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Abstract

Cuticular waxes form the primary interface between a plant and its external 
environment. The most important function of this hydrophobic interface is regulation 
of non-stomatal water loss, gas exchange and conferring resistance to a wide range 
of biotic as well as abiotic stresses. The biosynthesis, transport and deposition of the 
cuticular waxes are tightly coordinated by complex molecular networks, which are 
also often regulated in response to various developmental, biotic as well as abiotic cues. 
Evidences from model as well as non-model systems suggest that targeted manipula-
tion of the molecular regulators of wax biosynthetic pathways could enhance plant 
resistance to multiple stresses as well as enhance the post-harvest quality of produce. 
Under the current scenario of varying climatic conditions, where plants often encoun-
ter multiple stress conditions, cuticular waxes is an appropriate trait to be considered 
for crop improvement programs, as any attempt to improve cuticular traits would be 
advantageous to the crop to enhance its adaptability to diverse adverse conditions. This 
chapter briefs on the significance of cuticular waxes in plants, its biosynthesis, trans-
port and deposition, its implication on plant resistance to adverse conditions, and the 
current options in targeted manipulation of wax-traits for breeding new crop types.

Keywords: cuticular waxes, wax biosynthesis, biotic stress, abiotic stress,  
stress resistance

1. Introduction

In the current era of increasing uncertainties in crop production, emerging con-
straints and risks demand technical and technological advances in the agricultural 
sector, and integrative approaches, such as Climate Smart Agriculture (CSA), to address 
the interlinked challenges of food security and climate change. While maintaining food 
security is a major challenge for future, the possible solution is to enhance crop produc-
tivity along with nutritional security. However, this stance is remarkably limited by the 
different abiotic as well as biotic environments, where the crops grow and develop.

Drought, excess water (flooding), extremes of temperatures (cold, chilling, 
frost, and heat), salinity, high and/or low light, mineral deficiency, and toxicity 
are the common abiotic stresses for crop production. These stresses alter plant 
metabolism, growth, development, and in extreme cases cause the cessation of 
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vegetative and reproductive growth. Some of the abiotic stresses such as drought, 
high temperature and salinity can influence the occurrence and spread of biotic 
agents like pathogens, insects, and weeds [1]. In crops like tomato, cucurbits and 
rice, temperature is one of the most important deciding factors for the occurrence 
of bacterial diseases [2]. Temperature can also alter the incidence of vector-borne 
diseases by modifying spread of vectors.

But, in their natural environment, plants face combination of stresses, espe-
cially under the changing climate scenario. The effect of stresses would be more 
pronounced under combined (biotic and abiotic) stresses [3], while simultaneous 
occurrence of abiotic and biotic stresses are more destructive to crop production 
[4]. Hence, there exists a need now, to look for common traits that can contribute 
for plant adaptation to such multifarious stressful conditions and sustain crop 
productivity as well. In this scenario, it is desirable to have a single trait that can 
confer tolerance to multiple (abiotic and biotic) stresses. Cuticular waxes, a major 
component of plant cuticle covering all the aerial parts of the plants, can be consid-
ered as an important trait for combined stress resistance.

2. Cuticular waxes: a component of plant cuticle

The cuticle is a unique structure developed by land plants during the course of 
their evolution from an aquatic to a terrestrial lifestyle [5]. The primary role of this 
lipophilic layer, comprising cutin and cuticular waxes, was to limit non-stomatal 
water loss by functioning as a physical barrier between the plant surface and its 
external environment [6]. Development of a cuticular barrier is one of the major 
adaptive mechanisms for survival and growth of plants under water limiting ter-
restrial conditions [7]. As the primary barrier between the aerial surface of plants 
and the external environment, the cuticle also protect the plants from mechanical 
rupture or injury, toxic gases and ultra violet radiation [8–10]. The cuticle also has 
notable roles associated with growth and developmental processes like preventing 
epidermal fusion by establishing normal organ boundaries [11], and phytohormone  
homeostasis [12]. The cuticle and its components are known to play essential roles 
as signaling molecules for pathogens and for the plants themselves [13]. Another 
important role is in fruits, where it influences quality, defense and post-harvest 
shelf life [14]. In fruits, water retention [15] firmness [16] and its responses to 
physical and biotic stresses are also influenced by the cuticle [17].

The cuticle is composed of a covalently linked scaffold of cutin and a mixture of 
soluble cuticular lipids (SCL), called as waxes [10, 18]. Structurally, cutin is made 
of covalently cross linked C16 or C18 oxygenated fatty acids and glycerol, forming 
the most abundant structural component of the cuticle [19]. The waxes within the 
cuticle function as an actual barrier against the diffusion of water or solutes [20, 21]. 
The waxes occur in two layers; forming two distinct physical layers called intra- and 
epi-cuticular waxes [22]. The former is dispersed within the cutin polymer while 
the epi-cuticular wax is deposited on the outer surface as crystals or films [22, 23]. 
This outermost layer can be physically stripped off the surfaces using aqueous glue 
[23, 24]. These waxes are composed of a variety of organic solvent-soluble lipids; 
consisting of very-long-chain fatty acids (VLCFA) and their derivatives. The major 
composition of VLFCAs are alkanes, wax esters, branched alkanes, primary alcohols, 
alkenes, secondary alcohols, aldehydes ketones, and unsaturated fatty alcohols, as 
well as cyclic compounds including terpenoids and metabolites such as sterols and 
flavonoids [19, 25–27]. Wax composition varies with crop species and differs in their 
functions and responses to biotic and abiotic environments [10].

