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Light-Dependent Regulation of 
Circadian Clocks in Vertebrates
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Akari Nishimura and Jun Hirayama

Abstract

Circadian clocks are intrinsic time-tracking systems that endow organisms 
with a survival advantage. The core of the circadian clock mechanism is a cell-
autonomous and self-sustained oscillator called a cellular clock, which operates 
via a transcription-/translation-based negative feedback loop. Under natural 
conditions, circadian clocks are entrained to a 24-hour day by environmental time 
cues, most commonly light. In mammals, circadian clocks are regulated by cellular 
clocks located in the central nervous system, such as the suprachiasmatic nucleus 
(SCN), and in other peripheral tissues. Importantly, mammals have no photorecep-
tors in the peripheral tissues; therefore the effect of light on peripheral clocks is 
indirect. By striking contrast, zebrafish peripheral cellular clocks are directly light 
responsive. This characteristic of the zebrafish cellular clock has contributed to the 
identification of molecules and signaling pathways that are involved in the light-
dependent regulation of the cellular clock. Here, selected light-dependent regula-
tory mechanisms of circadian clocks in mammals and zebrafish are described.

Keywords: circadian clock, cellular clock, zebrafish, light, photolyase

1. Introduction

Circadian clocks constitute ubiquitous processes that regulate various bio-
chemical and physiological events that occur with 24-hour periodicity, even in 
the absence of external cues [1]. The exact timing of this rhythm is established 
by cell-autonomous mechanisms, called cellular clocks, which are controlled by a 
transcription-/translation-based negative feedback loop [2, 3]. In both vertebrates 
and invertebrates, cellular clocks are scattered throughout their bodies; thus, the 
circadian system comprises both central and peripheral oscillators [4].

To guarantee that an organism’s behavior remains tied to the rhythms of its 
environment, the circadian clock must respond to environmental stimuli to be reset 
[5]. The main cue for animals is light, which is provided by the day-night cycle. It 
has been proposed that in mammals the light-induced resetting of the circadian 
clock is dependent on transcription activation in the suprachiasmatic nucleus 
(SCN), where the central clock is located [6]. The mammalian route for the regula-
tion of the circadian clock by light uses the retinohypothalamic tract (RHT), which 
connects directly to the central clock located in the SCN [7]. This makes it difficult 
to understand the mechanisms underlying light regulation of the circadian clock 
at a cellular level. Thus, although changes in gene expression have been implicated 
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in the light-induced phase shift of the circadian clock [6, 8], the induction of the 
expression of clock genes by light and the exact mechanism by which these gene 
products work remain to be elucidated at the cellular level.

Zebrafish peripheral clocks display a striking characteristic in that they are 
directly light responsive [9, 10]. Light induces the expression of clock genes and 
the circadian expression of several clock-related genes in zebrafish peripheral cells 
[11]. In addition, zebrafish embryonic cell lines can recapitulate the light-response 
characteristics of a vertebrate clock. In these cell lines, the oscillations of clock 
gene expression can be entrained to a new light-dark cycle, showing that cultured 
zebrafish cells have the clock components required for light-induced circadian clock 
resetting, and the cultured cell system thus provides a valuable tool for studying 
the light-dependent regulation of the circadian clock at a cellular level [12, 13]. 
Zebrafish cellular clocks can be studied in cultured cells, which facilitate the study 
of the photic responses of clock genes encoding cellular-clock regulators, and 
have revealed cellular signaling pathways that are involved in the light-dependent 
regulation of the cellular clock [14–18]. Additionally, an increased understanding 
of light-dependent cellular-clock regulation in zebrafish has suggested intriguing 
associations among the circadian clock, DNA repair, and cell cycle control [19–23].

Here we describe selected light-dependent regulatory aspects of vertebrate 
circadian machinery.

