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Chapter

Topological Properties and
Dynamic Programming Approach
for Designing the Access Network
Franco Robledo, Pablo Romero, Pablo Sartor, Luis Stábile

and Omar Viera

Abstract

A wide area network (WAN) can be considered as a set of sites and a set of
communication lines that interconnect the sites. Topologically a WAN is organized
in two levels: the backbone network and the access network composed of a certain
number of local access networks. Each local access network usually has a treelike
structure, rooted at a single site of the backbone and connected users (terminal
sites) either directly to this backbone site or to a hierarchy of intermediate concen-
trator sites which are connected to the backbone site. The backbone network has
usually a meshed topology, and this purpose is to allow efficient and reliable com-
munication between the switch sites that act as connection points for the local
access networks. This work tackled the problem of designing the Access Network
Design Problem (ANDP). Only the construction costs, e.g., the costs of digging
trenches and placing a fiber cable into service, are considered here. Different results
related to the topological structure of the ANDP solutions are studied. Given the
complexity of the ANDP (the problem belongs to the NP-hard class), recurrences to
solve it are proposed which are based on Dynamic Programming and Dynamic
Programming with State-Space Relaxation methodology.

Keywords: topological design, access network, dynamic programming
with state-space relaxation

1. Introduction

Telecommunication networks have become strategic resources for private- and
state-owned institutions, and its economic importance continuously increases.
There are series of recent tendencies that have a considerable impact on the econ-
omy evolution such as growing integration of networks in the productive system,
integration of different services in the same communication system, and important
modification in the telephone network structure. Such evolutions accompany a
significant growth of the design complexity of these systems. The integration of
different sorts of traffics and services and the necessity of a more accurate manage-
ment of the service quality are factors that make this type of systems very hard to
design, to dimension, and therefore to optimize. This situation is aggravated with a
very high competitiveness context in an area of critical strategic importance.
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The conception of a WAN is a process in which dozens of sites with
different characteristics require to be connected in order to satisfy certain reliability
and performance restrictions with minimal costs. This design process involves
the terminal site location, the concentrator location, the backbone (central
network or kernel) design, the routing procedures, as well as the lines and nodes
dimensioning. A key aspect on WAN design is the high complexity of the problem,
as much in its globality as in the principal subproblems in which it is necessary to
decompose it. Due to the high investment levels, a cost decrease of very few
percentage points while preserving the service quality results in high
economic benefits.

Typically, a WAN network global topology can be decomposed into two main
components: the access network and the backbone network. These components
have very different properties, and consequently they introduce specific design
problems (although they are strongly interdependent). On the one hand, this causes
complicated problems (particularly algorithmic ones); on the other hand, it leads to
stimulating and difficult research problems.

A WAN access network is composed of a certain number of access subnetworks,
having treelike topologies; and the flow concentration nodes allow to diminish the
costs. These integrated flows reach the backbone which has a meshed topology, in
order to satisfy security, reliability, vulnerability, survivability, and performance
criteria. Consequently, the backbone is usually formed by high-capacity communi-
cation lines such as optic fiber links.

Modeling a WAN design by means of the formulation of a single mathematical
optimization problem is very intricate due to the interdependence of its large
amount of parameters. Therefore the design of a WAN is usually divided into
different subproblems [1–4]. A good example of a possible decomposition approach
for the WAN design process is the following [5]:

1. Access and backbone network topologies design. Specific knowledge about the
cost of laying lines between different network sites (terminals, concentrators,
and backbone) is assumed. Frequently, these costs are independent of the type
of line that will effectively be installed since they model the fixed one-time
costs (cost of digging trenches in the case of optic fiber, installing cost, placing
a fiber cable into service). A high percentage from the total construction
network budget is spent in this phase [6].

2.Dimensioning of the lines that will connect the different sites of the access and
backbone networks and the equipment to be settled in the mentioned sites.

3.Definition of the routing strategy of the flow on the backbone network.