As per recent studies, intra-cuticular waxes form the primary transpirational 
barrier and the contribution of epi-cuticular waxes as a transpirational barrier 
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depends on the species-specific cuticle composition [28]. In species like Tetrastigma 
voinierianum, Oreopanax guatemalensis, Monstera deliciosa, and Schefflera elegantissima, 
intra-cuticular wax pre-dominantly act as a transpirational barrier while in Citrus 
aurantium, Euonymus japonica, Clusia flava, and Garcinia spicata, both intra- as well 
as epi-cuticular waxes had equal contribution as transpirational barriers [28]. A study 
from Prunus suggests that intra-cuticular waxes of the cuticle form the actual transpi-
rational barrier [29] and not epi-cuticular waxes [30].

3. Ecological significance of cuticular waxes

The cuticular waxes confer diverse surface properties to plant parts, which actually 
play the key role in controlling non-stomatal water loss and gas exchange, and protec-
tion from external environment. Leaf cuticular wax amount and crystal morphology 
regulated post-harvest water loss from leaves [31]. Epi-cuticular wax films give glossy 
appearance to leaves and fruits, while wax crystals (β-diketones) conferred dull, glau-
cous appearance to leaves and stems [10]. The thickness [5] composition and properties 
of the waxes vary with crop species and are found to be induced under diverse stressful 
conditions [32]. These differences reflect their functions and responses to biotic and 
abiotic environments [10]. Importance of cuticular wax accumulation in plant resistance 
to both biotic as well as abiotic stress conditions is now well documented [12, 33, 34].

3.1 Abiotic stresses

One of the most important roles of the waxes is to protect the plant surfaces from 
excessive solar and ultraviolet (UV) radiations. Cuticular waxes scatter UV-B radiation 
[35] and was demonstrated in apple [36]. As per studies from model systems as well 
as crops, increased cuticular wax biosynthesis improves drought stress resistance [37]. 
In rice, wheat, barley and sorghum, grain yield under water limiting conditions have 
positive correlation with wax content [38–41] . Hence, in crop plants, higher cuticular 
wax content is a promising trait for stress resistance as well as yield under water limit-
ing conditions [27]. In mulberry, increasing wax load is useful to manage post-harvest 
water losses [42]. In barley, cuticular wax components act as a barrier to water loss and 
contribute to salt stress resistance [43]. Heat stress resistance is also positively correlated 
with wax accumulation in bahia grass [44]. Under heat stress, the wax load in sorghum 
was correlated with its ability to maintain the canopy temperature cool, resulting in 
reduced water loss [45]. Similarly, pea varieties with thicker wax load also exhibited 
lower canopy temperature, thereby limiting water loss and associated heat stress [46].

Cuticular waxes play an important role in preventing non-stomatal water loss 
during drought and high temperature stress, as well as enabling frost avoidance. Such 
climatic stressors can induce a heavier wax load and change the chemical composi-
tion of waxes by accumulating longer aliphatic compounds on plant tissues [47]. 
Drought increases stiffness and quality of the plant cuticle under climate change 
[48]. Similarly, the leaf cuticular surface is the first barrier blocking destructive 
ice penetration into the leaf cells in freezing avoidance mechanisms [49]. Using a 
hydrophobic film, Wisniewski et al. [50] showed the importance of the epi-cuticular 
hydrophobicity enabling avoidance of freezing in sensitive plants. The critical nature 
of the cuticular layer in frost avoidance of corn is also clearly demonstrated [51]. 
Freezing avoidance is the only mechanism of frost resistance in sensitive plants. In 
fact, the first demonstration of a transgenic organism in agriculture was the alteration 
of the cell wall protein secondary structure on ice nucleating bacteria, Pseudomonas 
syringae and Erwinia herbicola, which then prevented ice nucleation across the cuticle 
and avoided leaf damage [52, 53]. In future, injury due to frost stress will be more, not 
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less under global warming [54]. Hence, a better understanding of stress-induced wax 
modification among crop plants holds promise to cope with climate change.

3.2 Biotic stresses

The cuticle and its components act as signaling molecules to favor fungal growth 
and development, and infections in plants [55, 56]. Surface waxes act as cues to acti-
vate fungal developmental processes like appressorium formation, pre-penetration 
processes, etc., in crop plants like avocado, wheat, rice, maize and peanut [13, 57–59]. 
However, the hydrophobic nature of the cuticle also renders it a barrier for bacterial 
as well as fungal pathogens [60], a desirable trait for disease resistance. Waxes are 
known to protect lotus from pathogen infection [61]. It repulses pathogen spores 
and atmospheric pollutants like acid rain and ozone [32]. Another role of waxes is in 
plant-insect interaction; to attract or to serve as a deterrent [62]. It prevents insect 
attachment to plant surface oviposition and feeding [63, 64] and hence confer toler-
ance to insects in crop plants [65, 66].

4. Molecular biology of cuticular wax biosynthesis and deposition

Studies in Arabidopsis and subsequently, barley, rice and tomato systems have 
significantly contributed for the elucidation of the complex regulatory pathways 
underlying the biosynthesis, transport and deposition of wax components on plant 
surfaces [26, 27, 67]. Cuticular wax biosynthesis predominantly occurs in epider-
mal cells. The biosynthetic pathway initiates exclusively in the outer membranes 
of the plastids of epidermal cells where C16 and C18 fatty acids are synthesized, 
exported to the cytosol as acyl-CoAs and then elongated up to C34 at the endoplas-
mic reticulum (ER); through a series of enzymatic reactions [19, 26]. The synthe-
sized components are subsequently transported through the apoplastic pathway 
and deposited on the cuticle. The key steps involved [32] are summarized here.