2. Cellular-clock regulation in mammals

In mammals, the cellular clock comprises the CLOCK, NPAS2, BMAL1, 
BMAL2, PER1, PER2, CRY1, and CRY2 proteins [1, 24]. These cellular clock 
components are called clock proteins. CLOCK or NPAS2 proteins heterodimer-
ize with BMALs to form an active transcription complex that transactivates 
clock-controlled genes, including Crys and Pers. Once the CRY and PER proteins 
have been translated, they are translocated to the nucleus, where they inhibit 
CLOCK (NPAS2):BMAL-mediated transcription through a direct protein-protein 
interaction, setting up the rhythmic gene expression that drives the circadian 
clock. The CLOCK(NPAS2):BMAL complex also stimulates expression of the 
clock-controlled genes (Ccgs) to regulate various elements of physiology. This 
accounts in part for the presence of circadian rhythms in a variety of physiological 
processes [25]. Although the relatively straightforward mechanism of positive and 
negative feedback loops is necessary to establish and maintain circadian clocks, 
cellular clocks have further levels of complexity, including posttranscriptional 
regulation, posttranslational modification, chromatin remodeling, availability 
and stability of clock proteins, and regulation of intracellular localization. These 
regulatory mechanisms provide an interface that can be used as an entry point for 
stimuli that can reset or control the clock. In addition, genetic studies of genes 
encoding cellular-clock regulators have revealed distinct roles for clock proteins in 
regulating circadian clocks, as well as direct links between the circadian clock and 
various pathologies [26–28].

3. Photoreceptors for circadian-clock regulation in mammals

Circadian clocks regulate various biochemical, physiological, and behavioral 
processes with a periodicity of approximately 24 hours. Under natural conditions, 
circadian rhythms are entrained to this 24-hour day by environmental time cues, 
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with light level being the most important [5]. The eye is the principal mediator of 
light input to the central clock in mammals. Rods and cones receive visual informa-
tion within the retina [29, 30] (Figure 1). These cells, however, are dispensable 
for photoreception of circadian clocks. Indeed, rodents that lack classical visual 
responses are still capable of circadian photoentrainment [31]. Retrograde tracing 
experiments have identified retinal cells projecting to the SCN through the RHT, 
but not to the visual centers of the brain [32]. These cells constitute a small subset 
of retinal ganglion cells (RGCs) localized in the ganglion cell layer (GCL), and 
they have been shown to display intrinsic phototransduction abilities, with photic 
properties matching those of clock entrainment [33]. The main candidate for the 
circadian photoreceptor is melanopsin, which is an opsin found in the eye and other 
photoreceptive structures in amphibians and exclusively in retinal RGCs in primates 
and rodents. Photic information received by RGCs is conveyed through the retino-
hypothalamic tract to the SCN central clock in mammals [33, 34].
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Figure 1. 
Retinal cells responsible for vision and photoreception for circadian clock regulation.
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4. Light-dependent transcription in the mammalian retina

Dopamine is the major catecholamine in the vertebrate retina and plays a central 
role in neural adaptation to light. Indeed, light stimulates the synthesis, turnover, 
and release of retinal dopamine, which makes dopamine an important mediator 
of light signaling to retinal cellular clocks [35–37]. Among the members of the 
dopamine-receptor family, the dopamine D2 receptor (D2R) has been shown to 
control light-induced reset of the circadian clock in the mouse retina [38–40]. 
At the molecular level, it has been reported that signaling mediated by the D2R 
enhances the transcriptional capacity of the CLOCK:BMAL complex. This effect 
involves the extracellular signal-regulated kinase (ERK)/MAPK transduction 
cascade and is associated with a D2R-induced increase in phosphorylation of the 
transcriptional coactivator, cAMP-responsive element-binding protein (CREB) 
and its recruitment to the CLOCK:BMAL complex [40]. Importantly, this activa-
tion of CLOCK:BMAL1-dependent transcription is responsible for the induction of 
the Per1 gene by light in the retina, which is in turn responsible for the reset of the 
retinal cellular clock. These findings provide evidence for the physiological links 
among the ERK/MAPK signaling pathway, dopamine, and the light input pathway 
of circadian clocks.

5. Light-dependent transcription in mammalian SCN

Light resets the circadian clock by its phase-shifting properties. In particular, 
the phase-shifting effects of light only occur during the nighttime period of the 
circadian cycle. In nocturnal mammals kept in darkness, a light pulse during the 
subjective night (that is, the time of day corresponding to the dark period in a nor-
mal light-dark cycle) can reset the clock by evoking changes in the SCN-controlled 
rhythms [41–43]. If the light pulse is given at an early point in time during the 
subjective night, it induces a shift in SCN-controlled rhythms to a later time (phase 
delay). Conversely, if the light pulse is provided at the end of the subjective night, 
the SCN-controlled rhythms will be shifted to an earlier position in the circa-
dian cycle (phase advance). Photic signals perceived by the retina are conveyed 
to the SCN through the RHT [32]. Glutamate has been identified as the major 
neurotransmitter responsible for transducing the photic information to the SCN 
along the RHT [44] (Figure 2). Once glutamate is released by the SCN, it binds to 
N-methyl-d-aspartate (NMDA) receptors, which in turn leads to the Ca2+ influx, 
that is, finally responsible for the activation of calcium-/calmodulin-dependent 
protein kinase (CaMK).

