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Chapter

A Review on Fractional
Differential Equations and
a Numerical Method to Solve
Some Boundary Value Problems
María I. Troparevsky, Silvia A. Seminara

and Marcela A. Fabio

Abstract

Fractional differential equations can describe the dynamics of several complex
and nonlocal systems with memory. They arise in many scientific and engineering
areas such as physics, chemistry, biology, biophysics, economics, control theory,
signal and image processing, etc. Particularly, nonlinear systems describing differ-
ent phenomena can be modeled with fractional derivatives. Chaotic behavior has
also been reported in some fractional models. There exist theoretical results related
to existence and uniqueness of solutions to initial and boundary value problems
with fractional differential equations; for the nonlinear case, there are still few of
them. In this work we will present a summary of the different definitions of
fractional derivatives and show models where they appear, including simple
nonlinear systems with chaos. Existing results on the solvability of classical frac-
tional differential equations and numerical approaches are summarized. Finally, we
propose a numerical scheme to approximate the solution to linear fractional initial
value problems and boundary value problems.

Keywords: fractional derivatives, fractional differential equations,
wavelet decomposition, numerical approximation

1. Introduction

Fractional calculus is the theory of integrals and derivatives of arbitrary real
(and even complex) order and was first suggested in works by mathematicians such
as Leibniz, L’Hôpital, Abel, Liouville, Riemann, etc. The importance of fractional
derivatives for modeling phenomena in different branches of science and engineer-
ing is due to their nonlocality nature, an intrinsic property of many complex sys-
tems. Unlike the derivative of integer order, fractional derivatives do not take into
account only local characteristics of the dynamics but considers the global evolution
of the system; for that reason, when dealing with certain phenomena, they provide
more accurate models of real-world behavior than standard derivatives.

To illustrate this fact, we will retrieve an example from [1]. Recall the relationship
between stress σ tð Þ and strain ε tð Þ in a material under the influence of external forces:
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σ tð Þ ¼ η
d

dt
ε tð Þ (1)

is the Newton’s law for a viscous liquid, with η the viscosity of the material, and

σ tð Þ ¼ Eε tð Þ (2)

is Hooke’s law for an elastic solid, with E the modulus of elasticity. We can
rewrite both Eqs. (1) and (2) as

σ tð Þ ¼ ν
dα

dtα
ε tð Þ (3)

with α ¼ 0 for elastic solids and α ¼ 1 for a viscous liquid. But, in practice, there
exist viscoelasticmaterials that have a behavior intermediate between an elastic solid

and a viscous liquid, and it may be convenient to give sense to the operator dα

dtα if

0, α, 1.
There exist various definitions of fractional derivatives. All of them involve

integral operators with different regularity properties, and some of them have
singular kernels.

Next, we will briefly review the most frequently fractional derivatives cited in
the bibliography (see [2] for a more complete review and [1, 3–6] for rigorous
theoretical expositions and calculation methods).

The classical Cauchy formula for the n-fold iterated integral, with n∈N, is

0I
n
t f½ � tð Þ ¼

1

n� 1ð Þ!

ðt

0
t� sð Þn�1f sð Þds: (4)

Recalling that gamma function verifies nΓ nð Þ ¼ n!, an immediate generalization
of this formula for a real order α is

0I
α
t f½ � tð Þ ¼

1

Γ αð Þ

ðt

0
t� sð Þα�1f sð Þds, (5)

known as Riemann-Liouville fractional integral operator of order α (the term
“fractional” is misleading but has a historical origin). From this, the Riemann-
Liouville fractional derivative of order α, with n� 1, α, n, is defined as

RL
0D

α
t f½ � tð Þ ¼

1

Γ n� αð Þ

dn

dtn

ðt

0
t� sð Þn�α�1f sð Þds: (6)

while the Caputo fractional derivative of order α is defined as

C
0D

α
t f½ � tð Þ ¼

1

Γ n� αð Þ

ðt

0
t� sð Þn�1�α dn

dsn
f sð Þ½ �ds: (7)

Both Eqs. (6) and (7) define left inverse operators for the integral operator
of Riemann-Liouville of order α and are associated to the idea that “deriving α

times may be thought as integrating n� α times and deriving n times.” Of course

these definitions aren’t equivalent: clearly the domains of the operators RL
0D

α
t :½ �

and C
0D

α
t :½ � are different; because of the different hypothesis about f , we need

to impose to guarantee their existence. Besides that, with the appropriate
conditions for f ,
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C
0D