4.1 Synthesis of malonyl-CoA

The de novo fatty acid biosynthesis initiates with the synthesis of malonyl-
CoA. It is initiated with the transfer of a bicarbonate derived CO2 molecule to 
the biotin moiety of a biotin carboxylate carrier protein (BCCP), that form N-1,2 
carboxybiotin biotin carboxylate carrier protein-BCCP. The reaction is catalyzed by 
biotin carboxylase (BC). The CO2 is further transferred to acetyl-CoA by carbox-
yltransferases (CT). Acetyl-CoA carboxylase (ACCase), a multifunctional enzyme 
system then catalyzes the formation of malonyl-CoA, from acetyl-CoA [32], which 
will be subsequently used for de novo fatty acid biosynthesis.

4.2 De novo fatty acid biosynthesis

De novo synthesis of acyl chain in the stroma of plastids is catalyzed by a series 
of enzymatic steps, which collectively forms fatty acid synthase complex (FAS). 
The series of reactions with the catalyzing enzymes are:

a. Condensation of malonyl-acyl carrier protein (manolyl-ACP) with acetyl-CoA 
to form 3-ketoacyl-ACP catalyzed by β-ketoacyl-ACP synthase (KAS III).

b. Reduction of 3-β-ketoacyl-ACP to 3-hydroxyacyl-ACP, catalyzed by 
3-βketoacyl-ACP reductase.
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c. Dehydration of 3-hydroxyacyl-ACP to trans-∆
2-enoyl-ACP, catalyzed by 

β-hydroxy acyl ACP dehydratase.

d. Reduction of trans-∆
2-enoyl ACP to Acyl-ACP by Enoyl ACP reductase.

This complex also includes an acyl carrier protein (ACP), a cofactor component 
of FAS to which the growing acyl chain remains esterified. These sequential reac-
tions result in a fully reduced acyl chain, extended by two carbons in each cycle [68] 
through the sequential round of condensation, reduction, dehydration and second-
reduction steps [69]. Repetition of the cycle for six times generates palmitoyl-ACP 
(16:0-ACP), where the condensation reactions are catalyzed by KAS I. One final 
cycle reaction between palmitoyl-ACP and malonyl-ACP utilizes KAS II to generate 
stearoyl-ACP (18:0-ACP). These products are further processed by stearoyl-ACP 
desaturase (introduce double bonds), plastidial acyltransferases, and acyl-ACP 
thioesterases (hydrolases). The fatty acyl-ACP thioesterases (FATA and FATB) 
hydrolyzes the C16-C18 acyl-acyl carrier proteins to generate fatty acids, which are 
then exported out of the plastids to undergo modifications in the ER [69].

4.3 Elongation of fatty acids

The C16 and C18 compounds, hydrolyzed by acyl-ACP thiosterases are activated 
into C16- and C18-CoA by long chain acyl-CoA synthetases (LACSs) and exported to 
the ER. The C16 and C18 acyl-CoA then act as a substrate for fatty acid elongase (FAE) 
complex, localized on the ER, which adds two carbons successively to form VLCFAs 
with C26-C34 chains. FAE complex are heterotetramers of independently transcribed, 
monofunctional proteins. They operate a reiterative cycle of four reactions catalyzed by

i. β-Ketoacyl-CoA synthase (KCS) that catalyze the two carbon condensation 
to acyl-CoA.

ii. β-Ketoacyl-CoA reductase (KCR) that catalyze the reduction of 
β-ketoacyl-CoA.

iii. β-Hydroxyacyl-CoA dehydratase (HCD) that catalyze the dehydration  
of β-hydroxyacyl-CoA.

iv. Enoyl-CoA reductase (ECR) that reduces the enoyl-CoA ultimately leading 
to VLCFAs [69–71].

4.4 Wax biosynthetic pathways

The elongated products are further modified to produce wax components i.e., to 
primary alcohols, alkyl esters, aldehydes, alkanes, secondary alcohols, ketones and 
free fatty acids, via two pathways (i) acyl reduction pathway (generates primary 
alcohols and wax esters) and (ii) decarbonylation pathway (generates alkanes, 
aldehydes, secondary alcohols, and ketones).

i. Acyl-reduction pathway: fatty acyl-CoAs are converted into primary alco-
hols catalyzed by fatty acyl-CoA reductase (FAR) through an intermediate 
aldehyde [71]. A bi-functional wax synthase/acyl-CoA:diacylglycerol 
acyltransferase (WS/DGAT) enzyme, WSD1 condenses the generated fatty 
alcohols and C16:0 acyl-CoA into wax esters [26].



Abiotic and Biotic Stress in Plants

6

ii. Decarbonylation pathway: acyl-CoAs are reduced to aldehyde intermediate 
by FAR, which are subsequently decarbonylated into alkanes, catalyzed by 
aldehyde decarbonylase. Stereospecific hydroxylation of alkanes catalyzed 
by midchain alkane hydroxylase 1 (MDH1) give rise to secondary alcohols, 
and oxidation of these alcohols form corresponding ketone [32]. Additional 
hydroxylation and oxidation reactions lead to the esterification of second-
ary alcohols with fatty acids and formation of diols, hydroxyl ketones and 
diketones [32].

4.5 Transport and deposition of cuticular waxes

The wax components generated are then transferred from the ER to the 
plasma membrane (PM) through Golgi and trans-golgi network mediated vesicle 
trafficking or non-vesicular trafficking [72]. Further, adenosine triphosphate 
binding cassette (ABC) transporters in the plasma membrane (homodimers 
and heterodimers) export the wax components to the epidermal surface [73]. 
Lipid transfer proteins (LTPs) like glycosylphosphatidylinositol (GPI)-anchored 
LTPs (LTPGs), attached to the outer surface of the plasma membrane are also 

Figure 1. 
Schematic representation of wax biosynthesis, transport and deposition in plants.
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Gene Protein type Role Reference

Cuticular wax biosynthesis

ACC1 Acetyl CoA carboxylase Synthesis of malonyl CoA 

substrates

[79]

FATB Acyl acyl carrier protein 

thioesterase

Supply of saturated fatty acids 

for wax biosynthesis

[80]

