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Abstract

Methyltransferases play a fundamental role in aminoglycoside resistance 
of Gram-negative bacteria, and some of its mechanisms were described in the 
past years, especially in Escherichia coli; however, it remains unsolved for other 
resistant bacteria such as Pseudomonas aeruginosa. Despite hurdles to determine 
resistance acquisition, high-throughput approaches (genomics, transcriptomics, 
and proteomics) have allowed data mining and analysis in a systemic way. Likewise, 
bioinformatics modelling of homologous genes or proteins has permitted to eluci-
date the emerging resistance in this pathogen. P. aeruginosa is a bacterial resistance 
treat since practically all known resistance mechanisms can be described using this 
model, particularly RNA methyltransferases. The RNA methyltransferases perform 
methylation or demethylation of ribosomal RNA to allow or restrict the antibiotic 
resistance development. The Kgm and Kam methyltransferases families are found 
in P. aeruginosa and confer resistance to several aminoglycosides. Loss of native 
methylations may also confer a resistant phenotype. The P. aeruginosa RsmG has 
high structural homology with Thermus aquaticus protein. Today, molecular data 
will promote a new paradigm on antibiotic therapy for treatment against P. aerugi-
nosa. This chapter provides an overview of what role P. aeruginosa’s methyltransfer-
ases play in antibiotic resistance, induced by methylation or demethylation in the 
ribosome. 

Keywords: Pseudomonas aeruginosa, antibiotic resistance, aminoglycoside, 
methyltransferase, methylation, demethylation, 16S RNA

1. Introduction

Nowadays, aminoglycoside antibiotic regimen remains as a prevailing therapy 
for the treatment of Pseudomonas aeruginosa pathogen, predominantly for respira-
tory complications in cystic fibrosis patients. However, P. aeruginosa strains are 
emergent multidrug-resistant. Bacteria develop resistance to aminoglycosides by 
producing aminoglycoside-modifying enzymes such as acetyltransferase, phos-
phorylase, and adenyltransferase [1]. The bacterial ribosome is a primary antibiotic 
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target, but bacteria can acquire resistance by modification of drug-binding sites. 
More than 50 years of studies in Escherichia coli have shown that 16S and 23S 
rRNAs have methylated nucleotides (Figure 1). These molecular modifications 
are performed by methyltransferases (MTases), which take in charge the transfer 
of a methyl group from a methyl donor S-adenosyl-l-methionine, better known 
as AdoMet or SAM [2]. These RNA MTases are diverse in posttranscriptional 
RNA modification, where single RNA nucleosides are chemically transformed. 
SAM-dependent MTases are involved in biosynthesis, signal transduction, protein 
repair, chromatin regulation, and gene silencing [3]. More recently, it was shown 
that aminoglycoside resistance in E. coli has its primary target within the decoding 

Figure 1. 
Ribonucleotides methylated where the methyl moiety is located either in 16S or 23S ribonucleotides: m6A [66, 67], 
m6

2A [68], m5C [67], m4Cm [69], m2G [66], m7G [70], m3U [67, 71], m5U [72], and Ψ [68]. Molecules are designed 
using the figures on the next web page, https://mods.rna.albany.edu/mods/modifications/search/. The structure shows 
clearly the methyl (CH3-) but in the last structure bottom does not show this methyl.
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region of 16S and 23S rRNAs and it is known to have 10 methylated nucleosides in 
16S rRNA and 14 methylated nucleotides in 23S rRNA [4].

Different methylation sites have been identified within the 16S rRNA which 
yield different aminoglycoside resistance phenotypes [5]. One type group of 16S 
rRNA methylases is produced by istamycin producer Streptomyces tenjimariensis, 
which methylates m1A1408 residue. Another group of 16S rRNA methylases is 
synthesized by gentamicin producer Micromonospora purpurea that methylates 
residue G1405; nonetheless, in P. aeruginosa the modification takes place in helix 
44, with a secondary target in 23S rRNA helix 69 [6]. They bind specifically to the 
aminoacyl site (A-site) of 16S rRNA within the prokaryotic 30S ribosomal subunits 
and interfere with protein synthesis [7].