This work focuses on phase (1) of the decomposition of a WAN design
process. More precisely, it deals with the topology planning process concerning
the access network. Due to the NP-hard nature of the problem and even though
there exist some results, there is still room for improving industrial practices
applied today. In this sense, the authors believe it is of strategic importance to
design powerful quantitative analysis techniques, potentially easy to integrate
into tools. Combinatorial optimization models are introduced that formally
define the topological design of the access networks. Moreover, different results
related to the topological structure are introduced. Finally, different algorithms
are proposed for the topological design which are based on Dynamic
Programming and Dynamic Programming with State-Space Relaxation
methodology.
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2. A model for a WAN design

In this section, a model for the design of a WAN is introduced. The model tries
to show the most essential aspects which are considered when designing access and
backbone networks. In this model, some parameters are not considered: the opera-
tion probability of the lines and equipment, the number of equipment ports, and the
memory capacity of the equipment. The objective is to design a WAN with the
smallest possible installation cost, so that the constraints are satisfied.

In what follows, the data of the model are presented as well as its formalization
as a combinatorial optimization problem on weighted graphs. The goal is to find the
optimal topology that satisfies the imposed constraints to the access and backbone
networks. Figure 1 shows an example of a wide area network. The information
available for each type of equipment (switch and concentrator) and each type of
connection line, as well as the line laying, is the following:

• Ea is the set of types of connection lines available. Furthermore ∀e∈Ea the
following data are given:

• ce is the cost by kilometer of the line type e. Here the laying cost is not
included.

• ve is the speed in Kbits/s of the line type e.

• K is the set of types of concentrator equipment available. Furthermore ∀k∈K
the following data are given:
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Figure 1.
WAN example.
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• ck is the installation cost of the concentrator type k.

• vk is the speed in Kbits/s of the concentrator type k.

• W is the set of types of switch equipment available. Furthermore ∀w∈W the
following data are given:

• cw is the installation cost of the switcher type w.

• vw is the speed in Kbits/s of the switcher type w.

• C ¼ Fcost Lð Þ ¼ cij ¼ direct connection costs between the sites i; j; ∀i∈ S;
�

∀j∈ SC ∪ SDg; this matrix gives us, for a site of S and a site of SC ∪ SD, the
cost of laying a line among them. When the direct connection among both
places is not possible, we assume that cij ¼ ∞.

In terms of graph theory, a model for the design of a WAN, based on the
problem, is presented as follows. Some notation is introduced next, that is then used
to formally define the problem.

• E1 ¼ i; jð Þ; ∀i∈ ST; ∀j∈ SC ∪ SD=dij <∞
� �

is the set of feasible connections
between a terminal site and a concentrator or switch site.

• E2 ¼ i; jð Þ; ∀i∈ SC; ∀j∈ SC ∪ SD=dij <∞
� �

is the set of feasible connections
between a concentrator site and a switcher or another concentrator site.

• E3 ¼ i; jð Þ;∀i∈ SD; ∀j∈ SD=dij <∞
� �

is the set of feasible connections between

two switch sites.

• E ¼ E1 ∪E2 ∪E3 is the set of all feasible connections on the WAN.

• DST ¼ Dti ; ti ∈ STf g, where • Dti is the set of terminal nodes which demand
connections with ti ∈ ST .

• VST ¼ vi, j
� �

i, j∈ ST
is the traffic demand matrix.

Definition 1 (WANDP—wide area network design problem). Let G ¼ S;Eð Þ be
the graph of feasible connections on the WAN. The wide area network design
problem S;E;K;W;Ea;C;DST ;VSTð Þ consists in finding a subnetwork of G of mini-
mum cost which satisfies the following points:

1. The backbone network topology must be at least 2-node-connected.

2. The access and backbone networks must be able to support the demand of
connection and traffic required by the terminal sites.

Given the complexity of the WANDP, to facilitate its solution, the topological
design problem is divided into three subproblems:

1. The Access Network Design Problem

2. The backbone network design problem (BNDP)

4
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3.The routing (or flow assignment) and capacity assignment problem (RCAP)

The remainder of this work concentrates only in the first problem (ANDP).

3. Access Network Design Problem

The Access Network Design Problem is defined as follows.
Definition 2 (ANDP—Access Network Design Problem). Let GA ¼ S;E1 ∪E2ð Þ

be the graph of feasible connections on the access network and C the matrix of
connection costs defined previously. The Access Network Design Problem
S;E1 ∪E2;Cð Þ consists in finding a subgraph of GA of minimum cost such that
∀i∈ ST; there exists a path from i to some site j∈ SD of the backbone network.

