary, excess of T regulatory cells (Treg) are 
associated with secondary P. aeruginosa infections, because depletion of Tregs 
decreases IL-10 levels and elevates IL-17A, IL-1β, and IL-6 [57, 58]. Therefore, the 
underlying immune suppression, by Treg accumulation, and Th17 depletion are the 
cause of chronic infection [57]. This may be reversed by treatment with IL7 or ethyl 
pyruvate increasing IL17, INFγ, and CD8+ T cells [59, 60].

Death of CF patients chronically infected with P. aeruginosa occurs due to the 
depletion of neutrophils, IL6, and granulocyte-colony stimulating factor which 
causes dysfunctional neutrophil burst. This reduces the secretion of reactive oxygen 
species, which are essential for bacterial killing and clearance [61].

2.2 Bacterial metabolic changes for invasion

Simultaneously, the contact of P. aeruginosa with the lung upregulates in 
the bacteria genes involved mainly in biofilm synthesis [62] (Table 1). These 
changes in gene expression result in downregulation of proteins involved in LPS 
biosynthesis, antimicrobial resistance, and phenazine production concomitant 
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P. aeruginosa Lung

Gene ID FC Name Gene ID FC Name

hemE 16.1a Uroporphyrinogen 

decarboxylase

4502 Dioxin-inducible 

cytochrome P

pyrC 12.1 Dihydroorotase (biofilm 

development)

252 ppGpp

pyrH 6.4 Uridylate kinase (biofilm 

development)

206.7 Tumor necrosis 

factor-α-inducible DNA-

binding protein A

adhA 5.5 Alcohol dehydrogenase 133.1 Proteasome subunit C

pelB, pelE 5.6, 

3.7

Extracellular polysaccharide 

(competitive disruption of S. 
aureus biofilms)

hORC2L 13.4b Human origin 

recognition complex 

protein 2

cls 7.0 Cardiolipin synthase MCP-1 13.3 Monocyte chemotactic 

protein 1

pscD 3.2 T3SS export protein 3.5 c-Jun

plcN 3.2 Phospholipase C precursor 3 GTP-binding protein 

rhoB4.

algD,E,F,8,amrZ 1.9–

10.7

Alginate biosynthesis 2.9 Urokinase-type 

plasminogen activator

ppiA 2.5 Peptidyl-prolyl cis-trans 

isomerase

PKC 2.8 Protein kinase C, ETA 

type

hmgA −7.2 Homogentisate 

1–2-dioxygenase

2.7 Folylpolyglutamate 

synthetase

algC −9.3 Phosphomannomutase TTP 5.7 Tristetraproline

hemE 16.1 Uroporphyrinogen 

decarboxylase

2.4 Anti-oncogene

pyrC 12.1 Dihydroorotase (biofilm 

development)

MAD3 5.1 IκB-α

pyrH 6.4 Uridylate kinase (biofilm 

development)

hENT1 4.2 Placental equilibrative 

nucleoside transporter 1

adhA 5.5 Alcohol dehydrogenase TEL 2.8 Transcription factor

pelB, pelE 5.6, 

3.7

Extracellular polysaccharide 

(competitive disruption of S. 
aureus biofilms)

DPH2L 2.6 Diphtheria toxin 

resistance protein

cls 7.0 Cardiolipin synthase TFPI2 2.3 Tissue factor pathway 

inhibitor 2

2.1 Ankyrin motif

ESE-1 2.1 Epithelial-specific 

transcription factor

−12.5 8IRF

−11.9 JAK-1

EPB49 −2.0 Erythrocyte membrane 

protein band 4.9. 

(Dematin)

−2.3 Alu repeat-containing 

sequence

FC, fold changes; NC, no change.
aChange relative to P. aeruginosa acute infection/chronic contact to host cell [62].
bRelative change of lung cell gene profile after 3 h contact with P. aeruginosa [43].  
Data reported by Naughton [62] and Ichikawa et al. [43].