Probably RNA methylation began prior to DNA methylation in the early 
forms of life evolved on Earth [8], allowing to hypothesize perhaps that methyl-
ases appeared before polymerases. Ribonucleotide can be methylated by meth-
yltransferases or demethylated by demethyltransferases. The structure of the 
bacterial ribosome has a molecular mass of 2.5 mega Daltons. In E. coli, the 50S 
subunit is composed of 23S rRNA (2904 nt), 5S rRNA (120 nt), and 33 ribosomal 
proteins, while the 30S subunit is composed of 16S rRNA (1542 nt) and 21 
ribosomal proteins (S1–S21) [9].

The 16S rRNA resistance methyltransferases modify only intact 30S subunits, 
but the molecular details of their target recognition mechanisms are not quite 
elucidated yet. Such studies are becoming all the more necessary [10]. RNA meth-
ylation has been observed in different types of RNA species, viz., mRNA, rRNA, 
tRNA, snoRNA, snRNA, miRNA, and tmRNAs. Specific RNA methyltransferases 
are synthesized by cells to label these RNA species according to their needs and 
prevailing environmental conditions surrounding the cells, and this molecular 
labeling system is a constituent of epigenetics. New molecular structures provide 
crucial new insights that may provide a starting point for strategies to suppress 
these emerging causes of pathogenic bacterial resistance to aminoglycosides 
[11]. Nonetheless, bacteria develop resistance to aminoglycosides by producing 
aminoglycoside-modifying enzymes such as acetyltransferase, phosphorylase, and 
adenyltransferase. These enzymes, however, cannot confer a broad aminoglycoside 
resistance spectrum due to its substrate specificity [1].

2. Antibiotic resistance

P. aeruginosa has a large genome among Gamma proteobacteria, which allows 
it to improve many resistance mechanisms in a versatile way, for example, by 
transmissible plasmids or integrons. P. aeruginosa derepresses the chromosomal 
AmpC cephalosporinase [12, 13]; it also acquires genes for AmpC enzymes, 
class A carbenicillinases or β-lactamases, class D oxacillinases, and class B 
 carbapenem-hydrolyzing enzymes [14], as it occurs in other bacteria like E. coli 
and K. pneumoniae. Other mechanisms include modifying the structure of 
topoisomerases II and IV to become quinolone resistant [15], decreasing outer 
membrane permeability by the partial or total failure of OprD proteins [12], 
overexpressing the active efflux systems with broad substrate patterns [16, 17], or  
synthesizing aminoglycoside-modifying enzymes as adenylyltransferases, 
 acetyltransferases, and phosphoryltransferases [18].

The range of antibiotic resistance in P. aeruginosa is wide, and it represents a 
major difficulty for health care by its unsuccessful treatment, as a consequence of its 
low intrinsic antibiotic susceptibility, an effect of the interaction between multidrug 
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efflux pumps, like mexAB, mexXY [19], AdeABC, and AdeDE genes [17]. Another 
factor is its efficient capability of acquiring resistance, developed by transfer of 
horizontal genes, such as specific gene mutations [20], and finally by the low perme-
ability of the cellular membrane [16, 21].