Notation 1. ΓANDP denotes the space of feasible solutions of ANDP S;E1 ∪E2;Cð Þ
that do not have any cycle and with an output only toward the backbone network
∀t∈ ST . These have forest topology as we illustrate in Figure 2.

In order to define these problems in terms of graph theory, the following nota-
tion is introduced:

• ST is the set of terminal sites (clients) to be connected to the backbone.

• SC is the set of feasible concentrator sites of the access network. On each one of
these sites, an intermediate server equipment might be placed. From this one, a
trunk line is laid toward the backbone or other concentrator site.

• SD is the set of feasible switch sites of the backbone network. On each one of
these sites, a powerful server might be placed and, from it, connection lines
toward other backbone server equipment.

• V ¼ ST ∪ SC ∪ SD are all the feasible sites of the WAN network.

• A ¼ aij
� �

i, j∈V
is a matrix which gives for any pair of sites i, j∈V, the cost

aij ≥0 of laying a line between them. When the direct connection between i

and j is not possible, we define aij ¼ ∞.

Figure 2.
A feasible solution of ANDP.
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• U ¼ i; jð Þji; j∈V; aij <∞
� �

is the set of all the feasible connections between the
different sites of the WAN network.

• G ¼ V;Uð Þ is the simple graph which models every node and feasible
connection of the WAN.

The General Access Network Design Problem (GANDP) consists of finding a
minimum-cost subgraph H⊂G such that all the sites of ST are communicated with
some node of the backbone. This connection can be direct or through intermediate
concentrators. The use of terminal sites as intermediate nodes is not allowed; this
implies that they must have degree one in the solution.

The GANDP is here simplified by collapsing the backbone into a fictitious node
and given the name of “Access Network Design Problem.” The equivalence
between both problems, GANDP and ANDP, as well as the NP-hardness of the
ANDP, is proved in [7].

This work concentrates on the ANDP with the objective of proposing a new
approach for solving this problem. We study different results related to the topo-
logical structure of the ANDP solutions. In particular we present results that char-
acterize the topologies of the feasible solutions of an ANDP instance. The following
proposition shows the topological form of the feasible solutions of ΓANDP for a
given ANDP instance.

Proposition 1. Given an ANDP with associated graph GA ¼ S;E1 ∪E2ð Þ and

matrix of connection costs C. If the subnetwork H ¼ ST ∪ S;E
� �

(with S⊆SC ∪ SD
and E⊆E1 ∪E2) is an optimal solution of ΓANDP, it is composed of a set of disjoint
trees H ¼ H1;…;Hmf g that satisfy:

1. ∀Hl ∈H, ∃j∈ SD unique =j∈Hl

2.∀Hl ∈H, ∃ a subset SlT ⊂ ST, S
l
T 6¼ ∅

SlT
⊆NODES Hlð Þ

3.⋃m
l¼1S

l
T ¼ ST

Proof. Trivial.
The following propositions present results that characterize the structure of the

global optimal solution.
Proposition 2. Let ANDP S;E1 ∪E2;Cð Þ be a problem where sc ∈ SC, s∈ SC ∪ SD

and s∈ ST ∪ SC such that s; scð Þ; sc; sð Þf g⊂E1 ∪E2 and ∃sw ∈ SD=cs, sw < cs, sc þ csc, s: Then,
if TA ∈ ΓANDP is a globally optimal solution, it is fulfilled that g scð Þ≥ 3 in TA,
∀sc ∈TA, sc ∈ SC.

Proof. Let us suppose that there exists TA ∈ ΓANDP global optimal solution
such that ∃sc ∈TA a concentrator site with gsc < 3 in TA. If g scð Þ ¼ 1; then sc is a

pendant in TA; therefore, eliminating this, a feasible solution of smaller cost would
be obtained. This is a contradiction; hence, g scð Þ 6¼ 1. If g scð Þ ¼ 2, let s∈ SC ∪ SD be
the site adjacent to sc in TA which its output site is toward the backbone network.
Let s∈ ST ∪ SC be the other adjacent site in TA. Considering the network
H ¼ TA scf gð Þ∪ s; swð Þf g, where sw ∈ SD satisfies cs, sw < csc, s, it is fulfilled:

