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Chapter

Thyroid Hormone Replacement 
Therapy in Patients with Various 
Types of Cancer
Aleck Hercbergs, Paul J. Davis, Hung-Yun Lin, Kelly A. Keating 

and Shaker A. Mousa

Abstract

Primary hypothyroidism is a common endocrine disorder that is effectively 
treated with l-thyroxine (T4) replacement. Preclinical and limited clinical evidence, 
however, indicates that T4 is a growth factor for a variety of cancers, acting at the 
thyroid hormone receptor on plasma membrane integrin αvβ3. T4 is the primary 
ligand for this receptor, whereas 3,5,3′-triiodo-l-thyronine (T3) is the principal 
intracellular thyroid hormone analogue. The evidence is reviewed here that T4 is 
a proliferative for breast, lung, kidney and prostate cancers and for glioblastoma, 
regulates cancer cell respiration and is a pro-angiogenic factor in established tumors. 
The recommendation is made that T3 be considered alternative replacement treat-
ment for patients with primary hypothyroidism who also have cancer.

Keywords: thyroid hormone receptors, integrin αvβ3, breast cancer, lung cancer, 
glioblastoma, renal cell carcinoma

1. Introduction

Spontaneous primary hypothyroidism is a common disorder and prescriptions 
for l-thyroxine (T4) replacement therapy are among the five most commonly 
prescribed drugs in the U.S. [1]. The predictable absorbance of T4 from the human 
gastrointestinal tract and its relatively long half-life in the circulation enable once 
daily replacement dosing and high patient compliance. 3,5,3′-triiodo-l-thyronine 
(T3) is also prescribed as thyroid hormone replacement, but its relatively short bio-
logic half-life means that more than once daily dosing is required for replacement.

Integrin αvβ3 is one of a family of plasma membrane proteins that are impor-
tantly involved in cell-to-cell and cell-extracellular matrix (ECM) protein interac-
tions that are particularly relevant to tissue structure and function in cancer [2, 3]. 
αvβ3 is generously expressed by cancer cells and contains a receptor for thyroid 
hormone at which nongenomic actions of thyroid hormone are initiated [4, 5]. 
There are no structural homologies between the thyroid hormone receptor site on 
αvβ3 and the nuclear thyroid hormone receptors (TRs) at which genomic actions of 
the hormone are initiated [4, 5]. The large panel of genomic actions of T3 that are 
critical to the function of normal cells in species with thyroid glands involve TRs. T4 
is a prohormone for T3 and is not important within cells, except perhaps for regula-
tion of the state of actin [5, 6].
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At the cell surface receptor for thyroid hormone on αvβ3, T4 is the principal ligand 
[7, 8] and has at physiological concentrations a set of actions that include cancer cell 
proliferation [4, 5], cancer cell defense pathways, e.g., anti-apoptosis [5], and the 
fostering of tumor-relevant angiogenesis [9, 10]. In nonmalignant cells, the T4 recep-
tor on αvβ3 may have certain specific functions in neurons during development [11, 
12], in phagocytosis [13] and in platelet aggregation [14]. Studies in vitro have disclosed 
that T4 stimulates the proliferation of breast cancer cells [15–17], lung cancer [18, 
19] and kidney cancer [20] cells, glioblastoma cells [8, 21] and other tumor cells [22]. 
Pharmacologic blockade of T4 action at the integrin is feasible with tetraiodothyroace-
tic acid (tetrac) and modified forms of tetrac [7, 17, 20, 23–26] arrest tumor xenografts.

In patients with a variety of advanced solid tumors, elimination of endogenous 
T4 and substitution of exogenous T3 (“euthyroid hypothyroxinemia”) has also been 
shown to arrest tumor growth [27]. Other earlier studies of pharmacologic induc-
tion of mild hypothyroidism (decreased circulating host T4 without T3 replace-
ment) may also improve survival in patients with glioblastoma [27] and renal cell 
carcinoma [28]. The aggressive behavior of certain cancers may also be ameliorated 
in the setting of spontaneous hypothyroidism [29].

In this chapter, we will extend our discussion of the possibility that clinical 
behaviors of a number of cancers are supported by endogenous T4 or exogenous 
T4 replacement in cancer patients who have concurrent hypothyroidism [16, 27, 29, 
30]. In addition to the general principle that proliferation of many types of cancer 
cells is reduced by concurrent hypothyroidism, there are examples of highly specific 
roles that T4 may play in the behavior of certain tumors. In estrogen receptor-pos-
itive (ER+) cancer cells, T4 stimulates mitogen-activated protein kinase (MAPK)-
dependent, specific phosphorylation of ERα in the absence of estrogen [15]. This 
may also apply to lung cancer cells that express ER. In the postmenopausal patient 
with such ER-expressing tumors, host T4 may substitute for host estrogen.