The involvement of the ERK/MAPK pathway in the light-input system of the 
circadian clock in the SCN has been well established. Mice exposed to light pulses 
during their subjective night display rapid ERK upregulation (phosphorylation) 
in the SCN [45]. Furthermore, disruption of the MAPK pathway has been shown 
to block light-induced phase shifting of the circadian clock at the behavioral 
level [46]. This finding suggests that the ERK cascade is integrally involved in 
photic entrainment of mammalian circadian rhythms. Events downstream of the 
light-induced signaling pathway in the SCN lead to the phosphorylation of cAMP-
response element-binding protein (CREB), which then stimulates expression of 
Per1 and Per2 genes, which contain a calcium-/cAMP-response element (CRE) in 
their promoters [6, 47, 48]. Although the exact mechanism by which light induces 
early gene expression remains to be elucidated, it has been shown that a single 
light pulse engenders chromatin remodeling via the phosphorylation of histone H3 
at Ser10 [49].
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6.  Light-dependent synchronization of cellular clocks in the mammalian 
SCN

The appropriate synchronization of cellular clocks in tissues and organs is 
required for the generation of circadian rhythms in a variety of physiological pro-
cesses, such as sleep and metabolism [50]. In addition, the light-dependent induction 
of Per1 and Per2 is thought to contribute to the synchronization of cellular clocks 
in the SCN [6, 8]. However, this idea has not been fully elucidated using adequate 
genetically modified mice. Mouse Per1 and Per2 genes are induced by the CLOCK 
(NPAS2):BMAL complex and by light. In particular, the CLOCK (NPAS2):BMAL-
dependent regulation of Per1 and Per2 is essential for establishment of the circadian 
clock’s rhythmicity. Thus, genetic inhibition of both mouse Per1 and Per2 genes 
disrupts the cellular clock, preventing the analysis of synchronization [51, 52]. This 
problem has been solved by using zebrafish models, as described below.
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Figure 2. 
Signaling cascade transducing photic signal perceived by the retina to the transcription of clock genes in SCN.
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7. Cellular-clock regulation in zebrafish

The zebrafish constitutes an attractive alternative to the mammalian system with 
which to study the complexity of circadian clock machinery and light’s influence 
on it [9]. Characterization of the molecular components of the zebrafish circadian 
oscillator has revealed that the negative feedback loop in zebrafish consists of 
components similar to those of mammals [11]. Organ- and tissue-culture explant 
experiments have demonstrated that peripheral circadian oscillators are present 
throughout the tissues and organs of the zebrafish and that they display the remark-
able feature of being light responsive [10, 13].

The characterization of components of the zebrafish cellular clock has revealed 
duplication of most clock genes. There are two, three, four, and eight homologues 
of the Clock, Bmal, Per, and Cry genes, respectively. Their circadian expression 
profiles and light inducibility are different, indicating the differential contribu-
tion of various clock components in the regulation of cellular clocks [28, 53–55]. 
For example, an investigation into the in vitro functions of the protein products of 
zebrafish Cry genes revealed that they fall into one of two groups: one group inhib-
its CLOCK:BMAL-mediated transcription (repressor-type CRYs: zCRY1a, zCRY1b, 
zCRY2a, and zCRY2b), while the other group does not inhibit transcription (non-
repressor type CRYs: zCRY3, zCRY4, zCRY Dash, and plant-type zCRY).

The CLOCK (NPAS2):BMAL complex and/or light regulates the expression 
of zebrafish repressor types of Crys and Pers [50, 56]. The zCry2a and zCry2b 
genes are induced both by the CLOCK (NPAS2):BMAL complex and by light; 
zCry1b, zPer1a, zPer1b, and zPer3 are induced by the CLOCK (NPAS2):BMAL 
complex but not by light; and zCry1a and zPer2 are induced by light but not by the 
CLOCK (NPAS2):BMAL complex. These distinct dependencies of zPer and zCry 
gene expressions recently enabled us to uncover the role of light-induced zPER2, 
zCRY1a, and zCRY2a in the light-dependent synchronization of cellular clocks.