COST Hð Þ ¼ COST TAð Þ � cs, sc � csc, s þ cs, sw <COST TAð Þ (1)

Furthermore, it is easy to see that H∈ ΓANDP. Hence, this implies that H is a
better feasible solution compared with TA. This is a contradiction, entailing that
g scð Þ≥ 3 in TA, as required and completing the proof.
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Proposition 3. Given an ANDP S;E1 ∪E2;Cð Þ such that for any three sites
s1; s2; s3ð Þ, with s1 ∈ ST ∪ SC, s2 ∈ SC and s3 ∈ SC ∪ SD, the strict triangular inequality is
satisfied, i.e., cs1, sk < csi,Sj þ csj, sk , i, j, k∈ 1; 2; 3f g. Then, if TA ∈ ΓANDP is a globally

optimal solution, it is fulfilled that g scð Þ≥ 3 in TA,∀sc ∈TA, sc ∈ SC.
Proof. As in the previous proposition, let us suppose that there exists TA ∈

ΓANDP global optimal solution such that ∃sc ∈TA, a concentrator site with g scð Þ< 3
in TA. Clearly g ssð Þ must be different to 1. Now, let us consider the case g scð Þ ¼ 2
inTA. Let s1, s2 be the adjacent sites to sc in TA. By hypothesis cs1, s2 < cs1, sc þ csc, s2 .

Considering the network TA ¼ TA scf gð Þ∪ s1; s2ð Þf g, a feasible solution is found,
and moreover

COST TA

� �

¼ COST TAð Þ � cs1, sc � csc, s2 þ cs1, s2 <COST TAð Þ (2)

This is a contradiction; therefore, g scð Þ≥ 3 in TA, hence completing the proof.
The next section presents algorithms applied to the ANDP(≤k) with k∈ 1; 2f g. A

way of computing the global optimal solution cost of it using the Dynamic Pro-
gramming approach is obtained. Considering that the ANDP(≤1) is a NP-hard prob-
lem, we obtain lower bounds to the global optimal solution cost by Dynamic
Programming with State-Space Relaxation in polynomial time.

4. Algorithms applied to the ANDP

This chapter presents the Dynamic Programming approach as alternative meth-
odology to find a global optimal solution cost for the ANDP(≤1) and ANDP(≤2). After
we introduce the Dynamic Programming with State-Space Relaxation as a method
to obtain lower bounds for the original problem.

4.1 Dynamic Programming

Proposition 4. Given an ANDP S;E1 ∪E2;Að Þ, the cost of a global optimal solu-

tion of Γ ≤ 1
ANDP is given by f ST ;Z;A

Qð Þ, with f :;:;:ð Þ defined by the following expression of

Dynamic Programming:

f SC ST;Z;A
Q

� �

¼
min
st ∈ ST

COST st;Zð Þ þ f SC ST stf g, Z, AQ
� �

,

min
sc ∈ SC

COST st; scð Þ þ COST sc;Zð Þþ

f SC ST stf g, Z, AQ ∪ sc;Zð Þf g
� �

8

<

:

9

=

;

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

if ST 6¼ ∅

0 otherwise

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(3)

where COST s;Zð Þ ¼ minz∈ SD COST s; zð Þf g, s;Zð Þ ¼ argminz∈ SD
COST s; zð Þf g

and the matrix of connection costs AQ ¼ ai, j
� �

i, j∈E1 ∪E2
is defined by

ai, j ¼
COST i; jð Þ if i; jð Þ∉Q

0 otherwise

�

(4)

Proposition 5. Given an ANDP S;E1 ∪E2;Að Þ, the cost of a global optimal solu-

tion of Γ ≤ 2
ANDP is given by f ST ;Z;A

Qð Þ, with f :;:;:ð Þ defined by the following expression of

Dynamic Programming
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f SC ST;Z;A
Q

� �

¼
min
st ∈ SC

COST st;Zð Þ þ f SC ST stf g, Z, AQ
� �

,

min
sc ∈ SC

COST st; scð Þ þ COST sc;Zð Þþ

f SC ST stf g, Z, AQ ∪ sc;Zð Þf g
� �

8

<

:

9

=

;

,

min
suc ;s

v
cð Þ∈E2

COST st; suc
� �

þ

COST suc ; s
v
c

� �

þ COST svc ;Z
� �

þ

f SC ST stf g, Z, AQ ∪ suc ;s
v
cð Þ; svc ;Zð Þf g

� �

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>
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>