Protein Gene Substrate Nucleotide 

methylated

Position of 

methylation

Ligand UniProt

RlmB rlmB 23S rRNA G2251 2’-O-ribose SAM Q9HUM8

RlmD rlmD 23S rRNA U1939 C5 SAM Q9I525

RlmE rlmE 23S rRNA U2552 2’-O-ribose SAM A6VCK9

RlmF rlmF 23S rRNA A1618 N6 SAM A6V0S3

RlmG rlmG 23S rRNA G1835 N2 SAM A6VC08

RlmH rlmH 23S rRNA Ψ1915 N3 SAM A6V0A6

RlmJ rlmJ 23S rRNA A2030 N6 SAM Q9HUF0

RlmK/L rlmL 23S rRNA G2445 N2 SAM A6V328

RlmM rlmM 23S rRNA C2498 2’-O-ribose SAM A6V7T6

RlmN rlmN 23S rRNA 
and tRNA

A2503 in 
rRNA and 

A37 in tRNA

C2 Radical 
SAM

A6V0V7

RsmA rsmA 16S rRNA A1518 and 
A1519

N6 SAM Q9I5U5

RsmB rsmB 16S rRNA C967 C5 SAM Q9I7A9

RsmC rsmC 16S rRNA G1207 N2 SAM A6VC20

RsmD rsmD_2 16S rRNA G966 N2 SAM A0A0F6U8H1

RsmE rsmE_2 16S rRNA U1498 N3 SAM A0A0F6U8B3

RsmG rsmG 16S rRNA G527 N7 SAM A6VF42

RsmH rsmH 16S rRNA C1402 N4 SAM A6VB93

RsmI rsmI 16S rRNA C1402 2’-O-ribose SAM Q9HVZ3

RsmJ rsmJ 16S rRNA G1516 N2 SAM Q9HXW0

TrmA trmA tm/tRNA U54 in tRNA 
and U341 in 

tmRNA

C5 SAM A6VCH5

TrmB trmB tRNA G46 N7 SAM Q9I6B3

TrmD trmD tRNA G37 N1 SAM Q9HXQ1

TrmH trmH tRNA(Leu) Wobble 
nucleotide

2’-O-ribose SAM A0A0H2ZHL8

TrmI trmI tRNA A58 N1 SAM A0A2X4FJT8

TrmJ trmJ tRNA C32, U32, and 
A32

2’-O-ribose SAM A0A0H2ZF87

TrmL trmL_2 tRNA(Leu) Wobble 
nucleotide

2’-O-ribose SAM A0A0G5X8M9

Table 1. 
P. aeruginosa’s rRNA methyltransferases and their point of modifications [23]. The columns are described as 
follows: first column, the name protein of RNA methyltransferase; second column, the name of its gene; third 
column, the substrate either 23S or 16S RNA or tRNA; fourth column, the type of nucleotide methylated; fifth 
column, the electron in nucleotide methylated; sixth column, the ligand for everyone SAM; and seventh column, 
the UniProt code. Some interesting proteins such as RsmA, RsmG, RsmH, and RsmI are marked in bold.
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Bacterial multidrug resistance (MDR) is an important concern in P. aeruginosa 
since this microorganism is capable of mixing several mechanisms, transposons, 
plasmids, and chromosomally encoded genes, such as methyltransferases or pumps 
[22]. Methyltransferase genes are spread in bacterial genome ready to trigger 
antibiotic resistance. Table 1 compares the reported methyltransferase proteins 
worldwide, being annotated for P. aeruginosa in UniProt database [23].

One mechanism of adaptation which facilitates natural selection in bacteria 
is the hypermutation of some genes or chromosomal regions. Previous work in 
patients with P. aeruginosa showed that hypermutation causes a problematic effect 
during a chronic respiratory infection (CRI) [24], where P. aeruginosa was up to 
6.5-fold higher in mutator backgrounds. Other elements associated with high anti-
microbial resistance are integrons. These elements were found among isolates from 
Iran patients with P. aeruginosa, which the int1 integron was prevalent [25].

Integrons linked to transposons, plasmids, and chromosome are responsible for 
bacterial antibiotic resistance [26, 27]. Integrons are composed of three elements: 
(1) the integrin-associated promoter (Pc), which is required for transcription and 
expression of gene cassettes (genetic elements that encode antibiotic resistance genes) 
within the integrin; (2) the intI gene, in which coding for the integrase IntI is crucial 
for site-specific recombination; and (3) the adjacent recombination site attI, which is 
recognized by integrase. On the other hand, P. aeruginosa carrying transposon Tn1696 
is an element that encodes the CmlA gene, an exporter of the major facilitator (MF) 
superfamily which provides antibiotic resistance, specifically against chloramphenicol 
[28]. P. aeruginosa has a broad spectrum in cephalosporin resistance mechanism, medi-
ated by the extended-spectrum β-lactamases (ESBLs). High prevalence of multidrug 
resistance in burn patients and production of oxa-10, per-1, and veb-1 genes by P. 
aeruginosa isolates confirm the presence of antibiotic-degrading enzymes [29].