Table 1. 
Genetic changes due to host-pathogen interaction quantified by microarrays of mRNA.
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with the upregulation of proteins involved in adherence, lysozyme resistance, and 
inhibition of the chloride ion channel, and CFTR [63]. P. aeruginosa releases choline 
from surfactants [81]. In vitro studies utilizing choline, as a carbon and nitrogen 
source, shows that it produces accumulation of polyphosphates (polyPi), carbo-
hydrates, and LPS accompanied by depletion of phosphate (Pi) and phospholipids 
(PL); deeply modifying its energetic metabolism, the bacteria save 45% of energy 
in polyPi [64] (Table 2).

After the invasion, the bacteria attach to the lung epithelium producing pro-
found metabolic changes, which correlates with morphological changes to the 
rugose small-colony variant (RSCV) [65–67]. The transition to the RSCV precedes 
inactivation of serine hydroxymethyltransferase; this produces accumulation of 
cyclic diguanylate [68] and nucleotide ppGpp that leads to polyPi accumulation 
[69] and to alginate production [68, 70–72].

Table 2 shows that the total content of phosphate is reduced 3 times in choline 
feed bacteria, although it accumulates Pi in polyPi. The polyPi may be thought as 
the energetic savings of the bacteria which is done at expenses of phospholipid 
biosynthesis. This is possible reducing the size of the bacterium [73] and increas-
ing the area/volume ratio that facilitates O2 exchange for which the bacteria have 
to compete with the host [74]. The overall bacterial changes save energy accumu-
lating ppGpp, the substrate for polyPi synthesis by polyphosphate kinase, which is 
also increased [75]. Some of these polyPi are located in the outer membrane where 
this highly energetic polymer has Pi bonds similar to the ATP and a highly nega-
tive charge neutralized by cations such as Ca2+ and Mg2+. Thus, polyPi function 
as an energy storage, buffer, and ion chelator that may shield the bacterium from 
environmental changes.

After adhering to the host ciliated epithelial cells, through mucin, the bacte-
rium is enabled to form aggregates, secrete alginate, and modify its LPS [76]; this is 
a process regulated by 3,5-cyclic diguanylic acid [68]. The LPS is a macromolecule 

Composition Succinatea + NH4Cl Cholinea

μg/mg of 

protein

μmol/mg of 

protein

μg/mg of 

protein

μmol/mg of 

protein

% pb

Phosphate 1400 ± 100 14.7 ± 0.7 460 ± 90 4.8 ± 0.7 33 0.001

ATP 1650 ± 330 3.0 ± 0.6 1270 ± 165 2.3 ± 0.3 −23 0.32

Polyphosphates 4.0 ± 1.8 0.042 ± 0.01 6.3 ± 1.4 0.066 ± 0.008 57 0.004

Carbohydratesc 210 ± 40 1.2 ± 0.2 330 ± 50 1.8 ± 0.2 50 0.03

LPSd 19 ± 4 0.08 ± 0.02 41 ± 9 0.16 ± 0.03 100 0.02

Phospholipidse 114 ± 7 0.65 ± 0.04 71 ± 4 0.1 ± 0.02 −85

Biosynthetic 

energy (ATP)f

— 1675 — 924 45

aBacteria were grown in a high phosphate basal salt medium. All chemical determinations were done on 1.05 ± 0.16 
and 1.00 ± 0.20 mg ml −1 of culture from whole bacteria grown with 20 mM succinate plus 18.7 mM NH4C1 or 
20 mM choline chloride, respectively. Results are the average of four independent experiments ± SD.
bValues obtained by ANOVA analysis.
cTotal carbohydrates were measured by the phenol method.
dMeasured as the content of KDO according to the determination of formylpyruvic with thiobarbituric acid.
eTotal phospholipids from bacteria grown with succinate/NH4Cl or choline.
fValue obtained by calculation of the biosynthetic cost of LPS 470 μmol ATP/gr of cells, 1 μmol ATP/g polyphosphate, 
470 μmol ATP/g of glycoside, and 2578 μmol ATP/g of phospholipids. Table taken from Grumelli [64].