>
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>

;

if ST 6¼ ∅

0 otherwise
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:

(5)

where COST s;Zð Þ ¼ minz∈ SD COST s; zð Þf g, s;Zð Þ ¼ argminz∈ SD
COST s; zð Þf g

and the matrix of connection costs AQ ¼ ai, j
� �

i, j∈E1 ∪E2
is defined by

ai, j ¼
COST i; jð Þ if i; jð Þ∉Q

0 otherwise

�

(6)

4.2 Dynamic programming with state-space relaxation

In order to find a lower bound of f SC ST ;Z;A
Q

� �

, the Dynamic Programming

with State-Space Relaxation is now applied. It is a general relaxation procedure
applied to a number of routing problems [8]. The motivation for this methodology
stems from the fact that very few combinatorial optimization problems can be
solved by Dynamic Programming alone due to the dimensionality of their state-
space. To overcome this difficulty, the number of states is reduced by mapping the
state-space associated with a given Dynamic Programming recursion to a smaller
cardinality space. This mapping, denoted by g, must associate to every transition
from a state S1 to a state S2 in the original state-space, a transition g S1ð Þ to g S2ð Þ in
the new state-space. To be effective, the function g must give rise to a transformed
recursion over the relaxed state-space which can be computed in polynomial time.
Furthermore, this relaxation must generate a good lower bound for the original
problem.

With the aim of illustrating this methodology, we present this approach in the
context of the minimization of the total schedule time for the Traveling Salesman
Problem with Time Window (TSPTW), after we apply it to the Dynamic Program-
ming recursion presented in Proposition 5. The objective of the TSPTW is to find an
optimal tour where a single vehicle is required to visit each of a given set of
locations (customers) exactly once and then return to its starting location. The
vehicle must visit each location within a specified time window, defined by an
earliest service start time and latest service start time. If the vehicle arrives at a
service location before the earliest service start time, it is permitted to wait until the
earliest service start time is reached. The vehicle conducts its service for a known
period of time and immediately departs for the location of the next scheduled
customer. Assume that the time constrained path starts at fixed time value ao.
Define F S; ið Þ as the shortest time it takes for a feasible path starting at node o,
passing through every node of S⊆N exactly once, to end at node i∈ S. Note that
optimization of the total arc cost would involve an additional dimension to account
for the arrival time at a node. The function F S; ið Þ can be computed by solving the
following recurrence equations:

F S; jð Þ ¼ min
i;jð Þ∈E

F S� jf g; ið Þ þ tij
� 	

	i∈ S� jf gg∀S⊆N, j∈ S (7)

8
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The recursion formula is initialized by

F jf g; jð Þ ¼
max aj; ao þ toj

� �

if o; jð Þ∈E

þ∞ otherwise

�

(8)

The optimal solution to the TSPTW is given by

min
j∈N

F N; jð Þ þ tjd
� �

(9)

Note that Eq. (7) is valid if aj ≤F S; jð Þ≤ bj: If however F S; jð Þ< aj, then
F S; jð Þ ¼ aj; if F S; jð Þ>bj, F S; jð Þ ¼ ∞. Equations (7) and (9) define a shortest path
algorithm on a state graph whose nodes are the states S; ið Þ and whose arcs represent
transitions from one state to another. This algorithm is a forward Dynamic Pro-
gramming algorithm where at step s, with s ¼ 1,…, nþ 1, a path of length s is
generated. The state S; ið Þ of cost F S; ið Þ are defined as follows: S is an unordered set
of visited nodes and i is the last visited node, i∈ S.