α
t f½ � tð Þ ¼ RL

0D
α
t f½ � tð Þ � ∑

∞

k¼0

tk�α

Γ k� αþ 1ð Þ
f kð Þ 0þð Þ: (8)

More recently, the Caputo-Fabrizio fractional derivative of order α, with α∈ 0; 1½ Þ,
was defined as

CF
0D

α
t f½ � tð Þ ¼

M αð Þ

1� α

ðt

0
f 0 sð Þe�

α t�sð Þ
1�α ds, (9)

for M αð Þ is a normalizing factor verifying M 0ð Þ ¼ M 1ð Þ ¼ 1.
Let us point out that, both in Eqs. (7) and (9), the lower limit in the integral

could be changed by any value a∈ �∞; t½ Þ, i.e.,

C
aD

α
t f½ � tð Þ ¼

1

Γ n� αð Þ

ðt

a
t� sð Þn�1�α dn

dsn
f sð Þ½ �ds (10)

and

CF
aD

α
t f½ � tð Þ ¼

M αð Þ

1� α

ðt

a
f 0 sð Þe�

α t�sð Þ
1�α ds: (11)

In [7] the authors prove that the operator defined in Eq. (9) verifies the
following (convenient) properties:

CF
0D

α
t k½ � ¼ 0, for any constant k.

lim
α!1

CF
0D

α
t f½ � tð Þ ¼

df

dt
: (12)

lim
α!0

CF
0D

α
t f½ � tð Þ ¼ f tð Þ � f 0ð Þ: (13)

Caputo-Fabrizio definition was then generalized by Atangana and Baleanu, who
gave the following definition of the Atangana-Baleanu fractional derivative in
Riemann-Lioville sense:

ABR
0D

α
t f½ � tð Þ ¼

M αð Þ

1� α

d

dt

ðt

0
f sð ÞEα �

α t� sð Þα

1� α

� �
ds (14)

and the Atangana-Baleanu fractional derivative in Caputo sense

ABC
0D

α
t f½ � tð Þ ¼

M αð Þ

1� α

ðt

0
f 0 sð ÞEα �

α t� sð Þα

1� α

� �
ds, (15)

replacing the exponential by Eα zð Þ ¼ ∑∞
k¼0

zk

Γ αkþ1ð Þ, the generalized Mittag-Leffler

function.
Other types of fractional derivatives are Grünwald-Letnikov’s, Hadamard’s,

Weyl’s, etc. In every definition it is clear that fractional derivative operators are not
local, since they need the information of f in a whole interval of integration. When
defined with 0 as lower limit of integration, as we did, function f is usually assumed
to be causal (i.e., f tð Þ � 0 for t,0), but this limit can also be changed.

Authors choose one definition or the other depending on the real-world phe-
nomena they need to model; the scope of application of each operator is still
unknown, and, in relation to some of them, there is neither an agreement about
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whether it is appropriate or not to call them derivatives (see, for a discussion on this
topic, [8, 9]) nor what are the criteria to decide on it ([10, 11]).

Caputo and Fabrizio ([12]) proposed the following terms to recognize if an
integral operator merits to be called a fractional derivative:

1. The fractional derivative must be a linear operator.

2. The fractional derivative of an analytic function must be analytic.

3. If the order of the derivative is a positive integer, the derivative must be the
classical one.

4.If the order is null, the original function must be recovered.

5. For n∈N,0, α, 1 : Dα
t Dn

t f½ �
� �

tð Þ ¼ Dn
t Dα

t f½ �
� �

tð Þ.

6.Dα
t f½ � tð Þ must depend on the past history of f .

Many applications of fractional calculus have been reported in areas as diverse as
diffusion problems, hydraulics, potential theory, control theory, electrochemistry,
viscoelasticity, and nanotechnology, among others (see, e.g., [13, 14], for a profuse
listing of application areas). In Section 2 we will briefly exemplify a few of these
applications, in quite different fields, and in Section 3, we will even mention some
cases of fractional nonlinear systems which exhibit chaotic behavior.

Theoretical results concerning existence and uniqueness of solutions to frac-
tional differential equations have been also developed.