CUT1 /CER6/KCS6 VLCFA condensing enzyme 

(β-ketoacyl-CoA synthase)

Regulation of VLCFA 

biosynthesis/elongation of 24C 

fatty acids

[81]

CER1/CER22 Aldehyde decarbonylase VLC alkane biosynthesis [82]

KCS1 β-ketoacyl-CoA synthase Elongation of 24C fatty acids [83]

KCS20; KCS2/DAISY 3-ketoacyl-coenzyme A synthase Required for VLCFA elongation 

to C22

[84]

LACS1/CER8; LCAS2 Long chain acyl CoA synthetase Synthetase activity for VLCFAs 

C20-C30

[85]

KCS9 3-ketoacyl-coenzyme A synthase Elongation of C22-C24 fatty 

acids

[86]

WAX2/YRE/FLP1/

CER3

Aldehyde‐generating acyl‐CoA 

enzyme

Required for synthesis of 

aldehydes, alkanes, secondary 

alcohols, and ketones; 

biosynthesis of cuticular 

membrane

[76, 87]

CER10 Enoyl-CoA reductase Biosynthesis of VLCFA [88]

CER4/FAR3 Alcohol forming fatty acyl CoA 

reductase

Formation of C24:0 and C26:0 

primary alcohols

[89]

CYP96A15 

(cytochrome P450 

enzyme)

Midchain alkane hydrolase Formation of secondary 

alcohols and ketones (stem 

cuticular wax)

[78]

WSD1 Wax ester synthase/diacylglycerol 

acyltransferase

Wax ester biosynthesis [90]

PASTICCINO2 

(PAS2)

3-hydroxy-acyl-CoA dehydratase VLCFA synthesis in association 

with CER10, an enoyl-CoA 

reductase

[91]

KCR1 β-Ketoacyl-CoA reductase Required for VLCFA elongation [70]

CER2 BAHD acyltransferase Fatty acid elongation beyond 

C28

[92]

CER17 

(ECERIFERUM1)

Acyl-CoA desaturase like 4 n-6 desaturation of very long 

chain acyl-CoAs

[93]

Transport and deposition

AtWBC12/CER5 ATP binding cassette (ABC) 

transporter

Transport of cuticular waxes [94]

LTPG1 Lipid transport protein Cuticular wax export or 

accumulation

[74]

ABCG11/WBC11/

DESPERADO

ATP binding cassette (ABC) 

transporter

Secretion of surface waxes in 

interaction with CER5

[73, 95]

LTPG2 Lipid transport protein Cuticular wax export or 

accumulation

[96]

GLN1, ECH Vesicle trafficking [72]

Table 1. 
Key genes involved in wax biosynthesis, transport and deposition identified from the model system Arabidopsis.
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directly or indirectly involved in wax export [74]. A brief representation of wax 
biosynthesis, transport and deposition with key genes, is presented in Figure 1 
(adapted from [19, 26, 27, 32, 69, 71]).

Early studies in barley mutants with little or no wax on aerial plant parts, called 
glossy or glaucous were termed as eceriferum (cer), where cera means wax and 
ferre means to bear [75]. Subsequently, the wax defective mutants in Arabidopsis 
with bright, shiny, or glossy stems or leaves were also termed as eceriferum (cer) 
[76]. The wax locus from maize and Brassica napus is termed as glossy [68]. With the 
help of forward genetic screens using wax defective mutants and reverse genetic 
approaches [77, 78], considerable progress has been achieved in understanding wax 
biosynthesis, transport and deposition. Table 1 gives an overlook of the key genes 
involved in wax biosynthesis, transport and deposition identified from the model 
system Arabidopsis.

5. Regulation of cuticular wax biosynthesis

While the complex wax biosynthesis and transport pathways are well deter-
mined, the information on underlying regulatory mechanisms is still fragmentary. 
There is limited information that these processes and their candidate pathway genes 
are influenced by developmental factors. The cuticle development is an intrinsic part 
of cell developmental processes like organ development, cell partitioning, etc. [11]. 
PAS2, acy-CoA dehydratase, regulating the synthesis of VLCFA during wax biosyn-
thesis in the epidermis is essential for proper cell proliferation during development 
[97]. Wax deposition is also known to occur in an organ-specific manner during its 
development and is influenced by diverse environmental conditions as well [17]. The 
available information on the exact developmental regulation of wax biosynthesis is 
however, limited. As per evidences from leek (Allium porrum L.), wax accumulation 
and elongation activities are highly induced within a defined and an identifiable 
region of leaf [98]. The expression of plastidial fatty acid synthase (FAS), FAEs that 
regulate elongation of long-chain fatty acids in the microsomal membranes and acyl 
ACP-thioesterases are probable targets of developmental regulation, depending 
upon the need to produce fatty acid precursor pools [98]. Some of the key genes 
involved in wax biosynthesis are also affected by defects in the organization of 
organelles, especially the ER. A mutation of PEX10 (peroxisome biogenesis factor 
10) in Arabidopsis, which disrupted the ER network, in turn lead to mislocalization 
of CER4, CER1, SHN1 and WAX2, affecting cuticular wax biosynthesis [99].