Several alternatives for the mapping g have been suggested [9]. Here is
presented the shortest r-path relaxation, i.e., g Sð Þ ¼ r ¼ ∑i∈ Sri, where ri ≥ 1 is an
integer associated with node i∈N; then g S if gð Þ ¼ g Sð Þ � ri. Define R ¼ ∑i∈ Sri.
Hence the transformed recursion equations are

F r; jð Þ ¼ min
i;jð Þ∈E

F r� rj; i
� �

þ tij
�

	

	r� rj ≥ rig, r∈ 1;…;Rf g, j∈N (10)

Recursion (10) holds if aj ≤F r; jð Þ≤ bj. Otherwise, if F r; jð Þ< aj, then F r; jð Þ ¼ aj;
if F r; jð Þ>bj, F r; jð Þ ¼ ∞. The recursion formula is initialized by

F jf g; jð Þ ¼
max aj; ao þ toj

� �

if o; jð Þ∈E and q ¼ qj

þ\infty otherwise, for q∈ 1;…;Qf g, j∈N

(

(11)

The lower bound is given by

min
j∈N

F R; jð Þ þ tjd
� �

(12)

The complexity of the bounding procedure is O n2 � Qð Þ for a n-node problem.
Now, we present this approach in the context of finding a “good” lower bound for
the solution of ANDP(≤2). The following proposition gives a lower bound for the

f SC ST;Z;A
Q

� �

presented in Proposition 5 (the optimum value of the ANDP(≤2)).

Proposition 6. Given an ANDP S;E1 ∪E2;Cð Þ, a lower bound of f SC ST ;Z;A
Q

� �

is

derived from the following expression of Dynamic Programming with State-Space
Relaxation

gSC r;Z;AQ
� �

¼
min
sit ∈ ST

COST sit;Z
� �

þ gSC r� ri;Z;A
Q

� �

,

min
s
j
c ∈ SC

COST sit; s
j
c

� �

þ COST s
j
c;Z

� �

þ

gSC r� ri;Z;A
Q ∪ s

j
c;Zð Þf g

� �

∣r� R̂ � ri ≥ rj

8

>

<

>

:

9

>

=

>

;

,

min
s
ju
c ;skcð Þ∈E2

COST sit; s
j
c

� �

þ COST s
j
c; skc

� �

þ COST skc ;Z
� �

þ

gSC r� ri;Z;A
Q ∪ s

j
c;s

k
cð Þ; skc ;Zð Þf g

� �

∣

r� R̂ � ri ≥ rj þ rk
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>

:
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where 1≤ ri ≤R is an integer associated with the site i∈ ST ∪ SC, R ¼ ∑i∈ ST ∪ SC
ri,

R̂ ¼ ∑j∈ SC
rj and the matrix of connection costs AQ ¼ ai, j

� �

i, j∈E1 ∪E2
is defined by

ai, j ¼
COST i; jð Þ if i; jð Þ∉Q

0 otherwise

�

(14)

The lower bound is given by g R;Z;A∅ð Þ.

5. Computational results

This section presents the experimental results obtained with the recursions of
above. The algorithms were implemented in ANSI C. The experimental results were
obtained in an Intel Core i7, 2.4 GHz, and 8 GB of RAM running under a home PC.
The recursions presented in Propositions 4 and 5 were applied to the ANDP(≤1) and
the ANDP(≤2), respectively, whereas the recursion presented in Proposition 6 was
applied to ANDP(≤2). They were tested using a large test set, by modifying the
Steiner Problem in Graphs (SPG) instances from SteinLib [10]. This library con-
tains many problem classes of widely different graph topologies. Most of the prob-
lems were extracted from these classes: C, MC, X, PUC, I080, I160, P6E, P6Z, and
WRP3. The SPG problems were customized, transforming them into ANDP
instances by means of the following changes. For each considered problem:

1. The terminal node with greatest degree was chosen as the z node (modeling the
back- bone).

2. The Steiner nodes model the concentrator sites, and the terminal nodes model
the terminal sites.

3.All the edges between terminal sites were deleted (as they are not allowed in
feasible ANDP solutions).

Moreover, if the resulting topology was unconnected, the problem instance was
discarded. Let us notice that since in the ANDP the terminals cannot be used as
intermediate nodes (which implies also that edges between pairs of terminals are
not allowed), the cost of a SPG optimum is a lower bound for the optimum of the
corresponding ANDP. Therefore they are for ANDP(≤k) with k∈ 1:::2.