In [15–17] the authors state conditions to guarantee the existence and uniqueness
of solution to problems like

C
0D

α
t f½ � tð Þ ¼ F t; f tð Þð Þtϵ 0;Tð Þ, T,∞

initial or boundary conditions

(
(16)

or

RL
0D

α
t f½ � tð Þ ¼ F t; f tð Þð Þtϵ 0;Tð Þ, T,∞

initial or boundary conditions

(
(17)

for 0, α, 2. After rewriting the equation as an integral equation with a kernel
whose norm is bounded in a proper Banach space, they use generalizations of the
fixed-point theorem. The function F, besides being continuous, must satisfy certain
conditions that substitute the classical Lipschitz’s one.

Similar results are stated in [18] for a coupled system of fractional differential
equations involving Riemann-Liouville derivatives.

Analytical calculus of fractional operators is, in general, difficult. In [19–21] a
few examples of quite different analytical methods are presented.

In [22, 23], existence and uniqueness, for the solution to a simple case,

CF
0Dtα f½ � tð Þ þ βf tð Þ ¼ g tð Þf 0ð Þ ¼ 0

�
(18)

are proved, and explicit formulae are presented when g is continuous, causal,
and null at the origin. The case of Caputo derivative is also considered. In all cases,
the computation of the primitive of the data function is required.
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Numerical methods have also been proposed to obtain approximate solution to
fractional differential equations.

In [6] some numerical approximations to solutions to different fractional differ-
ential equations are presented and experimentally verified on various examples, and
in [24, 25] complete surveys on numerical methods are offered. But numerous
articles appear continuously with new approximation methods: we finish this sec-
tion commenting briefly some works on numerical methods of quite different
nature.

In [26] a local fractional natural homotopy perturbation method is proposed to
found the solution to partial fractional differential equations as a series.

A method based on a semi-discrete finite difference approximation in time, and
Galerkin finite element method in space, is proposed in [27] to solve fractional
partial differential equations arising in neuronal dynamics.

In [28] a new numerical approximation of Atangana-Baleanu integral, as the
summation of the average of the given function and its fractional integral in
Riemann-Liouville sense, is proposed.

Semi-discrete finite element methods are introduced in [29] to solve diffusion
equations, and implicit numerical algorithms for the case of spatial and temporal
fractional derivatives appeared in [30]. A high-speed numerical scheme for frac-
tional differentiation and fractional integration is proposed in [31]. In [32], a new
numerical method to solve partial differential equations involving Caputo deriva-
tives of fractional variable order is obtained in terms of standard (integer order)
derivatives.

In [33], a discrete form is proposed for solving time fractional convection-
diffusion equation. The Laplace transform is used to solve fractional differential
equations in [34].

Finally, in Section 4, we will present a numerical method we have developed,
based on wavelets, to solve initial and boundary value problems with linear frac-
tional differential equations.

2. Some mathematical models with fractional derivatives

The purpose of this section is to highlight the role of fractional derivatives
for modeling certain real evolution processes. We enumerate several
mathematical models of different fields, found in the recent literature. In each of
them, the fractional order of derivation is justified by the nature of the

phenomenon that is described. Usually, in the papers, both the symbols ∂
α

∂tα and Dα
t

are used to indistinctly represent any of the fractional derivatives, whose type is
clarified in the text.

In [35] the authors review the evolution of the general fractional equation:

∂
βu

∂tβ
¼ a

∂
2u

∂x2
(19)

for a.0,0, β≤ 2, where x∈ S⊂R and t∈R.0 denote the space and time
variables. This equation is obtained from the classical D’Alembert wave equation
by replacing the second-order time derivative with the Caputo fractional derivative
of order β∈ 0; 2ð �: The authors show that, for 1, β, 2, the behavior of the funda-
mental solutions turns out to be intermediate between diffusion (for a viscous fluid)
and wave propagation (for an elastic solid), thus justifying the attribute of
fractional diffusive waves.
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In [36] another approach for time fractional wave (Eq. (19)) is proposed. It is
solved, for 0, β, 1 and special initial conditions, by the method of separation of
variables.

In [37] the authors study the particular linear fractional Klein-Gordon equation:

∂
αu

∂tα
�

∂
2u

∂x2
þ u ¼ 6x3tþ x3 � 6x

� �
t3 t.0, x∈R

u x;0ð Þ ¼ 0

ut x;0ð Þ ¼ 0

8
>>><
>>>:

(20)

considering the fractional Caputo derivative with 1, α≤ 2. They achieve a
numerical solution by variational iteration method and multivariate Padé
approximation.