We also will review actions of T4 that appear to be relevant to chemoresistance 
and to radioresistance. The chemoresistance role played by T4 may involve (a) 
specific antagonism of chemotherapeutic drug-induced apoptosis in tumor cells or 
(b) enhanced export by tumor cells of cancer treatment agents [31]. Integrin αvβ3 
is substantially involved in the induction of radioresistance in tumor cells [32–34], 
and the thyroid hormone receptor on αvβ3 controls the contribution of the integrin 
to radioresistance.

We conclude that for T4-treated patients with primary hypothyroidism who 
develop aggressive cancers, it is worthwhile to consider elimination of replacement 
T4 and management of hypothyroidism with T3.

2. Breast cancer

The published MD Anderson Cancer Center experience with breast cancer 
patients who develop spontaneous hypothyroidism is that the latter state changes 
the course of the cancer, i.e., the disease is less aggressive [29]. The survival of 
patients with end-stage metastatic breast cancer may be lengthened by induction of 
the state of euthyroid hypothyroxinemia [27]. Chemically modified tetrac that acts 
at the thyroid hormone receptor on αvβ3 significantly reduces breast cancer xeno-
graft size in the nude mouse [24].

An extensive survey of survival pathway gene transcription in triple-negative 
human (MDA-MB-231) breast cancer cells revealed that the thyroid hormone recep-
tor on αvβ3 differentially regulated expression of genes for anti-apoptotic X-linked 
inhibitor of apoptosis (XIAP), myeloid cell leukemia-1 (MCL-1), and for pro-apoptotic 
caspase-2 (CASP2) and BCL2L14 [26]. Acting in an anticancer mode, tetrac in this 
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study downregulated anti-apoptotic genes and increased expression of pro-apoptotic 
genes. The thyroid hormone receptor on integrin αvβ3 also affected breast cancer genes 
linked to angiogenesis. In addition, T4 and chemically modified tetrac (nano-diamino-
tetrac, NDAT) stimulate and inhibit, respectively, programmed death ligand-1 (PD-L1) 
gene expression in cultured MDA-MB-231 breast cancer cells [17].

The observation 10 years ago that tetrac enhanced tumor cell uptake of doxo-
rubicin, cisplatin and other chemotherapeutic agents suggested that a cell export 
system was regulated from integrin αvβ3 in breast cancer cells [35]. It was subse-
quently shown that activity of the p-glycoprotein (P-gp) plasma membrane efflux 
pump was regulated by thyroid hormone analogues that are acting at αvβ3 [31]. The 
implication of the observations is that T4 may act at the integrin to enhance P-gp 
action. Such an action may be desirable in healthy, nonmalignant cells for ridding 
the cells of toxic substances; in cancer cells, the action supports chemoresistance.

Radioresistance of certain cancer cells can be induced rapidly by X-radiation 
via a change in conformation of integrin αvβ3 [32, 33], but this has not yet been 
examined in breast cancer cells. The STAT3 [36] and NF-κB [37] signal transduc-
tion pathways appear to be involved in the development of radioresistance in breast 
cancer cells, and both of these signaling molecules are regulated via integrin αvβ3 
and the thyroid hormone receptor [5, 38].

Taken individually and together, the breast cancer-focused actions of T4 that are 
initiated at the iodothyronine receptor on integrin αvβ3 are reason to consider in 
patients with breast cancer and primary hypothyroidism a modification of standard 
replacement therapy with T4. The alternative approaches are T3 replacement or 
reduction in T4 dosage that permits endogenous thyroid-stimulating hormone 
(TSH) elevation without symptoms of hypothyroidism.

3. Prostate cancer

An anti-thryoid agent, propylthiouracil (PTU), inhibited the growth of xeno-
grafts in nude mice of two human prostate cancer cell lines [39]. No direct effect of 
PTU on the tumor cells was found in vitro. PTU reduces circulating levels of both 
T4 and T3. In a study conducted in smokers, overt spontaneous hypothyroidism was 
associated with a decreased risk of prostate cancer, as was elevation of circulating 
TSH [40]. Increased TSH presumptively reflected patient-specific decreases within 
the normal range of circulating T4 and T3 (latent hypothyroidism). The authors 
speculated that the reduced risk of prostate cancer risk was related to decreased T4 
action at integrin αvβ3. In another study, latent hypothyroidism was a predictive 
marker of positive response in patients with prostate cancer undergoing a specific 
therapy (abiraterone acetate) [41].