Table 1 shows the results obtained by applying the recurrences presented in
Propositions 4 and 5. In each one of them, the first column contains the names of
the original SteinLib classes with the name of the customized instance. The entries
from left to right are:

• The size of the selected instance in terms of number of nodes, edges, and
terminal sites, respectively

• A lower bound for the optimal cost; the SPG optimum cost LBSPGð Þ

• c1opt and c2opt where ckopt is the cost of the best feasible solution found in Γ
≤ kð Þ

ANDP

• The gap of the cost for the best feasible solution of Γ ≤ kð Þ
ANDP with respect to the

lower bound LB
kð Þ
SPG with k∈ 1; 2f g LB_GAP

kð Þ
SPG

� �

10
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The LB_GAP kð Þ
SPG is computed as

LB_GAP kð Þ
SPG ¼ 100�

ckopt � LBSPG

LBSPG
: (15)

Feasible solutions were obtained here only for i080-112, i080-115, and i160-015
with k ¼ 1 because, as can be seen, the cost is finite. The optimal values of the
SPG instances (LBSP G) provided lower bounds for the optimal values of the ANDP
(therefore to ANDP(≤k) with k≥0), considering that in the ANDP generation
process, all the connections between terminal nodes were deleted and further that
ANDP’s feasible solution space is more restrictive than of SPG. The experimental
results obtained for c1opt have an average gap with respect to the lower bound of

20.72%. Increasing k to 2 (applying the recursion presented in Proposition 5),
feasible solutions were obtained for all the testing networks, and the experimental
results obtained have an average gap with respect to the lower bound of 7.01%.

It can be proved that (it is out of the scope of this chapter) increasing k, the
following inequality is fulfilled:

ck�1
opt

ckopt
≤ 1þ floor

nC
k

� �

�
1

kþ nT


 �

�
cmax

cmin
� 1


 �

(16)

Table 2 shows the results obtained. Despite the bound was not good in these
cases (due the heterogeneity of costs of the lines), it can help us in some cases to
answer the following question: how much can be saved with a higher k?

Set Name |V| |E| |T| LBSPG copt1 copt2 LBGAPSPG 1ð Þ LBGAPSPG 2ð Þ

I080 i080-001 80 120 6 1787 ∞ 2187 22.38%

I080 i080-011 80 350 6 1479 ∞ 1499 1.35%

I080 i080-012 80 350 6 1484 ∞ 1497 0.88%

I080 i080-013 80 350 6 1381 ∞ 1383 0.14%

I080 i080-014 80 350 6 1397 ∞ 1505 7.73%

I080 i080-111 80 350 8 2051 ∞ 2159 5.27%

I080 i080-112 80 350 8 1885 2201 1887 16.76% 0.11%

I080 i080-113 80 350 8 1884 ∞ 1884 0%

I080 i080-114 80 350 8 1895 ∞ 2099 10.77%

I080 i080-115 80 350 8 1868 2174 1969 16.38% 5.41%

I080 i080-233 80 160 16 4354 ∞ 4564 4.82%

I160 i160-011 160 812 7 1677 ∞ 1875 11.81%

I160 i160-012 160 812 7 1750 ∞ 1891 8.06%

I160 i160-013 160 812 7 1661 ∞ 1862 12.10%

I160 i160-014 160 812 7 1778 ∞ 1991 11.98%

I160 i160-015 160 812 7 1768 2281 1864 29.02% 5.43%

PUC cc3-4p 64 288 8 2338 ∞ 2553 9.20%

PUC cc3-4u 64 288 8 23 ∞ 25 8.70%

Average 20.72% 7.01%

Table 1.
Results obtained by applying Dynamic Programming to c1opt and c2opt.
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Table 3 shows the results obtained by applying the recursion presented in
Proposition 6. As before the first column contains the names of the original SteinLib
classes with the name of the customized instance. The entries from left to right are:

• The size of the selected instance in terms of number of nodes, edges, and
terminal sites, respectively

• The cost of a global optimal solution of Γ ≤ 2ð Þ
ANDP c2opt

� �

• The execution time, in seconds, for c2opt tc2opt

� �

• A lower bound for the cost of a global optimal solution of Γ ≤ 2ð Þ
ANDP by applying

Dynamic Programming with State-Space Relaxation (presented in

Proposition 6) (LB 2ð Þ
SSR)

Name nT nC cmin cmax c opt1

c
opt2

1þ floor nc

2

� �

1
2þnT

� �

cmax

cmin
� 1

� �

i080-112 7 72 85 209 1.166401 5.997385619

i080-115 7 72 86 302 1.1004114 10.325581395

i160-015 6 153 86 300 1.223712 23.639534884

Table 2.
Relation between optimal solutions of ANDP ≤ 1ð Þ and ANDP ≤ 2ð Þ.