In [38] the following mathematical model, using Fick’s law of diffusion, is
developed to study the effect of fractional advection diffusion equation (cross
flow) for the calcium profile, considering the Caputo fractional derivative
(0, α≤ 1):

∂
αC

∂tα
¼ D

∂
2C

∂x2
x≥0, t≥0

C x;0ð Þ ¼ C0

lim
x!þ∞

C x; tð Þ ¼ C∞

8
>>>><
>>>>:

(21)

Here, the calcium concentration C x; tð Þ varies in time and space, D is a diffusion
constant, and C∞ is calcium concentration at infinity and is assumed that, at initial
state of time and at a long distance, calcium concentration vanishes or becomes
zero. The authors note that the physical parameter α characterizes the cytosolic
calcium ion in astrocytes.

In [39] the authors explain that arteries, like other soft tissues, exhibit visco-
elastic behavior and part of the mechanical energy transferred to them is dissipative
(viscosity) and the other part is stored in a reversible form (elasticity). They
modified the standard model by a fractional-order one and test it in human arterial
segments. They conclude that fractional derivatives, in Riemann-Liouville sense,
are a good alternative to model arterial viscosity.

The generalized Voigt model consists of a spring in parallel with two springpots
(a neologism for a model that is between a spring—purely elastic—and a dashpot,
purely viscous) of fractional orders α and β. The governing fractional-order
differential equation is

σ tð Þ ¼ E0ε tð Þ þ η1
∂
αε tð Þ

∂tα
þ η2

∂
βε tð Þ

∂xβ
(22)

where E0 is the elastic constant for a spring and η1 and η2 represent the
viscosities of two springpots in parallel with the spring.

In Ref. [40] the authors developed an accurate and efficient numerical method
for the fractional-order standard model described by Eq. (22) with α ¼ β, combin-
ing a fast convolution method with the spectral element discretization based on a
general Jacobi polynomial basis that can be used to generate 3D polymorphic
high-order elements. In that way they model complicated arterial geometries,
such as patient-specific aneurysms, and apply it to 3D fluid-structure interaction
simulations.
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In [12] the authors use fractional derivatives to model the magnetic hysteresis,
a phenomenon where the “memory” of the ferromagnetic material is crucial.
They use a nonlinear model for the constitutive law of an isotropic ferromagnetic
material:

λH tð Þ ¼ θc M2 tð Þ þ 1
� �

M tð Þ � θ tð ÞM tð Þ � C0D
α
t M½ � tð Þ (23)

for λ.0, H tð Þ is the magnetic excitation field, M tð Þ is the magnetization vector,
θ tð Þ is the temperature, θc is the Curie temperature below which the hysteresis is
observed, and C0 is the tensor with the constitutive properties of the magnetic
material. They compare the resulting behavior when Dα

t is the Caputo fractional
derivative with the one that results when the derivative is the Caputo-Fabrizio one.
By numerical simulations they obtain examples of the classical hysteresis cycles and
conclude that Caputo derivative expresses a stronger memory than the Caputo-
Fabrizio operator.

These are just a few examples of the huge variety of problems that can
be modeled by means of fractional differential equations. The nonlocality of
the associated operators is the key to the success in the description of these
phenomena.

3. Some simple systems exhibiting chaos

Chaos theory is also an area where fractional derivatives play an important role.
In this section we comment on some nonlinear systems modeled with fractional

derivative, recently published, that exhibit chaos.
In [41] the authors studied a system based on the classical Lorenz one, but

described by the Atangana-Baleanu fractional derivative (in the Caputo sense) with
0, α, 1:

ABC
0Dt

α x½ � tð Þ ¼ σ y tð Þ � α x tð Þ
ABC

0Dt
α y½ � tð Þ ¼ ρ x tð Þ � x tð Þ z tð Þ � y tð Þ

ABC
0Dt

α z½ � tð Þ ¼ x tð Þ y tð Þ � β z tð Þ

8
><
>:

(24)

Under certain assumptions on the physical problem, they proved existence of
solutions, and, by means of an iterative algorithm, numerical evidence of chaos is
shown when 0:25, α,0:3 and 0:4, α,0:5 for the usual set of parameters
σ ¼ 10, ρ ¼ 8

3 , and β ¼ 28.