There is increasing evidence to show that wax biosynthesis and its pathway 
genes are regulated at transcriptional, post-transcriptional and translational levels 
[26, 100]. A wide range of abiotic factors like light, water, temperature, salinity etc., 
influence wax biosynthesis and deposition. An increase in cuticular wax content is 
observed in bean, barley and cucumber on exposure to UV-B light [101]. In cotton, 
enhanced UV-B radiation specifically increased the epicuticular wax load on the 
adaxial surface of leaves [102]. There is an also an up-regulation of wax biosynthetic 
genes in salt tolerant rice genotypes under stress [103]. Although the underlying 
mechanisms have not been well explored in the above conditions, there is sufficient 
information on the influence of drought or moisture stress on wax biosynthesis in 
plants. A significant increase in wax load in Arabidopsis plants subjected to water 
stress is indicative of its regulation under drought [17]. In crops like rice, wheat, 
tobacco, alfalfa, peanut and cotton, etc., an increase in cuticular wax accumulation 
was observed under moisture stress condition [104]. Drought induced accumula-
tion of wax biosynthesis is positively correlated with drought tolerance in crops like 
oat, rice, wheat and forage crops, etc. [104–107].
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The transcript levels of several genes involved in wax biosynthetic pathways are 
regulated in response to abiotic stresses. FAR5, a fatty acyl CoA reductase, in wheat 
responsible for accumulation of long chain primary alcohols of C26:0, C28:0 and 
C30:0 are regulated by drought, ABA and cold [108]. The transcripts of KCS2/DAISY, 
a 3-ketoacyl-coenzyme A synthase required for the elongation of VLCFA are up regu-
lated under water deficit conditions [84]. Osmotic stress induces the expression of 
CER1, that regulates alkane biosynthesis; while the over expression of CER1 increased 
susceptibility to bacterial and fungal pathogens [109]. Hypoxia is also known to affect 
total wax loads on Arabidopsis. The expression of KCS, KCR1, ECR/CER10 and PAS2, 
components of fatty acid elongase complex in Arabidopsis stem and leaves is affected 
which in turn affects the production of VLCFA precursors of wax biosynthesis. The 
wax synthesis genes like MAH1, CER3, CER4, WSD1, etc., and several genes associ-
ated with wax and lipid transport are also affected by hypoxia [110]. There is also 
indication on the regulation of wax biosynthesis in response to cold. Acteyl-CoA 
carboxylase plays the essential role for cold acclimation in Arabidopsis. In sensi-
tive to freezing3 (sfr3) mutants, with a missense mutation in ACC1, the long chain 
components of leaf cuticular wax were reduced and there was inhibition on the wax 
deposition on inflorescence stem, which rendered the plants sensitive to cold stress 
[111]. Wax biosynthesis is also reported to be regulated in response to carbon dioxide 
(CO2) concentration. This is mediated by HIC (High Carbon Dioxide), a gene encod-
ing a 3-keto acyl coenzyme A synthase (KCS)-an enzyme involved in the synthesis of 
very-long-chain fatty acids that influences stomatal development in Arabidopsis [112].

With the identification of several transcription factors (TFs), transcriptional 
regulatory mechanisms are considered to be a major contributor for the wax 
biosynthesis [113]. WIN1/SHN1 (WAX INDUCER 1/SHINE1) is a TF from AP2/
EREBP family initially reported to regulate cuticular wax and then cutin biosynthe-
sis by regulating the expression of CER1, KCS1, CER2, LACS2, GPAT4, CYP86A4, 
CYP86A7 and HTH-like genes [114]. SHN1 overexpression increased drought 
tolerance in Arabidopsis [115]. Wax synthesis regulatory gene 1 (WR1) from rice 
[116] and SHN1 from wheat [117], both homologs of WIN1/SHN1 from Arabidopsis 
also reduced water loss and improved drought tolerance. Transcriptional repres-
sion by diurnally controlled DEWAX2 is another important for regulator of wax 
biosynthesis in Arabidopsis. Compared to wild type, the total wax loads in dewax2, 
were increased by 12 and 16% respectively in rosette and cauline leaves [118, 119]. 
Another candidate from AP2/ERF TF family, WRINKLED4 (WRI4) positively 
regulates wax biosynthesis in stems. wri4 mutants expressed 28% reduction of total 
wax loads in stems, although siliques and leaves were unaffected. Hence WRI4 act 
as a transcriptional activator to regulate the expression of LACS1, KCR1, PAS2, 
ECR and WSD1, to maintain the levels of 29C long alkanes, ketones and second-
ary alcohols in stems [113]. MYB94, regulate the expression of wax biosynthetic 
genes like WSD1, KCS2/DAISY, CER2, FAR3 and ECR to activate cuticular wax 
biosynthesis and is up regulated by drought and ABA. This also conferred tolerance 
to drought stress in Arabidopsis and Camelina [120]. MYB96, an ABA responsive TF 
also regulates wax biosynthesis under drought [121]. In Camelina, MYB96 activated 
the expression of wax biosynthetic genes KCS2, KCS6, KCR1-1, KCR1-2, ECR, and 
MAH1 which resulted in high levels of alkanes and primary alcohols and improved 
drought tolerance [120]. MYB96 acts as a component of plant disease resistance, 
through salicylic acid mediated signaling [122]. Both MYB94 and MYB96 share a 
common region containing MYB consensus motifs in the promoter of their target 
wax biosynthetic genes [123]. Hence MYB94 and MYB96 have an additive role on 
plant cuticular wax biosynthesis and under drought and ABA conditions.

In addition, to transcriptional regulation, wax biosynthesis is regulated by other 
events. Expression of CER3/WAX2/YRE, an aldehyde-generating acyl-CoA enzyme 
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Figure 2. 
Brief representation of the key regulatory events in wax biosynthesis and their targets.

in the wax biosynthetic pathway is regulated by CER7, a core RNA processing and 
degrading exosomal subunit. CER7 regulates WAX2 transcript levels by degrading a 
specific mRNA species encoding its negative regulator [124]. Many of such regulators 
have been identified from model systems as well as crop species and a brief overview 
of the key regulatory events and their targets has been presented in Figure 2.