The Pathosystems Resource Integration Center (PATRIC) is a massive database 
that integrates genomic data and analysis tools to support biomedical research on 
bacterial infectious diseases. The platform provides an interface for biologists to dis-
cover data and information and conduct comprehensive comparative genomics and 
other analyses in a one-step source. PATRIC database provides complete genome 
information and data regarding susceptibility or resistance [30] to several antibiot-
ics; including aminoglycosides, polymyxin B, colistin, ceftazidime, piperacillin, 
imipenem, ciprofloxacin, levofloxacin, and meropenem in P. aeruginosa. We report 

Figure 2. 
Resistance and susceptibility profile of P. aeruginosa against a broad spectrum of different types of antibiotics. 
The data were downloaded from PATRIC database selecting aminoglycosides, beta-lactamases, cephalosporins, 
licosamides, fluoroquinolones, colistin, doxycycline, ciprofloxacin, nitrofurantoin, and cefazolin. Many strains 
are resistant to a wide range of antibiotics (red with a larger percentage), and the most strains are susceptible 
to colistin (green with larger percentage); on the other hand, the overall strains are resistant to ampicillin, 
cefotaxime, erythromycin, and nitrofurantoin.
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in Figure 2 antibiotic resistance or susceptibility from different P. aeruginosa strains 
as well as in Figure 3 with those antibiotics mentioned.

3. Resistance to antibiotics through rRNA methylation

Kgm and Kam families are two different groups of SAM-dependent RNA meth-
yltransferases, which modify nucleotides of 16S rRNAs in the specific drug-binding 
site to confer self-resistance in aminoglycoside-producing bacteria [31]. The Kgm 
and Kam families have been distinguished based on their nucleotide targets, G1405 
and A1408, respectively. The kgmB and armA genes (Kgm family kanamycin 
gentamicin methyltransferase) methylate m7G1405(N7) position that confers a high 
level of resistance against gentamicin, kanamycin, and tobramycin. The addition of 
a methyl group in this position interferes directly with the binding to the antibiotic, 
inducing a steric hindrance between the modified base and the structure of the 
antibiotic, causing electrostatic repulsions derived from the positive charge in the 
modified base [32]. On the other hand, the kamA and npmA genes (Kam family 
kanamycin-apramycin methyltransferase) methylate m1A1408(N1) position confer-
ring a high level of resistance to kanamycin, apramycin, and neomycin [5].

Another interesting non-aminoglycoside resistance related to RNA methyla-
tion is the macrolide-lincosamide-streptogramin-B (MLSB) antibiotics, which is 
strongly associated with the expression of the methyltransferase of ErmC RNA that 
causes the dimethylation of the N-6 atom of adenine and interacts with the nucleo-
tide 2058 in the 23S rRNA. Such antibiotics bind to overlap sites within the 50S 
ribosomal subunit tunnel near the peptidyl transferase center, either by inhibiting 
the catalysis directly at the peptidyl transferase site or by acting as a physical barrier 
to the extension of the peptide chain inside the tunnel [33]. Many more erm-type 
methyltransferase genes have been identified in a wide range of Gram-positive and 
Gram-negative bacteria. Among them, the ermB, ermF, and ermA genes are trans-
ferred by transposons, and the ermC gene transferred by plasmids. The family of 
Erm methyltransferases that mediate the mono- or dimethylation of A2058 consists 
of approximately 40 different classes of methylases [34, 35].