In [42] a three-dimensional fractional-order dynamical system for cancer
growth is proposed replacing the standard derivatives in the evolution equations:

_x1 tð Þ ¼ x1 tð Þ � A x1 tð Þ x2 tð Þ � B x1 tð Þx3 tð Þ

_x2 tð Þ ¼ Cx2 tð Þ 1� x2 tð Þð Þ �D x1 tð Þ x2 tð Þ

_x3 tð Þ ¼ E
x1 tð Þx3 tð Þ

x1 tð Þ þ F
� G x1 tð Þ x2 tð Þ �H x3 tð Þ

8
>>><
>>>:

(25)

by the Caputo-Fabrizio and the Atangana-Baleanu (Caputo sense) derivatives.
The system parameters are related to the rate of change in the population of the
different cells: healthy and tumor ones. The authors prove that the system has a
unique solution and show that the system exhibits chaos for a proper choice of the
parameters values and initial conditions.
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In [43] a fractional Lorenz system is studied considering the generalized Caputo
derivative, defined, for 0, α, 1, ρ.0, as

GC
0 D

α,ρ
t f½ � tð Þ ¼

ρα

σ 1� αð Þ

ðt

0

f 0 sð Þ

tρ � sρð Þα
ds (26)

A detailed analysis of the stability of the system is performed. Adomian method
is used to find semi-analytical solution to the fractional nonlinear equations. Chaotic
behavior and strange attractors are numerically found for some values of α and ρ:

4. A numerical approximation scheme to solve linear fractional
differential equations

After having exemplified several applications of fractional differential equations
to different real-world problems, including chaotic ones, we will show a method
that we have developed to obtain numerical solutions to linear fractional initial
value and boundary value problems modeled with Caputo or Caputo-Fabrizio
derivatives. The idea of the approximation scheme is to transform the derivatives
into integral operators acting on the Fourier transform and to perform a wavelet
decomposition of the data. The wavelet coefficients of the unknown are then
recovered from a linear system of algebraic equations, and the solution is built up
from its coefficients. The properties of the chosen wavelet basis guarantee numer-
ical stability and efficiency of the approximation scheme. In the case of singular
kernel, this procedure enables us to handle the singularity.

We note that choosing a ¼ �∞ in definition of Eqs. (4) or (5) and being

f ∈H1 �∞; bð Þ, the Sobolev space of functions with (weak) first derivative in

L2 �∞; bð Þ, both derivatives can be expressed as a convolution.
For the Caputo-Fabrizio fractional derivative of order 0, α, 1, changing

variables in Eq. (9), we have

CF
�∞ Dα

t f½ � tð Þ ¼
M αð Þ

1� α

ð∞

0
f 0 t� sð Þe�

α
1�α

sds ¼
M αð Þ

1� α
f 0 ∗ k
� �

tð Þ (27)

where k is a causal function, k tð Þ ¼ e�
αt
1�α for t≥0, and k tð Þ ¼ 0 for t,0.

Consequently, since k̂ ωð Þ ¼ 1�α
αþiω 1�αð Þ,

CF
�∞Dα

t f½ � tð Þ ¼
M αð Þ

2π 1� αð Þ

ð

R

^f 0 ωð Þk̂ ωð Þeiωtdω: (28)

Using the properties of the Fourier transform, we can rewrite the last equality:

CF
�∞Dα

t f½ � tð Þ ¼
M αð Þ

1� α

ð

R

f̂ ωð Þh ωð Þeiωtdω (29)

where h ωð Þ ¼ iω
2π k̂ ωð Þ.

Meanwhile, in the Caputo case, we have

CF
�∞Dα

t f½ � tð Þ ¼
1

Γ 1� αð Þ

ðt

�∞

f 0 sð Þ

t� sð Þα
ds ¼

1

2πΓ 1� αð Þ

ð

R
f̂ ωð Þk̂ ωð Þeiωtdω (30)

where k tð Þ ¼ 1
tα and k̂ ωð Þ ¼ Γ 1�αð Þ

iωð Þ1�α .
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4.1 An initial value problem

Let us consider the initial value problem (IVP):

CF
0D

α

t f½ � tð Þ þ σ0 f tð Þ þ σ1 f
0 tð Þ ¼ g tð Þ

f 0ð Þ ¼ 0

(
(31)

We look for f satisfying Eq. (31), where g is a causal and smooth function with
g 0ð Þ ¼ 0. Other situations where the initial condition is not null can also be faced
adapting the following scheme. We will consider that the fractional derivative is the
Caputo-Fabrizio one; the Caputo case can be solved similarly (see [44] for a
detailed description).