Table 2. 
Metabolic changes in the bacteria upon infection.
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(C205H366N3O117P5) of 4899.956 g/mol that covers the outer membrane extend-
ing 40 nm outward. It is released with vesicle-containing enzymes and outer 
membrane (OM). Its extended formula was determined in 2003 (Figure 1); it is 
anchored to the OM through the lipid A which binds to the 3-deoxy-d-manno-
2-octulosonic acid (KDO), the first glycoside of the core oligosaccharide, bound 
to the distal O antigen, a highly variable region [77, 78]. A metabolic crossroad 
between the LPS and alginate biosynthesis (Figure 2) is mannose-6-phosphate 
isomerization to mannose-1-phosphate by phosphomannomutase (Alg C). The glu-
cose-6 phosphate (G6P) can be transformed to G1P to produce LPS or to isomerize 
mannose-6-phosphate to G1P. Similarly,  fructose-6-phosphate (F6P) can be con-
verted to mannose-6-phosphate and then isomerized to mannose-1-phosphate that 
becomes alginate by d-mannuronate linkage to l-guluronate via a P-1,4 glycosidic 
bond. Thus, isomerization of mannose 6-phosphate to mannose 1-phosphate by 
phosphomannomutase, encoded as algC, is common to the biosynthesis of LPS and 
alginate since mutants in this phosphomannomutase are hindered in their ability 
to infect in vivo [79].

2.3 Interaction between lung and bacteria

The host-pathogen interaction studied in vivo utilizing LPS in the lung of 
mice exposed to cigarette smoke model exacerbations of COPD in patients 
chronically infected with P. aeruginosa. Figure 3 proposes that this extracellular 
pathogen releases to the medium phospholipase C (PLC) [80] and phosphoryl-
choline phosphatase (PChP) [81] within vesicles [82]. These vesicles degrade 
the surfactant, from phosphatidylcholine [85] to phosphoryl-choline and 
diacylglycerol (DAG) [83], causing Ca2+ mediated vaso-constriction [84]. 
Choline and phosphate (Pi) released by PChP produce airway constriction and 
inflammation in the lung tissue.

Figure 1. 
LPS formula and structure set forth in PubChem (CID 11970143); and its parts KDO, (CID 49792052); 
and Lipid A (CID 9877306).
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Further validation of this host-pathogen interaction is verified by the metabolite 
variations in a mouse model that uses live bacteria, instead of LPS. Figure 4A shows 
that phosphatidylcholine and glycine are significantly reduced in the lung upon 
infection, due to their consumption, while succinate and lactate are significantly 
accumulated [85]. Variations of choline concentration in the lung are not significant 
although glycerophosphocholine and glycine are [86, 87], which are the degradation 

Figure 2. 
The metabolic fork that derives glucose-6 phosphate (G6P) from biosynthesis of LPS to alginate. 
Tridimensional structure of phosphomannomutase; red and blue represent oppositely charged regions.
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products of choline. This is because P. aeruginosa is capable of releasing choline 
and converting it to betaine and then to glycine (Figure 4B) [88–91], for osmo-
protection [92, 93] from the hyperosmolarity in the CF lung. Glycine also triggers 
chloride influx, inhibiting the Ca2+ mobilized by LPS [94]. This is a mechanism of 
self-preservation because macrophages are activated by LPS but suppressed by free 
glycine [95].