Set Name |V| |E| |T| copt2 tcopt2 LBSSR 2ð Þ tLB
SSR 2ð Þ

LBGAPSSR 2ð Þ

I080 i080-001 80 120 6 2187 0 1698 0 28.8%

I080 i080-011 80 350 6 1499 6.04 1307 0.27 14.69%

I080 i080-012 80 350 6 1497 5.33 1486 0.16 0.74%

I080 i080-013 80 350 6 1383 8.20 1000 0.92 38.3%

I080 i080-014 80 350 6 1505 4.89 1211 0.25 24.28%

I080 i080-111 80 350 8 2159 3.09 1982 0.45 8.93%

I080 i080-112 80 350 8 1887 1812 1501 7.52 25.72%

I080 i080-113 80 350 8 1884 1809 1591 393.8 18.42%

I080 i080-114 80 350 8 2099 44.81 1988 6.65 5.58%

I080 i080-115 80 350 8 1969 479.8 1496 15.41 31.62%

I080 i080-233 80 160 16 4564 361.1 3997 6.75 14.19%

I160 i160-011 160 812 7 1875 45.67 1399 2.17 34.02%

I160 i160-012 160 812 7 1891 8.83 1502 1.13 25.9%

I160 i160-013 160 812 7 1862 6.58 1381 1.81 34..83%

I160 i160-014 160 812 7 1991 6.06 1783 0.86 11.67%

I160 i160-015 160 812 7 1864 70.28 1793 6.21 3.96%

PUC cc3-4p 64 288 8 2553 79.37 2177 2.54 17.27%

PUC cc3-4u 64 288 8 25 80.04 21 5.18 19.05%

Average 19.89%

Table 3.
Lower bounds obtained to ANDP ≤ 2ð Þ by applying Dynamic Programming with State-Space Relaxation.
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• The execution time, in seconds, for LB
2ð Þ
SSR t

LB
2ð Þ

SSR

� �

• The gap of the cost for a global optimal solution of Γ ≤ 2ð Þ
ANDP c2opt

� �

with respect to

the lower bound LB
2ð Þ
SSR; LB_GAP

2ð Þ
SSR

The LB_GAP 2ð Þ
SSR is computed as

LB_GAP
2ð Þ
SSR ¼ 100�

c2opt � LB 2ð Þ
SSR

LB 2ð Þ
SSR

(17)

In general, the gaps related to the lower bounds were low. The rito each terminal
site and concentrator site were distinct integers chosen from 1;… ST ∪ SCj jf g. This
lower bound can be increased by modifying the state-space through the application
of subgradient optimization to ri. As future work, it is possible to incorporate the
method for a better choice of ri.

It can be noticed that the execution times of computing global optimal solution
costs were much longer than using Dynamic Programming with State-Space
Relaxation.

6. Conclusions

The implementation of the algorithms was tested on a number of different
problems with heterogeneous characteristics. In particular, a set of ANDP instances
transforming 18 SPG instances extracted from SteinLib was built. The optimal
values for the selected SPG instances are lower bound for the corresponding ANDP.
The solutions found by the algorithm were, in average, 21% and 7% lower than the
mentioned bounds in ANDP(≤1) and ANDP(≤2), respectively. It is reasonable sup-
posing that the gaps related to the global optimum of the ANDP instances be even
lower since the feasible solutions of the ANDP that are also feasible solutions of the
original SPG, but not reciprocally. In this sense, remember that in any ANDP
instance generated, all the edges between pairs of terminal nodes were deleted
(because in our ANDP such connections are not allowed) having the additional
constraint that the terminal nodes must have degree one in the solution.

Besides, a Dynamic Programming with State-Space Relaxation algorithm was
developed which can give a lower bound in polynomial time. The average gaps with
respect to the global optimal solution costs were lower than 20%.

Notice that, as expected, the execution times of the proposed algorithms are
strongly dependent on the number of sites, edges, and terminal sites. To sum up, as
far as the authors are concerned, the results obtained with the recurrences above are
very good, considering that computing the global optimal solution of an ANDP(≤2)

is a NP-hard problem.
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