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Chapter

Introductory Chapter:
Ramifications of Incomplete
Knowledge
Jan Peter Hessling

“Facts do not cease to exist because they are ignored.”

1. Background

Mathematical statistics has long been widely practiced in many fields of science
[1]. Nevertheless, statistical methods have remained remarkably intact ever since
the pioneering work [2] of R.A. Fisher and his contemporary scientists early in the
twentieth century. Recently however, it has been claimed that most scientific
results are wrong [3], due to malpractice of statistical methods. Errors of that kind
are not caused by imperfect methodology but rather, reflect lack of understanding
and proper interpretation.

In this introductory chapter, a different cause of errors is addressed—the ubiq-
uitous practice of willful ignorance (WI) [4]. Usually it is applied with intent to
remedy lack of knowledge and simplify or merely enable application of established
statistical methods. Virtually all statistical approaches require complete statistical
knowledge at some stage. In practice though, that can hardly ever be established.
For instance, Bayes estimation relies upon prior knowledge. Any equal a priori
probability assumption (“uninformed prior”) does hardly disguise some facts are
not known, which may be grossly deceiving. Uniform distribution is a specific
assumption like any other. Willful ignorance of that kind must not be confused with
knowledge to which we associate some degree of confidence. It may be better to
explore rather than ignore consequences of what is not known at all. That will
require novel perspectives on how mathematical statistics is practiced, which is the
scope of this book.

2. Ambiguity

Incomplete knowledge implies that obtained results may not be unique. That is,
results may be ambiguous. Ambiguity de facto means the uncertainty associated
with any estimated quantity itself is uncertain. We may adopt a probabilistic view
and classify ambiguity as epistemic uncertainty. Ambiguity will here refer to lack of
knowledge typically substituted with willful ignorance. Alternatives propelled by
different types of willful ignorance can thus be explored to assess ambiguity.

A most powerful source of ambiguity is dependencies. Independence is perhaps
the most claimed but often the least discussed presumption. Throwing dices or
growing crops, as typically studied by the founders of statistics, independence
indeed seems plausible. In all the complexity of modern technology of today how-
ever, it is anything but evident observations are independent. For instance,
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meteorological radar observations may share sources of errors, meaning recorded
data will be statistically dependent. A problem may then arise if our analysis makes
use of, e.g., the maximum likelihood method which utilizes the entire covariance
matrix. Most of its entries, all covariances between pairs of observations, are usually
not known but bluntly set to zero to enable evaluation. This willful ignorance has
the drastic consequence of extinguishing ambiguity and, as will be shown, mini-
mizing the resulting uncertainty. Elementary considerations should provide the
valuable insight that even exceedingly small covariances may substantially influ-
ence the result: the number of covariance elements is n n� 1ð Þ=2≈n2=2, while there
are only n variances, for n observations. The number of covariance elements is
hence n=2 times larger than that of variance. Each element being small is thus not a
good enough argument to ignore the collection of all covariance elements.

Various attempts have been made to avoid willful ignorance. The method of
maximum entropy [5] focuses on the consequences of improper assignments of
unknown statistical information. Covariance intersection [6] fuses observations
conservatively to a pair of uncorrelated observations with variance max var θð Þ½ �.
This approach explores ambiguity along the general principles suggested here,
considering all possible values of covariance. Complementing the obtained
maximum variance with the least possible variance min var θð Þ½ � would render an
ambiguity interval, Α ¼ max var θð Þ½ � �min var θð Þ½ �, different but similar to
confidence intervals.

Repeating any statistical analysis with various kinds of willful ignorance [on its
input], the ambiguity (A) [of its output] can be assessed. Some WI will give large,
while others will yield small resulting uncertainty, not necessarily the maximum
and minimum, as it is difficult to imagine all possible kinds of WI. Any specific
WI will more or less reduce or quench the uncertainty from its maximum.
Identifying a model from calibration data HCAL and then letting the so-obtained
model predict the same data HPRD, any chosen willful ignorance of cov HCALð Þ
will quench the calibration uncertainty from the maximum over all choices,
var HPRDð Þ≤max var HPRDð Þ½ �≤ var HCALð Þ. Studying uncertainty quenching
through var HCALð Þ � var HPRDð Þ will indicate possible ramifications of our lack of
knowledge var HPRDð Þ≤max var HPRDð Þ½ � but also the implicit knowledge
max var HPRDð Þ½ �≤ var HCALð Þ contained in the structure of the model. Most impor-
tantly, such studies will guide us to the least harmful choice of willful ignorance.
The analysis is similar in style but different to the method of maximum entropy and
covariance intersection. An example is given below.