Figure 3. 
Strains with P. aeruginosa’s genomes showing susceptibility (green) and resistance (red) against some 
aminoglycosides (amikacin, gentamicin, and tobramycin) and other antipseudomonal antibiotics. Many strains 
are resistant to a wide range of antibiotics (red with a larger percentage), and most strains are susceptible to 
doxycycline or colistin (green with larger percentage).
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4.  Resistance or susceptibility to antibiotics through rRNA 
demethylation

The rsmG gene encodes a 16S rRNA mRNA which methylates the N7 of 
nucleotide G527 within the 530 loop of 16S rRNA; one of the main examples is the 
loss of native methylations that confers a resistance phenotype to streptomycin. 
Streptomycin interacts with the rRNA in the adduced region (loop 530), and the 
loss of methylation correlates with a low level of resistance. Although this resistance 
is at a low dose of antibiotic, the mutation of rsmG apparently has a mutator effect 
which promotes the appearance of a high number of mutants resistant to high 
doses of streptomycin [36]. Another interesting aspect is that not only methylation 
generates resistance; cases have been reported where demethylation also promotes 
resistance. The first and best characterized example is ksgA gene (RsmA protein), 
which encodes the native methyltransferase KsgA or RsmA, responsible for the N6 
dimethylation of A1518 and A1519 in the 3′-terminal fork of the 16S rRNA in the 
30S rRNA. It was the first resistance to aminoglycosides (kasugamycin) associated 
with demethylation in the 16S rRNA [37]. It was found that adenine methylated by 
MTase is far from the binding site of kasugamycin, so this demethylation should 
lead to a conformational rearrangement which would be associated with the acqui-
sition of antibiotic resistance [38].

Another research showed that preventing adenine methylation from occur-
ring, resistance to kasugamycin can be induced; the base U793 fills the site usually 
occupied by the methylated adenines and the adjacent bases, A792 and A794, [39]. 
The phenomena mentioned above give place to a conformational change, causing 
the union site of Ksg to be blocked by the U793. Accordingly, it can be assured that 
this structural change in the helix 24 causes resistance to Ksg [39].

Likewise, it was found that the tlyA gene in Mycobacterium tuberculosis encodes 
the MTase 2'-O-ribose TlyA responsible for the C1409 methylations in the 16S 
rRNA and C1920 in the 23S rRNA. The loss of such methylations confers resistance 
to capreomycin and viomycin, two antibiotics which bind at the interface of the 
ribosome subunit and are used to help define their binding site. Another example 
of the absence of methylations in the 23S rRNA is the lack of methylation in 
U2584 (E. coli numbering), which causes resistance to sparsomycin in 23S rRNA 
Halobacterium salinarum [40].

Recent findings regarding intrinsic resistance refer to the Ψ at position 2504 
of the 23S rRNA in E. coli, where inactivation of the rluC gene confers significant 
resistance to clindamycin, linezolid, and tiamulin [41]. The cfr gene was origi-
nally discovered in an isolate of a multiresistant plasmid during a follow-up study 
of chloramphenicol resistance in Staphylococcus spp. isolates. The molecular char-
acterization of the resistance led to the gene encoding a methyltransferase that 
methylated the nucleotide A2503 in the 23S rRNA. In E. coli and S. aureus, there 
is a natural methylation of A2503 mediated by the methyltransferase encoded 
by the yfgB gene (rlmN). The lack of natural methylation in A2503 confers a 
slight increase in susceptibility to tiamulin, hygromycin A, sparsomycin, and 
linezolid [42].

5.  rRNA methyltransferases associated with aminoglycoside resistance 
in P. aeruginosa

Methyltransferases have been intensely studied in P. aeruginosa, but this is not 
the case for RNA methyltransferases, particularly those conferring aminoglycoside 
resistance. Nowadays, we focus our study in P. aeruginosa methyltransferases using 
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molecular biology, genomics, proteomics, chemistry informatics, and bioinformat-
ics [43–45]. RsmG, RsmH, and RsmI are RNA methyltransferases, and these have 
been broadly studied. Six crystal structures have been reported in PDB for RsmG, 
from Thermus thermophilus with accession numbers 4NXM, 4NXN, 3G88, 3G89 
3G8A, and 3G8B [46, 47] and one from E. coli, with number 1JSX [48], and another 
one from Bacillus subtilis, with number 1XDZ. RsmH and RsmI crystal structures 
from E. coli are reported in PDB with numbers 3TKA and 5HW4 [49–51]. Checking 
these three orthologous genes in the PATRIC database, they are being conserved in 
P. aeruginosa’s pan-genome.