Preclinical studies of iodothyronines in prostate cancer xenografts and of pos-
sible contributions of integrin αvβ3 to prostate cancer have not yet been reported. 
However, αvβ3 response to X-radiation has been examined in prostate cancer (PC3) 
cells in vitro [32]. Activation of the integrin was induced by radiation and this 
response was prevented by tetrac, implicating the thyroid hormone receptor on the 
integrin in the defensive response.

4. Lung cancer

Human non-small cell (NCI-H522) lung carcinoma cells and small cell (NCI-
H510A) cancer cells proliferate in vitro in response to physiological concentrations 
of T4 and supraphysiological levels of T3 [19]. Tetrac inhibited these responses, 
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implicating the thyroid hormone receptor on integrin αvβ3 in the response. These 
cell lines express ERα As is the case in human breast cancer cells that express ER, 
the estrogen receptor is subject to activation/phosphorylation in the presence of 
T4. ER activation is associated with cancer cell proliferation quantitated by PCNA 
expression and thymidine incorporation. The specific ERα antagonist compound, 
ICI 182,770, diminished the activation by T4 of the estrogen receptor, as well as 
the stimulation of proliferation by T4. The growth of non-small cell (H1299) lung 
carcinoma xenografts is reversed by unmodified and chemically modified tetrac 
[23], consistent with a critical role for αvβ3 in the regulation of tumor growth.

More information available about T4 action on lung cancer is limited. Euthyroid 
hypothyroxinemia appears to slow the course of metastatic lung carcinoma [27].

5. Glioblastoma

In preclinical studies, T4 has been shown to be a growth factor for gliomas [21], 
and the actions of chemically modified tetrac molecules at the thyroid hormone 
receptor on integrin αvβ3 significantly increased transcription of a panel of pro-
apoptotic genes (p53, p21, PIG, BAD) [7]. The latter results imply that T4 action 
at the integrin may undesirably either decease or not affect expression of these 
genes. In a limited in vitro study, T3 restricted glioblastoma cell proliferation [42] 
and preclinical studies have also shown that NDAT—which limits access of T4 to its 
receptor on integrin αvβ3 on tumor cells—suppresses growth and is anti-angiogenic 
in glioblastoma xenografts [25].

In 2003, chemical induction of mild hypothyroidism with propylthiouracil 
(PTU) was shown in patients with recurrent, high-grade glioblastoma to be asso-
ciated with significant prolongation of survival [43]. More recently, euthyroid 
hypothyroxinemia has significantly extended survival in patients with end-stage 
glioblastoma [27].

Induction of euthyroid hypothyroxinemia has been effective in prolonging 
survival of the few glioblastoma patients with end-stage disease in whom it has 
been tested [27].

6. Renal cell carcinoma

Among the side effects of chemotherapeutic tyrosine kinase inhibitors (TKIs) 
used in management of renal cell carcinoma (RCC) is induction of preclinical 
primary hypothyroidism. The “preclinical” state is an elevation of circulating 
TSH with normal range serum T4 and T3 concentrations. An extensive clinical 
literature documents that response of metastatic RCC to TKIs sorafenib and 
sunitinib is importantly enhanced when drug-induced hypothyroidism compli-
cates tumor management [28, 30, 44–48]. TKIs may cause hypothyroidism in up 
to 40% of treated patients. The therapeutic response to the recognition of drug-
induced preclinical primary hypothyroidism in RCC patients was administration 
of exogenous T4 to the point of returning host TSH to the normal range. In the 
noncancerous patient with preclinical hypothyroidism, the American Thyroid 
Association has endorsed a strategy of replacement thyroid hormone as needed 
to prevent symptoms of hypothyroidism and maintain serum TSH below 10 mIU/
mL [49]. This approach may be adequate to take advantage of the TKI support that 
preclinical hypothyroidism provides with reduction in circulating T4 within the 
normal range.
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The relevance of the thyroid hormone receptor on integrin αvβ3 to RCC has been 
shown in xenograft studies in the nude mouse [20]. Tetrac and chemically modified tet-
rac significantly reduced xenograft volume and xenograft vascularity in 20-day studies.