3. Illustration of uncertainty quenching

Assume we would like to study the evolution of a field over two spatial coordi-
nates, using a model composed of a set of differential equations. The field could
refer to meteorology and describe current observations of air pressure or humidity.
The initial state may be expanded in the set of basis functions of the appropriate
operator, similar to forecasting in numerical weather prediction (NWP) [7]. The
basis functions could be thought of as the eigensolutions of a linear operator, which
propagates one meteorological state, from one day to another. Neither the interpre-
tation of the field nor the field itself matters for the discussion here. Rather, it is
how the uncertainty of the initial state is represented as uncertainty of the distrib-
uted eigensolutions of the NWP propagator. This representation will determine the
uncertainty of any subsequent forecast, reflecting the past experience in future
confidence of predicting the weather. If the forecast uncertainty is lower than our
current knowledge reflects, we may falsely reject, e.g., the possibility of experienc-
ing major thunderstorms. In the eye of sailors planning their journey, the forecast
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uncertainty is the indisputable decision-maker. Studying the uncertainty quenching
var HCALð Þ � var HNWPð Þ, the ambiguity regarding the usually unknown but never-

theless required covariances cov HCAL xi; yi
� �

;HCAL xj; yj

� �� �

can be assessed. Then

by expanding the uncertainty conservatively, serious events like major thunder-
storms may be properly recovered.

To enable illustrations, let the eigenstates of the NWP operator of order n [for not
known reasons] be multiplicative separable in time t as well as in spatial coordinates
x, y, with eigenstates described by orthogonal Legendre polynomials up to order n:

H
nð Þ
NWP x; y; tð Þ � ∑

n

j, k¼0

θjþ k nþ 1ð Þ þ 1
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

� r

tð Þ � Pk yð ÞPj xð Þ, (1)

where the NWP operator propagates the coefficients θjþk nþ1ð Þþ1 tð Þ in time. Only

the representation of cov HCAL x; y; t ¼ 0ð Þð Þ, the covariance of the measured initial
state at t ¼ 0, is of interest here. Discretizing over m domains in both directions x, y
followed by sequential scanning over xp for each yq, p, q ¼ 1, 2,…mþ 1, the model is

written in standard affine vector θ;K
� �

form:

H
nð Þ
NWP xp; yq;0

� �

� ∑
nþ1ð Þ2

r¼1
θr t ¼ 0ð ÞKr xp þ mþ 1ð Þyq

� �

¼ θ
T
K: (2)

Without any supplementary information, the variance of the initial measure-
ment should be completely represented by the variance of the initial model state,
i.e., var HNWP x; y;0ð Þð Þ ¼ var HCAL x; y;0ð Þð Þ. The question is whether this holds, and
if it does not, to which extent can we minimize the discrepancy with WI?

Assuming normal distributed measurement noise, the maximum likelihood
method [8] yields the parameter covariance given by Eq. (3), which is propagated
to uncertainty of the best predictions according to Eq. (4):

cov θ ∗ð Þ ¼ Kcov HCALð ÞKT
� ��1

, (3)

cov HNWPð Þ ¼ KTcov θ ∗ð ÞK (4)

Combining these relations, the degree of completeness of the representation of
uncertainty by the model can be studied:

var HNWPð Þ ¼ diag KT Kcov HCALð ÞKT
� ��1

K
n o

ffi var HCALð Þ, (5)

where ffi indicates the addressed equality in the absence of uncertainty
quenching or maximal propagation of uncertainty from observations to model. Equa-
lity can never be achieved though, since the number of degrees of freedom (NDOF) of
prediction is drastically lower than that of calibration data. For typical models and
data, the two NDOFs usually differ by an order of 10 or more. A large ratio is actually
required to provide sufficient redundancy. As seen in Figure 1, the uncertainty is
normally reduced to a small fraction, with substantial uncertainty quenching.

It should be emphasized that stating independence is fundamentally different
than stating the degree of dependence which is unknown. These statements in fact
oppose each other, since independence maximizes the available amount of infor-
mation. Indeed, the Fisher information matrix [9]

1

CRLB
¼ F HCAL, i;HCAL, j

� �
¼ �

∂
2ln pð Þ

∂HCAL, i∂HCAL, j

	 


¼
F1, m dep:

mF1, m indep:

�

(6)
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is additive as m independent observations are collected, since the joint probabil-
ity distribution p in that case is multiplicative separable. For dependent observa-

tions though, no information is added at all, since F HCAL, i;HCAL, j

� �
then remains

the same as for only one observation F1ð Þ. Aggregating m observations, the mini-
mum variance of any estimator set by the Cramer-Rao lower bound (CRLB) [9]
thus decreases with a factor 1=m in the case where errors are independent (Eq. (6),
first row), while it remains the same if they are completely dependent (Eq. (6),
second row). Independence is thus the worst possible choice of WI, as it builds

Figure 1.
Uncertainty quenching or excessive reduction of uncertainty due to willful ignorance. Dependence on resolution
m (top) and correlation length ξ (Eq. (7)) (bottom) of the calibration data. The legend includes the
Mahalanobis canonical distance Ω (Eq. (11)) and the ratio γ between the largest and the smallest eigenvalues
of residual variance (Eq. (9)).
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confidence without knowledge. WI should minimize rather than maximize the
information. That is indeed the principle utilized in the method of maximum
entropy [5].