8.  zPER2, zCRY1a, and zCRY2a are required for the light-dependent 
ontology of circadian clocks during development

In vertebrates, cellular clocks in zygotes and early embryos are not functional 
and become gradually set in motion during development [57, 58]. In mammals, 
it is quite difficult to analyze the processes of cellular-clock formation during 
development because embryogenesis proceeds inside the maternal uterus. Thus, 
the molecular mechanisms underlying the establishment of cellular clocks during 
vertebrate development are not well understood. Zebrafish eggs are externally 
fertilized and are transparent [11, 54]. In addition, zebrafish embryos develop 
rapidly from fertilized eggs to larvae that swim, making them an excellent model 
for studies investigating the ontology of vertebrate clocks.

During zebrafish development, organogenesis is completed within 2 days post-
fertilization (dpf) [59]. Zebrafish larvae hatch within four dpf and start to display 
locomotor behavior. Zebrafish cellular clocks are autonomously set in motion dur-
ing development within 1–4 dpf but are out of phase with each other in tissues and 
organs. Light synchronizes the phases of the cellular clocks to establish behavioral 
rhythms [50, 60]. Our recent study generated zCry1a−/− zPer2−/− zCry2a−/− triple 
knockout (TKO) zebrafish and used these TKO animals to show that light-induced 
zPER2, zCRY1a, and zCRY2a help to synchronize cellular clocks in early embryos 
and larvae in a light-dependent manner, thus contributing to behavioral rhythm 
formation in zebrafish larva [50]. Notably, these findings provide evidence that 
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light-dependent-induced PER1 and PER2 contribute to the synchronization of 
cellular clocks in the SCN of mammals.

9. Light signaling pathway regulating cellular clocks in zebrafish cells

Studies using cultured zebrafish cells have identified cellular signaling cascades 
involved in the light-dependent regulation of cellular clocks. In several organisms, 
external stimuli are connected to a cell’s nucleus via MAPK signaling pathways [61]. 
There are three major MAPKs: c-JUN N-terminal kinase (JNK), p38, and ERK. Light 
has been reported to activate these signaling cascades in zebrafish cells. Using a 
pharmacological approach, it was established that light-induced zPer2 transac-
tivation requires the ERK signaling pathway [15]. It has also been proposed that 
light-induced ERK activation triggers zCry1a transcription, whereas light-induced 
p38 activation suppresses it, highlighting a MAPK-mediated cross-regulatory 
mechanism for the expression of circadian-clock genes [21]. As mentioned above, 
evidence strongly suggests the involvement of the ERK pathway in the light-input 
system of the mammalian circadian clock. Thus, these findings are consistent with 
the idea that several aspects of the complex mammalian photo-signal transduction 
pathway involved in the regulation of circadian clocks are more easily investigated, 
both pharmacologically and molecularly, using cultured zebrafish cells. In addition, 
it was reported that the light-activated JNK signaling pathway induces expression 
of zCry1a and zPer2 [62]. Notably, in contrast to these studies, it has recently been 
reported that the light-activated p38 pathway facilitates the expression of zCry1a 
and zPer2 and that the ERK/MAPK signaling pathway is not involved in the light-
induced expression of zCry1a and zPer2 [62, 63]. The reason for these contradictory 
results is unknown.

10.  Role of redox signaling in cellular-clock regulation by light in 
zebrafish

It has been proposed that the light-dependent transcription of zCry1a and zPer2 
is controlled through the production and removal of cellular reactive oxygen species 
(ROS) [16]. ROS were originally thought to act solely as toxic metabolites, because 
they react with components of DNA, proteins, and lipids and exert oxidative stress 
[64]. However, ROS are also ideally suited to be signaling molecules because they 
are small and can easily diffuse over short distances within a cell. In addition, 
mechanisms for ROS production and their rapid removal (for example, via catalase) 
are present in almost all cell types [64, 65]. In various organisms, light induces ROS 
production, which leads to an altered redox status in cells [28]. In zebrafish cells, 
this light-induced redox change transduces photic signals and leads to the transac-
tivation of zCry1a and zPer2 [16, 62, 66]. Importantly, light increases intracellular 
catalase activity by increasing the expression of catalase, an event that occurs after 
the maximum expression of the zCry1a and zPer2 genes has been reached [16]. This 
increased catalase activity diminishes light-induced cellular ROS levels, resulting in 
decreased expression of the zCry1a and zPer2 genes.