First we choose a wavelet basis with special properties: well localized in both
time and frequency domain, smooth, band limited and infinitely oscillating with
fast decay. The mother wavelet ψ ∈ S (the Schwartz space) and its Fourier trans-

form satisfy supp ∣ψ̂ jk∣ ¼ Ωj where Ωj ¼ ω : 2j π � βð Þ≤ ωj j≤ 2j π þ βð Þ
� 	

, with

0, β≤ π
3 ([45]).

The family ψ jk=ψ jk ¼ 2
j
2ψ 2jt� k
� �

, j; k∈Z

on
is an orthonormal basis (BON) of

L2
Rð Þ associated to a multiresolution analysis (MRA). We denote, by

W j ¼ span ψ jk; j; k∈Z

n o
and VJ ¼ ⊕j, JW j, the wavelet and scale subspaces,

respectively, and decompose the space L2
Rð Þ ¼ ⊕j∈ZW j ¼ ⊕j. nW j þ Vn, n∈Z.

We have also a scale function φ∈V0 so that φ t� kð Þ; k∈Zf g is a BON of V0 ([46]).
The sets Ωj�1,Ωj,Ωjþ1 have little overlap, and W j is nearly a basis for the set of

functions whose Fourier transform has support in Ωj. This property of the basis will
be crucial in the procedure.

Now we decompose the data g as

g tð Þ ¼ ∑
n∈N

g;φJn


 �
φJn tð Þ þ ∑

j. J
∑
k∈Z

g;ψ jk

D E
ψ jk tð Þ (32)

where the first and second terms are the projections of g inVJ andW j, respectively.
The properties of localization of the wavelets guarantee absolute convergence

in each W j (see [47] for details).
Now we choose the levels where the energy of g is concentrated, Jmin, Jmax ∈Z

so that

g tð Þ ¼ ∑
Jmax

Jmin

gj tð Þ þ r tð Þ ¼ ∑
Jmax

Jmin

∑
k∈Z

g;ψ jk

D E
ψ jk tð Þ þ r tð Þ, rk k2 ≤ ε gk k2 (33)

for small ε, and truncate the component in each level so that the following
approximation of gj arises:

egj tð Þ ¼ ∑
k∈Kj

cjkψ jk tð Þ, cjk ¼ g;ψ jk

D E
: (34)

Afterwards we obtain the fractional Caputo-Fabrizio derivatives of the wavelet
basis by means of Eq. (29):

vjk tð Þ ¼ CF
�∞ Dα

t ψ jk

h i
tð Þ ¼

M αð Þ

1� α

ð

Ωj

ψ̂ jk ωð Þh ωð Þeiωtdω (35)

(recall supp∣ψ̂ jk∣ ¼ Ωj).
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Let us consider for a moment that in Eq. (31) we have CF
�∞Dα

t , i.e., a ¼ �∞. Note
that, since supp ∣vjk∣ ⊂Ωj, vjk ∈W j�1⋃W j⋃W jþ1, but, from the properties of the

chosen basis, we can consider vjk ∈W j. This fact enables us to work on each level j

separately (details can be found in [44, 48]).
Then, since the unknown f can be expressed as f tð Þ ¼ ∑j∈Z

f j tð Þ,where

f j tð Þ ¼ ∑k∈Z
bjkψ jk tð Þ and bjk ¼ f ;ψ jk

D E
,we have

f tð Þ≈ ∑
Jmax

Jmin

f j tð Þ≈ ∑
Jmax

Jmin

∑
k∈Kj

bjkψ jk tð Þ: (36)

Finally, we replace this last expression in Eq. (31), where for simplicity we will
first consider σ1 ¼ 0 and look for the wavelet coefficients bjk that satisfy, for each

j∈ Jmin; Jmax½ �:

∑
k∈Kj

bjkvjk tð Þ þ σ0 ∑
k∈Kj

bjkψ jk tð Þ ¼ ∑
k0 ∈Kj

cjk0ψ jk0 tð Þ (37)

or

∑
k∈Kj

bjk vjk;ψ jm

D E
þ σ0 ∑

k∈Kj

bjk ψ jk;ψ jm

D E
¼ ∑

k0 ∈Kj

cjk0 ψ jk0 ;ψ jm;
D E

(38)

that, in matrix form, results in

M
j
b
j ¼ c

j (39)

where bj ¼ bjk
� �

k∈Kj
, cj ¼ cjk0

� �
k0 ∈Kj

,Mj ∈R
Kj�Kjand Mj

� �
kl
¼ vkl;ψklh iþ

σ0 ψkj,ψkl

D E
.