Uncertainty is lost for obvious reasons. The question is how much and for what
reason. Since the model cannot represent an arbitrary response, it can neither
represent an arbitrary variability. This restriction constitutes the very meaning of
a “model.” This makes it important to describe the covariance of observations
accurately—inappropriate WI may quench uncertainty dramatically.

The additional information represented by the structure of the model could be
denoted by the model innovation. It is strongly affected by WI attributed to obser-
vations. With increasing resolution m, the model innovation grows as the informa-
tion contained in observations is maximized with an assumption of independence.
Indeed, the prediction variance is quenched in agreement with the CRLB, as seen in
Figure 1 (top).

If WI of observation covariance instead resembles what the model is able to
represent, the model innovation will be the least. Instead of assuming independent
observations, introduce a finite long correlation length\ksi:

corr HCAL, i;HCAL, j

� �
¼

cov HCAL, i;HCAL, j

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var HCAL, ið Þvar HCAL, j

� �
q ¼ exp � ri � rj





=ξ

� �
(7)

Increasing the correlation length\ksi from zero as in Figure 1 (bottom), the
model innovation decreases, and the variance of the prediction var HNWPð Þ is almost
fully restored to the original variance of the observation var HCALð Þ. The model will
then not improve our knowledge of the current weather situation but enable
prediction to a later time with comparable trust. Summarizing Figure 1, our WI of
observation covariance and resolution m strongly influence our claimed precision
var HNWPð Þ of predictions.

It is a different matter if the model is consistent with the observations it was
identified from. Model consistency is usually assessed with a statistical residual
analysis. In conventional system identification (CSI) [10], the hypothesis is that the
[deterministic] model fully explains the observations. Due to sampling variance of
the finite uncertain calibration data though, the best estimate of its parameters will
be uncertain. The residual analysis explores if the residual is consistent with the
sampling uncertainty of the calibration data but without uncertainty associated
with the model.

This conjecture of a model without error whatsoever in CSI is questionable. In
practice, no model is completely without error. Rather, a finite uncertainty of the
model could be regarded as inherited from mismatch to calibration data. If so, the
model merely provides a convenient but to a quantifiable degree imperfect basis for
expressing uncertain calibration data. The model is utilized to “passively transform”

rather than “actively explain” observations to another unknown situation of inter-
est. That intent is typical in, e.g., weather forecasting and product development.
Furthermore, the uncertainty of calibration data can often be assessed from the
setup of the calibration experiment. In CSI correlation functions are evaluated from
a single residual vector, enforcing homoscedasticity and independence of observa-
tions. WI of this kind enables the statistical analysis of the residual but often find
little support.

The alternative view on model calibration proposed here is that the identified
model, composed of its form or structure, parameters, and uncertainty, represents
the uncertain calibration data. Model results can thus substitute our observations, to
the degree various aspects of the model and observations are consistent. Any given
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residual is one realization and should relate to its expected variability, with respect
to the uncertainties of both the model and the observations it was identified from.

The Mahalanobis distance [6] can be utilized to measure the relative distance
between observations and model output, which constitutes the residual ρ:

M ¼ ρTcov�1 ρð Þρ, ρ � HCAL �HPRD: (8)

The residual covariance matrix defines its principal variations with typical
magnitudes λj:

cov ρð Þ ¼ cov HCALð Þ � 2cov HCAL;HPRDð Þ þ cov HPRDð Þ ¼ UΛ
2UT,

Λij � δijλj, UUT ¼ I, δjj ¼ 1, δi 6¼j ¼ 0:
(9)

The evaluation of cov HCAL;HPRDð Þ in Eq. (9) is challenging, since HPRD has a
complicated relation to its “role model” HCAL set by the identification. To simplify,
it is set to zero below.

Extracting matrices U from Eq. (9) in Eq. (8), squared deviations are compared
to variances. The Mahalanobis distance then transforms into a relative Euclidean
norm of the residual in its own space of uncorrelated variations:

M � ~ρTΛ�2
~ρ ¼ ∑

j

~ρj









2

var ~ρj

� � , ~ρ � Uρ, (10)

where ~ρj is the projection of the residual on its principal vector U:, j of variation,

while the eigenvalue λj � Λf gjj expresses its typical magnitude of variation. For a

small eigenvalue λj, observing even a moderate projection Uj, :ρ is statistically
unlikely and thus strongly violates any model.