The succinate accumulated in the lung after infection [85], as Krebs cycle 
metabolite, inhibits histone demethylases, collagen hydrolases, α-ketoglutarate 
dioxygenases, and the 5-methylcytosine hydroxylase family [96]. In vitro succinate 
is the favorite carbon source for P. aeruginosa. Its consumption reduces the length 
of the LPS (Table 3), increasing the PL and Pi content and preventing the polyPi 
accumulation (Table 2), which is essential to the stress response [64]. The LPS and 

Figure 3. 
(A) Representative scheme of the host-pathogen interaction in mice lung during exacerbations of 
COPD. As an extracellular pathogen, P. aeruginosa releases to the medium phospholipase C (PLC) and 
phosphorylcholine phosphatase (PChP) within vesicles that degrades the membranes and surfactant of lung 
epithelial cells from phosphatidylcholine to phosphorylcholine and diacylglycerol (DAG) that cause Ca2

+ 
mediated vaso-constriction. Choline and Pi released by PChP produces airway constriction in the lung tissue, 
and LPS and PolyPi accumulation in P. aeruginosa. (B) Representative experiment of inflammatory cells 
present in BAL of naïve mice (n = 5), mice treated with of LPS (n = 4), smoke exposed (n = 8) and smoke 
plus 100 ng/weekly of LPS (n = 3) from P. aeruginosa. *P = 0.01 relative to naïve mice, **P = 0.04 relative to 
naïve mice, ***P = 0.01 relative to smoke exposed, §P = 0.01 relative to naïve mice, †P = 0.05 relative to smoke 
exposed, ∫P = 0.05 relative to naïve mice, and ‡P = 0.01 relative to smoke exposed. The figure is taken from 
Grumelli et al. [64].
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PL biosynthesis has a common metabolite, the R-3-hydroxyacyl-ACP that is the 
substrate for R-3-hydroxyacyl-ACP dehydrase (FabZ) [98], to synthesize PL, and 
for LpxA, for LPS synthesis. Thus, the increased content of PL is at the expense of 
Lipid A from LPS (Figure 5), as shown in Table 2.

The LPS of P. aeruginosa stimulates the O2 uptake from mitochondria [97] 
producing decoupling of the oxidative phosphorylation, reducing the respiratory 
rate, which generates stress in the host lung triggering exacerbations [44, 64, 97]. 
Therefore, succinate accumulation signifies that choline consumption is increasing 
the adaptation of the bacteria to the lung environment and the transition to the 
RSVC form, for chronic infection.

Composition Succinatea + NH4

(μmol/μmol KDO)

Cholinea

(μmol/μmol KDO)

% p

LPSb

Total Pi 27 ± 5 33 ± 8 22 NS

Carbohydratesc 0.09 ± 0.01 0.15 ± 0.02 67 ≤0.05

Lipid A

Palmitic ac.d 34 ± 2 39 ± 5 15 NSe

12 carbon-hydroxyl ac. 32 ± 14 45 ± 20 41 NS

aBacteria were grown in a high phosphate basal salt medium with 20 mM succinate plus 18.7 mM NH4C1 
or 20 mM choline chloride. All chemical determinations were carried out on LPS isolated with Triton X-100 
from whole bacteria harvested at absorbance at 660 nm of 0.7. Total cellular contents were 1.05 + 0.16 and 
1.00 + 0.20 mg/ml for succinate and choline, respectively. Results are the average of four independent experiments ± 
SD. P values were obtained by ANOVA analysis.
bKDO quantified.
cCarbohydrates quantified by the phenol method.
dLipids were hydrolyzed from lipid A, identified by mass spectrometry. Results are expressed relative to stearic acid 
and averaged of three independent experiments ± SD.
eNo significative. Data taken from Grumelli [64].

Table 3. 
Variation in LPS composition according to the lung environmental changes.

Figure 4. 
(A) Lung alterations due to host-pathogen interaction upon infection. Gluc, glucose; Asc, ascorbate; GPC, 
glycerophosphocholine; Gly, glycine; Succ, succinate; bHB, beta-hydroxybutyrate; Val, valine; Leu/iso, leucine/
isoleucine; Lac, lactate; and Gsh, glutathione reduced; figure taken from [85] and (B) choline conversion by  
P. aeruginosa.
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3. Chronic infection of P. aeruginosa

Upon infection, the host decreases iron levels in the blood [99]; this iron defi-
ciency regulates a great number of bacterial virulent genes like alginate, the most 
relevant virulence factor, for P. aeruginosa survival [100]. In the lung, iron defi-
ciency turns on AlgQ, the bacterial biofilm production gene, also known as AlgR2 
[101, 102], under the Pfr A regulation that assists to the formation of two kinds of 
cytoplasmic aggregates: large vacuole-like bodies and smaller granules containing 
iron in association with oxygen or phosphate, very likely polyPi [103]. This leads to 
the RSCV type of P. aeruginosa. Under these conditions, the bacteria secrete algi-
nate, a linear polysaccharide of d-mannuronic acid linked to l-guluronic acid [104].