From the properties of the wavelet basis, and those of vjk, it results thatM
j is

a diagonal dominant matrix and, consequently, the vector of coefficients bj can
be computed in a stable and accurate way. The solution f can be obtained from
Eq. (36). Moreover, it can be shown that f 0ð Þ ¼ 0. To correct the effect of

having considered CF
�∞Dα

t instead of CF
0D

α
t , we set ef ¼ f :χ 0;T½ �, where χ 0;T½ � is the

characteristic function of the interval 0;T½ �. Finally, ef is an approximate
solution to Eq. (31).

The error introduced in the approximation can be controlled and reduced:
a more accurate truncated projection of the data into the wavelet subspaces can
be considered, and the elements of the matrix can be computed with good
precision since they can be expressed as integrals over compact subsets;
finally, the matrix of the resulting linear system is a diagonal dominant matrix,
and the solution can be computed accurately. In summary, the good properties of
the basis and the operator guarantee that the resulting approximation
scheme is efficient and numerically stable and no additional conditions need to
be imposed.

4.1.1 Example 1

We illustrate the performance of the proposed approximation scheme by
solving the IVP described by Eq. (31) for σ0 ¼ 0:9, σ1 ¼ 0, and α ¼ 0:5 and g a
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causal function defined as g tð Þ ¼ v tð Þ sin 2πtð Þ cos 0:5πtð Þ,where v is a smooth win-
dow in the interval 0;4½ �. Wavelet analysis indicates that the energy of the data g is
concentrated in the subspaces W0 and W1; thus, we consider levels �1≤ j≤ 2 for
the reconstruction.

For this case, being σ1 ¼ 0, σ0 6¼ � 1
1�α

, g∈C 0;∞ð Þ, and g 0ð Þ ¼ 0, there exists a

formula for the “exact” solution to Eq. (31) (see [22]). The approximate solution ef
to the IVP is plotted (in green) in Figure 1, together with the exact solution (in
blue).

If σ1 6¼ 0, since f 0 tð Þ ¼ 1
2π

Ð
R
iωf̂ ωð Þeiωtdω, we obtain similar equations for the

coefficients on each level:

∑
k∈Kj

bjk vjk;ψ jm

D E
þ σ0 ∑

k∈Kj

bjk ψ jk;ψ jm

D E
þ σ1 ∑

k∈Kj

bjk iωψ jk;ψ jm

D E
¼ ∑

k0 ∈Kj

cjk0 ψ jk0 ;ψ jm

D E

(40)

Once more the matrix of the resulting linear system is diagonal dominant, and
the system can be solved efficiently (see [49] for details).

The following example shows the performance of the method for σ1 ¼ 0:3.

4.1.2 Example 2

Now we consider IVP described by Eq. (31) for σ0 ¼ 0:9, σ1 ¼ 0:3, α ¼ 0:5, and
f tð Þ ¼ t2v tð Þ 2 sin 2:5πtð Þ � 0:5 cos 6πtð Þð Þ, with v as a smooth window over interval
[0, 7]. Since σ1 6¼ 0 and we have no formula to test the performance of the approx-
imation, for this example we will set f , calculate g from Eq. (31), and then apply the
proposed method to recover f .

Choosing �1≤ j≤ 2, it results in ef ¼ ∑2
j¼�1

ef j. The plots of the f (blue) and ef
(green) appear in Figure 2.

This scheme can be adapted to solve boundary value problems. We show the
procedure finding the solution to the fractional heat equation.

Figure 1.
The approximation and the exact solution for the Example 1.
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4.2 Boundary value problem

We show how to adapt the scheme used for initial value problem for solving
boundary value problems with fractional partial differential equations in an
example.