6. Cuticular wax trait in imparting stress resistance

Under field conditions, crops encounter multiple biotic and/or abiotic stresses 
simultaneously at different stages of developments. Cuticular waxes have a direct 
role in multiple stress tolerance in crops [109]. In cucumber, wax biosynthesis has 
been shown to have key roles in influencing the plant responses to biotic as well as 
abiotic stresses [125]. In sorghum, genes regulating leaf waxes have critical role 
in regulating tolerance to drought and heat stress [45]. Considering the relevance 
of cuticular waxes under diverse biotic as well as abiotic stressful conditions, as 
discussed above and under combined stress conditions, it can be an ideal trait to 
tackle multiple stresses in crop plants.

6.1 Biotic stresses

6.1.1 Pathogens

Being the outermost layer of plant cuticle, the epi-cuticular wax can serve as a 
first line of physical defense against pathogens and herbivores. However, increasing 
thickness and hydrophobicity of the cuticle through over-deposition of the wax 
may not necessarily increase the resistance of the plant against biotic stresses. The 
composition and structure of wax in the cuticle can constitute the source of signals 
for the foreign invaders and for the plants themselves. Thus, the roles of cuticular 
wax could be multifunctional and can vary not only for various plant species but 
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also for different kinds of pathogens. Functional study of the DEWAX gene, a 
negative regulator of wax biosynthesis in Arabidopsis, is a good example of this 
complexity. The dewax mutant line in Arabidopsis, with increased epicuticular wax 
and decreased cuticular permeability, showed susceptibility to the fungal pathogen 
Botrytis cinerea, but resistance to the bacterial pathogen Pseudomonas syringae [126]. 
Moreover, DEWAX overexpressing lines in Arabidopsis and Camelina showed 
inverse defense modulations to B. cinerea and P. syringae as compared to dewax 
mutant in Arabidopsis [126].

Wax and cutin components in the plant cuticle could function in pattern- and 
effector-triggered immunity (PTI and ETI) and could serve to generate local and 
systemic acquired resistance against numerous pathogens [127]. During plant-
pathogen interaction, the plant cuticle can be affected by enzymes synthesized 
and secreted by the pathogens. Many fungal pathogens synthesize and secrete 
hydrolytic enzymes (for example, cutinases, esterases and lipases) at the early 
stage of infection that directly target the cuticle [128–131]. Fusarium oxysporum 
secretes cutinases that degrade cutin layers in the cuticle and generates cutin 
monomers that support fungal adherence to the host plant and facilitate the ini-
tiation of infection [128]. Hexadecanediol, a cutin component in rice can facili-
tate spore germination and differentiation for pathogenic fungi Magnaporthe 
grisea and B. cinerea [55]. Presence of a very-long-chain C26 aldehyde (a wax 
component) was important for the barley powdery mildew fungus (Blumeria 
graminis) to initiate infection in host plant species. Germination and appressorial 
differentiation of B. graminis were strongly prohibited in aldehyde free glossy11 
mutant in corn. Spraying of n-hexacosanal (C26-aldehyde) or wax preparation 
from wild-type corn can restore the conidial formation and differentiation [59].

Plant can also recognize the attachment of pathogens and activate defense 
responses against them, in which pathogen-infection generated plant products, 
such as cutin monomers or cell wall oligosaccharides, can act as signaling molecules 
[132]. Defense responses in plants are often manifested as alternations of the cuti-
cle. Colletotrichum acutatum infection in citrus resulted in increased lipid synthesis 
in the epidermal cell and increased deposition of those lipids in cuticle, the process 
eventually changes the structure of the cuticle [133]. Cuticular biosynthesis was also 
found to be up-regulated in tomato fruit following infection by fungal pathogen 
 C. gloeosporioides [134].

Cuticular permeability plays a vital role in almost all plant-pathogen interac-
tions. A more permeable cuticle can lead to either resistance or susceptibility 
to pathogens. Elevated deposition of cuticular wax as well as the presence of 
hydrophobic wax components (e.g., very-long-chain alkanes or ketones) can make 
a cuticle less permeable. Mutation or overexpression of genes that diminish bio-
synthesis of various wax components can generate the opposite effect. There are 
number of wax-deficient mutant and transgenic lines in Arabidopsis and other plant 
species with diminished cuticular permeability showed resistance to the fungal 
pathogen B. cinerea [34, 127]. However, the phenomenon is not true for all wax 
deficient plant lines. Wax and cutin deficient acp4 and gl1 mutants in Arabidopsis 
displayed increased sensitivity to B. cinerea [135, 136]. Mutations in SHINE tran-
scription factors in other studies also showed alteration in cuticular wax accumula-
tion, and susceptibility to B. cinerea infection [137, 138].

6.1.2 Insects and herbivores

Epicuticular wax also plays important roles in plant interaction with insects and 
herbivores. Flowering plants have evolved with cuticular wax of various forms, 
sizes and structures that are either enabling the attachment and movement of 
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pollinating insects, or reducing the attachment of herbivorous insects and pests on 
the plant surfaces. Reducing the attachments of herbivores on plant surfaces is a 
part of a plant defense strategy against herbivores.

Most plant body surfaces are covered with a two-dimensional (2D) epicuticular 
wax film of various thicknesses. In many species, wax film is protrudes with three-
dimensional (3D) wax crystals. Wax crystals can generate various shapes as revealed 
by electron microscopic analysis, such as rodlets, threads, platelets and tubules [61]. 
The complexity of these various shapes originates from the molecular self-assembly 
of various wax components, in which morphology of those crystals is also cor-
related with the presence of specific chemical components in the wax [139, 140]. 
Many experimental studies and reports from various plants species (for example, 
from genera Eucalyptus, Pisum, Brassica) have shown that 3D wax crystals have 
protective functions against insects, in general, including the herbivorous insects 
[141]. Studies with Eucalyptus species in canopy found that glaucous juvenile leaves 
containing high quantities of wax crystals were less prone to herbivorous infestation 
as compared to the glossy adult leaves [142]. Feeding rates of flea beetles, Phyllotreta 
cruciferae, on low-wax glossy (eceriferum, cer) Brassica napus mutant lines were 
much higher as compared to the wild-type B. napus [143]. Cuticular surfaces with 
wax crystals also interferes with the attachment, locomotion and foraging behavior 
of predatory insects and parasitoids [65, 144]. Pisum sativum lines with higher 
prevalence of crystalline epicuticular wax (CEW) were found more favorable for 
four predatory coccinellid species to attach, move and consume more aphids as 
compared to the P. sativum mutant line with reduced CEW [145]. Flowering stems 
with high CEW of numerous other plant species (for example, species under the 
genera Salix, Hypenia, Eriope) often generate slippery surfaces that prevent  
the movement of nectar robbers, ants and other plant pests [141, 146].