The clinical and preclinical information available on RCC documents the 
importance of thyroid hormone to RCC. When drug-induced or spontaneous early 
hypothyroidism complicates the course of RCC, substantial decision-making sur-
rounds when and with what hormone the hypothyroid state should be addressed.

7. Pancreatic carcinoma

Pancreatic cancer is an aggressive tumor locally and metastasizes regionally and 
systemically with sufficient frequency to have a very unsatisfactory 5-year survival. 
The relevance of thyroid hormone to tumor behavior has been shown in xenograft 
studies [50]. Unmodified and chemically modified tetrac in 15-day studies reduced 
xenograft size by up to 50% and reduced graft vascularity. Tumor gene expression 
studies showed that chemically modified tetrac acted via αvβ3 to reduce epidermal 
growth factor receptor (EGFR) gene and anti-apoptotic XIAP gene transcription 
and to increase expression of pro-apoptotic p53 and anti-angiogenic thrombospon-
din 1. The implication of these results is that T4—whose binding to αvβ3 is inhibited 
by tetrac—may play an important tumor support role in this form of cancer.

In contrast to RCC, there is not a significant literature on chemotherapeutic 
drug-induced hypothyroidism in patients with pancreatic carcinoma. Induction 
of euthyroid hypothyroxinemia appears to slow the course of advanced pancreatic 
cancer [27].

8. Discussion

At the cancer cell surface receptor for thyroid hormone on the extracellular 
domain of integrin αvβ3, T4 is an active hormone, supporting a variety of critical 
tumor cell functions [5, 10, 26]. In contrast, T4 within normal cells and cancer cells 
can serve as a prohormone source for T3. T4 is the standard of care for management 
of hypothyroidism [49].

A small minority of hypothyroid patients coincidentally have an experience 
with cancer of various types, as pointed out above. The behavior of the tumors is 
reported in most clinical studies of this combination of diseases to be less aggres-
sive. But interpretation of the data is sometimes difficult because a distinction may 
not be made between T4-treated and untreated spontaneous hypothyroid states and 
the appearance or behavior of the cancer. However, substantial information is now 
available about the link of hypothyroid state to tumor behavior in those patients 
in whom hypothyroidism is a side effect of chemotherapy, e.g., TKI use in RCC 
patients [28, 47, 51], or the clinical use of euthyroid hypothyroxinemia in patients 
with advanced cancers [27].

A body of preclinical evidence also exists to indicate that T4 stimulates prolif-
eration of a variety of tumors, and this effect is initiated at a plasma membrane 
receptor for thyroid hormone that is generously expressed in cancer cells [5]. At this 
receptor site, T4 is also anti-apoptotic [5] and supports tumor-relevant angiogenesis 
[5]. The integrin may also be involved in tumor cell radioresistance [32, 33].

Against this background, we raise the issue of whether prescription of T4 replace-
ment in hypothyroid patients with concurrent cancer should be routine. T3 is not 
active at physiological concentrations at the integrin receptor for thyroid hormone 
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and we have shown that T3 can be substituted for endogenous T4 in euthyroid 
patients with cancer with a result of improved survival and, in some cases, reduction 
in tumor size. Thus, we feel that the use of T3 replacement can be endorsed in patients 
with spontaneous or TKI-induced hypothyroidism and cancer. A disadvantage is that 
T3 must be administered more than once daily because of its short half-life.

A particularly interesting example of the complexity of the relationships of 
thyroid hormone and cancer is the capacity of T4 to activate ERα in ER-positive 
breast cancer cells in the absence of estrogen [15]. In addition, T4 is able to promote 
trafficking of ER from cytoplasm to nucleus [52]. Thus, ER in breast cancer of the 
postmenopausal euthyroid woman remains a functional component of the tumor.

The setting of thyroid cancer and concomitant hypothyroidism management is not 
included in the sections above in this review but has been discussed elsewhere by the 
current authors [53]. Hypothyroidism in the setting of thyroid cancer may of course 
be a consequence of radiation therapy of the tumor. Exogenous T4 may be adminis-
tered in patients with thyroid cancers to suppress endogenous thyrotropin (TSH) that 
may support thyroid tumor cell proliferation. What we have recommended in the 
context of thyroid cancer and hypothyroidism or T4-suppression of endogenous TSH 
with T4 and intractable tumor behavior is that the use of T3 be considered [53] as, 
respectively, hormone replacement or vehicle to suppress host TSH.
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