We will consider a fractional heat problem where we have replaced the classical
time derivative by the Caputo-Fabrizio fractional derivative of order α:

CF
0D

α

t u½ � x; tð Þ � uxx x; tð Þ ¼ g x; tð Þ, x∈ 0; 1½ �, t∈ 0;Tð Þ

u x;0ð Þ ¼ 0 x∈ 0; 1½ �

u 0; tð Þ ¼ u 1; tð Þ ¼ 0 t∈ 0;Tð Þ

8
><
>:

(41)

This equation models the evolution of temperatures in a bar of length 1, consti-
tuted by a heterogeneous material which has “memory,” due to the fluctuations
introduced by elements at different dimension scales ([7]).

The smooth and causal function g represents an external source. We look for

smooth solutions u∈C2 0; 1ð Þ � 0;Tð Þ by separating variables and pose

u x; tð Þ ¼ ∑
k∈Z

uk tð Þ sin kπxð Þ (42)

where uk tð Þ is the Fourier coefficients of u x; tð Þ for each t∈ 0;Tð Þ.
For the temporal part of the function, after replacing in Eq. (36), we obtain an

initial value problem like that described by Eq. (31) for each coefficient uk tð Þ:

Dα
0 uk½ � tð Þ þ kπð Þ2uk tð Þ ¼ Bk tð Þ, t∈ 0;Tð Þ

uk 0ð Þ ¼ 0

(
(43)

Figure 2.

f and ef of Example 2.
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with Bk tð Þ ¼ 2
Ð1

0

g x; tð Þ sin kπxð Þdx and the Fourier coefficients of g x; tð Þ for each

t∈ 0;Tð Þ. The uniqueness of solution is guaranteed because u x;0ð Þ ¼ 0, so Bk 0ð Þ
is null.

We show the approximate solution to Eq. (41) for α ¼ 0:5, T ¼ 3, and

g x; tð Þ ¼ v tð Þe�t=2 sin 5πtð Þ sin 2πxð Þ, with v a smooth window in 0; 3½ �.

In this case we only need to solve Eq. (43) for k ¼ 2,with B2 ¼ v tð Þe�t=2 sin 5πtð Þ:
Wavelet analysis indicates that the 95% of the energy of B2 is concentrated in
subspaces W1,W2, and W3, and we obtained the following condition numbers for

Figure 3.

The approximate and the exact solutions to Eq. (41) with α ¼ 0:8, T ¼ 3, and B3 ¼ v tð Þe�
t
2 sin 5πtð Þ.

Figure 4.

The approximate solutions to Eq. (39) with α ¼ 0:8, T ¼ 3, g x; tð Þ ¼ v tð Þe�t=2 sin 5πtð Þ sin 2πxð Þ, and v a
smooth window in 0; 3½ �.
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the band matrices of Eq. (39): cond∞ M
0

� �
¼ 1:1153, cond∞ M

1
� �

¼ 1:0663,

cond∞ M
2

� �
¼ 1:0132, cond∞ M

3
� �

¼ 1:0098, and cond∞ M
4

� �
¼ 1:0076. We

consider levels 0≤ j≤ 4 for the reconstruction, and the mean square error in this

case is u2 � eu2kL2
¼ 3:5020 10�4

��� .

Figure 3 shows the approximate and the exact solution to Eq. (43). In Figure 4
we draw the approximate solution u of the heat problem described by Eq. (41), and
in Figure 5 the difference between the true solution u x; tð Þ and its approximation is

plotted. The mean square error obtained in this case is 4:0016 10�4:
Finally, in Figure 6, we show the approximate solutions u2 for different orders

of derivation α, α ! 1, exhibiting the tendency to the solution of Eq. (43) with

Figure 5.
The difference between the true solution u x; tð Þ to Eq. (39) and its approximation by means of the wavelet
scheme.

Figure 6.
The approximate solutions to Eq. (41) with α ! 1.
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α ¼ 1, as expected (for α ¼ 1, Eq. (41) describes classical heat problem, for a bar
made of a homogeneous material).

5. Conclusions

In this chapter we have presented a summary of some recent works showing the
relevance and the intense research work in the area of fractional calculus and its
applications. We have focused on nonlinear models describing different phenom-
ena where fractional differentiation plays an important role. In the last section we
have presented an approximation scheme that we have developed to solve linear
initial and boundary value problems based on wavelet decomposition, and the
performance of the method is illustrated by examples. Possible extensions and
adaptation to nonlinear equations are still under study.
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