The first gene described for the biosynthesis of alginate was the phosphoman-
nose isomerase and GDP-mannose dehydrogenase (AlgD) that catalyze the conver-
sion of GDP-mannose to GDP-mannuronic acid [105]. Upon oxygen limitation, P. 
aeruginosa utilizes nitrate or arginine as electron acceptors, via the succinylarginine 
pathway [106, 107]. The AlgD expression is tightly regulated by several environmen-
tal sources including nitrogen, O2, Pi, NaCl, etc. Although the regulation of AlgD has 
been extensively studied, it is not completely understood, and eradication of chronic 
infection greatly depends on control of alginate production.

Several authors have studied the AlgD regulation, Figure 6 shows a 20-years 
breach in the finding of AlgD regulators. More positive regulators have been identi-
fied, such as AlgR that is upregulated by NaCl and also by the nitrogen source [108]. 
AlgD is also under the same promoter than PLC, which is sensitive to the nitrogen 
source [109] that regulates the anaerobiosis genes. These genes detect the ratio 

Figure 5. 
R-3-hydroxyacyl-ACP, metabolite common to the biosynthesis of LPS and PL for which R-3-hydroxyacyl-ACP 
dehydrase (FabZ) and LpxA compete [98].
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of glutamine to 2-ketoglutarate, which is dependent on O2 availability [108, 110]. 
Another positive regulator of AlgD is AlgU [111], but the only negative regulator 
known is the RpoN, a sigma factor, that regulates nitrogen metabolism. RpoN is 
increased by disruption of pyrimidine synthesis and decreased by the supplementa-
tion with uracil, showing that a high level of RpoN, in the RSCV form, may block 
the alginate biosynthesis [110, 112].

Studies on the biosynthetic pathway of biofilms show that chelation of iron by 
lactoferrin destabilizes the bacterial membrane [113], which combined with xylitol 
hinders the ability of the bacteria to respond to iron deficiency [101], showing some 
promise for CF treatment.

4. Conclusions

P. aeruginosa is a relevant pathogen given its widespread prevalence across differ-
ent organs. The latent menace it poses for inpatients is a liability for institutions. For 
this, and the negative prognosis that P. aeruginosa infections in CF patients has, it is 
one of the subjects more researched for the last 40 years. The efforts have resulted 
in understanding the process of invasion, immune response, and bacterial tactics to 
achieve chronic infection. The complexity of the metabolic changes caused by the 
contact between the host and the bacteria is so extensive that the selection of vari-
ables for in vitro studies is difficult since the production of biofilm by P. aeruginosa 
seems to be regulated by everything, O2, N2, Fe2+, Pi, and NaCl. This multiregula-
tory network is still a puzzle to be resolved.

Scientists agree that suppression of alginate production is vital to treat CF 
patients, but in 40 years of research, little has been achieved in suppressing its 
production in vivo.

5. Perspectives

The advancement of techniques with high output data like microarrays, 
proteomes, and mass spectrometry are closing the breach among the different 
approaches that have been used to tackle P. aeruginosa infections. For example, 
mass-spectrometry has verified through metabolite detection the metabolic path-
ways studied by molecular biologists and enzymologists. The integration of these 
studies with the physicians is needed to assess the areas that show more promises to 
control alginate production and P. aeruginosa eradication after it became a chronic 
infection.

Figure 6. 
Regulators of AlgD in alginate production. Negative and positive regulators found up-today.
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