To maximize the consistency, in the sense of minimizing the Mahalanobis dis-

tance, the variance var ~ρjÞ
�

of principal residual variations should be maximized.

Without addressing any specific residual, maximize what could be defined the
Mahalanobis canonical distance:

Ω �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
j
var ~ρj

� �
s

¼
ffiffiffiffiffiffiffiffiffiffi

∑
j
λ2J

r

: (11)

Minimizing the Fisher information matrix under assumption of normality
addresses the covariance cov HCAL, i;HCAL, j

� �
of observations. Minimizing the

Mahalanobis canonical distance Ω considers also the covariance cov HPRD, i;HPRD, j

� �

of the model residual as well as the cross covariance cov HCAL, i;HPRD, j

� �
, which

reflects the model innovation. Hence, willful ignorance for model identification
should minimize the Mahalanobis canonical distance rather than the Fisher infor-
mation matrix, as the former but not the latter also accounts for the innovation of
the model structure. The intent is to educate the model to produce the most con-
servative results.

In practice, no residual projection ~ρ ¼ Uρ is usually negligible. Thus, the likeli-
hood of rejecting any model, considering correlations, increases dramatically if
exceedingly small eigenvalues are obtained. For that reason it is wise to check the
ratio γ � maxj λj

� �
=minj λj

� �
between the largest and smallest eigenvalues of the

residual covariance (Eq. (9)). If γ is large, the model is expected to fail with respect
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to correlations of the residual. The model may very well be consistent with respect
to the variance but rarely with respect to covariance of its output. However, ignor-
ing correlations and only focusing on the magnitude of variations of calibration
data, i.e., var HCALð Þ, which is the standard practice [10], is completely different.
Then, the belief in the model is perfect and the only limitation of also making
perfect forecasts is the finiteness of a random sample of observations. In case of
homoscedasticity, γ ¼ 1.

A potential conflict is inevitable for exceedingly high ratios γ. Indeed, as seen in
Figure 1 (bottom) for increasing correlation lengths ξ, the Mahalanobis distance Ω
decreases, while the ratio γ rapidly increases. Thus as observation variance is
recovered, the requirement to ignore prediction covariance rapidly grows.

4. A quest for better practice of willful ignorance

“The first principle is that you must not fool yourself and you are the easiest person

to fool” [11].

Current practice of willful ignorance sometimes makes statistics an art of self-
delusion [3]. Consequences of applied WI are rarely explored, as only one proposi-
tion normally is made without further ado.

Distinguishing what is not known from what is assumed is of paramount
importance. Not known to any degree should mean that all possibilities that can be
imagined also ought to be considered. Otherwise obtained results only exemplify
what the most appropriate answer may be, without any indication of the largest
possible deviation.

Our knowledge is almost never complete. Virtually all existing statistical
methods nevertheless require precisely that. Until alternative methodologies exist,
WI must fill the gap between what is actually known and what must be known. As
illustrated, the consequences of different WI may vary dramatically. Therefore we
should select and tweak WI carefully. WI should not relate to our unconfirmed
belief, but rather address its consequences.

The proposal of a quantifiable ambiguity proposed here suggests how ramifica-
tions of incomplete knowledge might be mitigated with carefully chosen WI:
explore all kinds of ignorance that can be imagined. Analyze and collect obtained
results in ambiguity intervals, similar to confidence intervals. Another option is to
focus on the worst case in a conservative manner. The method of covariance inter-
section is one example of how that can be exercised. The principle of maximum
entropy provides means to maximize the residual uncertainty, to add the least
possible amount of information. Minimizing the Fisher information for observa-
tions and the Mahalanobis distance for model identification as proposed here is still
another kind of conservatism. These methods tackle unknown information with WI
and explore its consequences. Finding the most proper WI is indeed nontrivial and
calls for genuinely novel approaches.

Current practice of statistics utilizes WI in many ways, but the specific choice is
rarely discussed in depth. One reason could be that statistics was developed in an
entirely different context than practiced today, which is rarely acknowledged and
probably not fully comprehended. To exemplify, recall that Fisher’s [2] original
interpretation of “never” as a finite probability of 5% was just a humble proposal.
He urged his readers to adjust “never” to the current context, a piece of advice
almost never followed today.

Perhaps the reported breakdown of statistics methodologies [3, 4] is due to
neglect of ambiguity, driven by a strong tradition of uncritical application of WI.
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Could this be caused by lack of awareness of its potentially dramatic consequences?
Ignorance of limitations of contemporary state-of-the-art methods is hardly new
[12]. Ambiguity indeed sets a meta-perspective on statistical analysis that cannot be
avoided and thus needs further exploration.
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