Several hypotheses have been proposed and tested on the mechanisms of wax 
crystal inhibition of insect attachment inhibition: (i) roughness hypothesis;  
(ii) contamination hypothesis; (iii) fluid absorption hypothesis [141]. Wax crystals, 
in general, generate a micro-rough surface on the cuticle that may prevent adhesive 
pads of the insects to stick, preventing them to successfully attach to the plant sur-
face [144, 147, 148]. Contamination hypothesis proposed that detached wax crystals 
of the cuticular surface of some plants can adhere to the insect attachment organs 
(e.g., adhesive pads), contaminate those, and as such subsequent insect attachment 
becomes challenging and unsuccessful [147–149]. Adhesive pads of many insects 
secret fluids, which can also enhance wax crystal contamination to attachment 
organs. Fluid secretion from the adhesive pads are supposed to help insects to 
pursue successful attachment to the plants. However, there is evidence certain plant 
species have crystalline wax coverage that can absorb the fluids secreted by the 
adhesive pads and prevent the insects to successfully attach to the cuticle [150, 151].

The study of cuticular wax involvement in biotic stress resistance is complex with 
a multitude of organisms spanning insects to disease. The story is still not clear and 
field situations in which interactions between organisms and abiotic stresses and the 
role of cuticular wax needs to be evaluated. Nevertheless, certain consistencies are 
evident in that permeability of the cuticular layer appears to be important in patho-
gen invasion and wax crystals play an important role in insect intervention by the 
cuticular layer. These areas of research merit further investigation.

6.2 Abiotic stresses

As mentioned above, abiotic stresses such as drought, extremes of tempera-
tures, salinity, etc., cause significant losses in crop productivity. Since most of the 
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stresses occur simultaneously, crop breeders are looking for traits contributing 
for multiple stress resistance. From this context, cuticular wax can serve as ideal 
trait. Drought stress, a major abiotic stresses in tropical regions, influences the 
biosynthesis and composition of cuticular wax in crops [27]. The importance of 
cuticular wax in desiccation tolerance is evident that, compared to gymnosperms 
and angiosperms, many early extant plants such as ferns, and horsetails are more 
sensitive to dehydration [152]. In crops like pea, cuticular wax load increases when 
subjected to drought stress [46]. In rice, gl1-1/wsl2 and gl1-2 loss-of-function 
mutants with reduced wax load exhibited sensitivity to drought compared to 
the wild type plants [104, 153]. Drought stress is known to increase the wax 
content and alter composition of cuticular wax in many plants such as pea [46], 
Arabidopsis [17, 115], tobacco [154], alfalfa [155]. Significant correlations between 
the wax content and yield, drought tolerance and water-use efficiency have been 
reported in different crops such as sorghum [38], barley [156], rice [41], and 
wheat [157, 158]. These reports demonstrate that less wax or non-waxy crops/gen-
otypes are sensitive to desiccation with poor drought-tolerance compared to the 
crops having more cuticular wax [105]. The existing evidences suggests cuticular 
wax is responsible for reducing non-stomatal transpiration by increasing cuticular 
resistance [43]. The cuticular waxes also have roles in imparting resistance to 
salinity stress, mainly by regulating residual transpiration. A significant nega-
tive correlation observed between residual transpiration and total wax content, 
reports residual transpiration could be a fundamental mechanism by which plants 
optimize water-use efficiency under salinity stress [43]. As discussed above, wax 
accumulation also correlated with high temperature resistance in plants [44]. Leaf 
surface waxes help to maintain cooler canopy in sorghum under heat stress [45]. 
The cuticular waxes can further help in protecting plants from high light stress 
[101]. The cuticular wax has a role in protecting plants from excessive ultraviolet 
(UV) light and there are reports indicating that elevated UV-B radiation can affect 
plant cuticular wax formation [101, 159, 160]. Based on the existing information, 
as mentioned above, cuticular wax, can be treated as the first protective layer and 
an important trait contributing for both biotic and abiotic stresses.

7. Attempts by crop biologists to manipulate cuticle traits

7.1 Breeding

Identification of genomic regions contributing wax traits is crucial in manipu-
lating wax characteristics using breeding approaches. In rice, quantitative trait 
loci (QTL) linked to the leaf epi-cuticular layer was identified corresponding to 
EM15_10-ME8_4-R1394A-G2132 region on chromosome 8 [161]. In sorghum, a crop 
with the ability to produce profuse amounts of EW, BLOOM-CUTICLE (BLMC) 
locus from chromosome 10, was identified to account for profuse wax production. 
BLMC region corresponds to approximately 153,000 bp with three co-segregating 
markers and an acyl CoA oxidase with seven other putative candidates. BLMC 
mutation affected C28-C30 free fatty acid fractions and hence cuticle properties in 
culm and leaves, disrupted EW production and increased plant death rating in field 
at anthesis [162]. With the genetic analysis of F2 population from HUAYOU2 (P1 X 
M36), BoWax1 locus (Brassica oleraceae Wax 1) is identified to be controlling glossy 
green trait in cabbage, due to a deletion mutation of two nucleotides in the cDNA of 
Bol013612 of HUAYOU2. BoWax1 locus maps to chromosome CO1 [163]. The wax 
biosynthetic pathway genes identified in pearl millet were co-located to the QTL 
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controlling biomass production under early drought stress and stay green traits 
[164]. Targeted breeding using the modern molecular breeding for this trait would 
be useful.