The toxic effects of oxidative stress have been linked to cellular ROS produc-
tion induced by light-activated flavin-containing oxidases [67]. The absorbance 
of light in the near violet-blue region by these enzymes activates them and induces 
photoreduction of the flavin adenine dinucleotide (FAD) moiety, leading to ROS 
production. Accordingly, signaling by flavoproteins frequently induces a change in 
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the redox state of cells [67]. Recent studies have provided evidence that flavin- 
containing oxidases are responsible for the light-dependent production of ROS 
that are second messengers coupling photoreception to photoreactivation and the 
circadian clock in zebrafish [62, 66] (Figure 3).

11.  Link between circadian clocks and light-dependent DNA repair in 
zebrafish

Solar radiation has both beneficial and harmful effects for most species. 
Beneficial aspects include its role in photosynthesis and the entrainment of cir-
cadian clocks [28]. However, the UV component of solar radiation can produce 
cytotoxic, mutagenic, and carcinogenic lesions in DNA, which can transform or 
kill cells. In particular, the UV component of solar radiation produces cytotoxic 
and mutagenic lesions in DNA called cyclobutane pyrimidine dimers (CPDs) 
and pyrimidine [6-4] pyrimidone photoproducts. Photoreactivation is a light-
dependent DNA repair mechanism mediated by DNA photolyases (PHRs), which 
bind to and repair UV-induced DNA damage using visible light as an energy source 
[43, 68]. Two classes of PHRs have been identified, one specific for CPDs (CPD 
PHRs) and the other specific for [6-4] photoproducts (64PHRs). Importantly, both 
the induction of PHRs in response to light and the subsequent light-dependent 
repair of DNA by PHRs are essential for successful photoreactivation in zebrafish 
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Figure 3. 
Light signaling pathway regulating clock gene induction in zebrafish.
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cells [21]. Notably, the expression level of the z64Phr gene is regulated by the same 
light-induced MAPK cascades as those controlling the expression of the clock gene 
zCry1a, which is associated with the light-dependent regulation of the circadian 
clock [21, 66]. Light-induced ERK activation triggers the expression of z64Phr, 
whereas light-induced p38 activation inhibits it. Thus, both light-dependent DNA 
repair and regulation of the circadian clock are governed by shared regulatory path-
ways. Both CRYs and PHRs belong to the DNA photolyase/cryptochrome protein 
family and have highly similar amino acid sequences [43, 68]. Evolutionary studies 
have shown that the animal CRY protein functionally diverged first from the CPD 
photolyase and then further to generate 64PHR [69]. These facts, together with the 
observation that zCry1a and z64Phr share regulatory pathways, strongly indicate an 
evolutionary link between the circadian clock and DNA repair.

12. Conclusion

In mammals, light signals are received by the retina and then integrated with the 
SCN cellular clocks [7]. The SCN cellular clocks then transmit light information to 
peripheral cellular clocks via humoral signals and synchronize them. Recent studies 
have reported that factors other than cellular clocks in the SCN can synchronize 
peripheral cellular clocks in a light-dependent manner [42]. In contrast, in zebraf-
ish, light directly synchronizes peripheral cellular clocks in addition to central 
cellular clocks [9]. Despite the differences between the light-dependent regulation 
of peripheral cellular clocks in mammals and zebrafish, both require similar MAPK 
signaling pathways and light induction of clock genes to regulate cellular clocks in a 
light-dependent manner.

The development of circadian clocks would be one way to segregate daytime 
from nighttime processes, with light-dark cycles acting as selective pressures [28]. 
In this scenario, increasing levels of oxygen free radicals during the daytime may 
have been a decisive factor in relegating the anabolic processes of mitosis, growth, 
and consolidation to the dark hours. Thus, it is reasonable to propose that redox 
signaling and stress responding pathways such as MAPKs are utilized in the light-
dependent regulation of the circadian clock.
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