7.2 Transgenic

With the elucidation of wax biosynthetic pathways and identification of key 
regulators, attempts were made in crop plants to engineer cuticle properties and to 
enhance stress tolerance traits. One of the early reports in engineering wax traits 
and thereby improved stress tolerance was from Medicago sativa (alfalfa), a forage 
legume. WXP1, a transcriptional regulator from Medicago truncatula, upregulated 
by drought, cold and ABA, was over expressed in alfalfa, which significantly 
increased the leaf cuticular wax load, mainly contributed by the C30 primary 
alcohol. The transgenic plants exhibited enhanced tolerance to drought and rapid 
recovery under rehydration [155]. Over expression of SlSHN1, a close homolog 
of the WIN/SHN gene from Arabidopsis, in tomato using constitutive CaMV 35S 
promoter improved drought tolerance, with higher cuticular wax deposition on 
leaf epidermal tissue. The transgenic plants displayed delayed wilting, improved 
water status and reduced water status [165]. MYB96, a transcriptional regulator 
over-expressed in Camelina, an emerging biofuel crop, which generated plants 
with enhanced drought tolerance. The expression levels of CsKCS2, CsKCS6, 
CsKCR1-1, CsKCR1-2, CsECR, and CsMAH1 were highly upregulated in the 
transgenic plants which resulted in a significant increase in the deposition of 
epicuticular waxes and total wax loads. This gives an option to cultivate the crop 
on marginal lands to produce renewable biofuels and bioresource [120]. It was 
further demonstrated that ectopic expression of DEWAX, a negative regulator 
of cuticular wax biosynthesis increased tolerance to Botrytis cinerea in Camelina 
[126]. A study from groundnut by over-expressing the KCS1 gene from a drought 
tolerant genotype improved cuticular was load and drought tolerance in a sus-
ceptible genotype [166]. Likewise, several of such regulators have been identified 
from model systems as well as crop species and used for engineering crop plants to 
enhance stress tolerance.

8.  Options for manipulation of wax traits for individual and/combined 
stress tolerance

In crop plants, due to the nature of combined stressors interactions, the stress 
effect is not always additive [3]. While working with glossy mutants of Zea mays 
(gl4), an enhanced colonization of bacteria, was observed leading to more leaf 
blight pathogen growth compared to the wild type [167]. The thin cuticle provided 
leaf blight pathogen, an easy access to nutrient and water in gl4 mutant indicat-
ing that cuticular wax thickness is a useful trait to identify plants’ resistance to 
combined stressors. Additionally, wax layer structure and composition are equally 
important in conferring defense mechanisms. As rightly pointed in Ref. [1], such 
combined studies allow us to understand the shared and specific effects of biotic 
and abiotic stressors.

Wild relatives and landraces have long been recognized as a source of genes 
for breeding major field and horticulture crops. During domestication of wheat, 
tomato, rice, soybean and corn, yield was the focus trait. This in turn narrowed 
the genetic diversity for other biotic and abiotic stressors [168]. For example, 
during domestication of modern wheat, due to a phenotyping bottleneck a largely 
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overlooked drought trait in wheat breeding program is glaucousness [169]. Such 
beneficial allelic variants lost in cuticle related traits can be introgressed back by 
crossing an elite line with its wild relatives. Apart from genetic diversity, a mutation 
population (EMS or gamma irradiation) provides an alternative avenue to target 
crop improvement via selection of cuticle-associated trait variations [170]. In fleshy 
tomatoes, a mutant line underlying for delayed fruit deterioration (DFD), is char-
acterized for minimal transpirational water-loss and enhance post-harvest shelf 
life [171]. A recent alternative for trait manipulation is CRISPR-Cas9 system which 
is a precise gene-editing technology. This new method accelerates the evaluation 
of beneficial cuticle-associated alleles in different genetic backgrounds [172]. In 
similar lines, small RNA based transgenic strategy is also emerging as a molecule of 
choice to deal with combined biotic and abiotic resistance in crops [173].

9. Conclusion

There is sufficient evidence to argue that cuticle and cuticular waxes are 
involved in the regulation of multiple biotic and abiotic interactions. The cuticular 
wax can be treated as an important trait contributing for multiple stress resistance. 
Concerted efforts have been made to elucidate the synthesis and deposition of 
cuticular waxes in plants. Further analysis of the key regulatory steps involved in 
the formation of cuticular waxes, and also the role played by diverse types of wax 
components and structures in stress response is needed. This information could be 
incorporated in crop improvement programs (via marker assisted selection for wax 
genes). Since there are promising options emerging to analyze the cuticular  
wax trait using modern synchrotron technology [174] as well as now widely recog-
nized techniques to observe ice propagation in real time across the cuticle [175] crop 
breeders have the potential to improve their efficiency of selection based on these 
traits. Recent progress in genomics can substantially help major field and horticul-
ture crops to buffer the impacts of climate change. In addition, new genome-editing 
technologies will provide interesting tools to characterize and engineer waxes in 
crops. Unraveling key regulators and network partners of surface wax synthesis 
would aid in targeted manipulation of the trait using modern biotechnological 
applications. There are options to analyze the cuticular wax trait using modern 
non-destructive approaches. Crop breeders can use these tools to improve their effi-
ciency of selection for the trait, and effectively pyramid the trait in elite genotypes 
to combat combined stresses.
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