RsmG well known as 16S rRNA (guanine527-N7)-methyltransferase methyl-
ates guanine527 at N7 in 16S rRNA [36, 52] (Table 1) and catalyzes S-adenosyl-
L-methionine + guanine527 in 16S rRNA → S-adenosyl-L-homocysteine + 
N7-methylguanine527 in 16S rRNA (see reaction in UniProt, KEGG, or MetaCyc). 
Researches in M. tuberculosis reveal that rsmG mutations confer low-level strepto-
mycin resistance; moreover, it has been reported that combining drug resistance 
mutations of rsmG gene remarkably enhances enzyme production in Paenibacillus 
agaridevorans [53]. Likewise, for P. aeruginosa, rsmG is conserved in both aminogly-
coside-resistant and aminoglycoside-susceptible strains.

RsmH also called S-adenosyl-L-methionine (cytosine1402-N4)-methyltransferase 
methylates the N4-of cytosine1402 [54] (Table 1). This enzyme catalyzes the 
following chemical reaction: S-adenosyl-L-methionine + cytosine1402 in 16S 
rRNA → S-adenosyl-L-homocysteine + N4-methylcytosine1402 in 16S rRNA (see 
reaction in UniProt, KEGG, or MetaCyc). Experiments performed with gene knock-
out of rsmH and rsmI have shown in E. coli BW25113 strain that ΔrsmH and ΔrsmI 
increase in doubling times by 15 and 12%, respectively; however, ΔrsmH/ΔrsmI 
increases in doubling time by 29% compared with a wild type cultured at 37°C, 
indicating that gene knockout caused a slight but significant change in phenotype 
about cellular growth properties in the absence of both rsmH and rsmI [54]. As well 
as E. coli, P. aeruginosa conserves rsmH and rsmI genes in both aminoglycoside-
resistant and susceptible strains; therefore, it is important to study the mutations 
also in its strains.

RsmI also named S-adenosyl-L-methionine 16S rRNA (cytidine1402–2’-O)-
methyltransferase methylates in cytidine1402–2’-O (Table 1). RsmI catalyzes 
the next chemical reaction: S-adenosyl-L-methionine + cytidine1402 in 16S 
rRNA → S-adenosyl-L-homocysteine + 2’-O-methylcytidine1402 (see reaction in 
UniProt, KEGG, or MetaCyc). RsmI and RsmH react on the same nucleotide, but 
the first methylates in 2’-O, while the second one in -N4 [54]. Such as rsmG and 
rsmH, the rsmI gene is also conserved in pan-genome. Theoretical modeling of the 
structure in RsmI protein from P. aeruginosa was performed in iTISSER suit [55], 
and compared with 5HW4 from E. coli (Figure 4), the homology and the active site 
in P. aeruginosa are apparently well maintained.

Other interesting P. aeruginosa methyltransferases associated with aminogly-
coside resistance are m5C1404, m1A1408, and m7G1405 [6]. Among the last group 
mentioned, there are some well-studied methyltransferases, such as ArmA, RmtA, 
RmtB, RmtC, RmtD, RmtF, and RmtG (Table 2). This group is characterized for 
providing resistance to 4,6-disubstituted 2-deoxystreptamine (2-DOS) amino-
glycosides [6]. For example, ArmA was found in Klebsiella pneumoniae [56]; as 
for P. aeruginosa, among 100 Korean multidrug-resistant isolates, 14 carried this 
enzyme [57]. The armA gene encodes for 16S RNA methyltransferase that methyl-
ates guanine (1405)-N7. The same gene in P. aeruginosa (Table 2) presents variable 
occurrence as it is part of the accessory genome. A multiple alignment, using the 
listed P. aeruginosa ArmA proteins (16S rRNA (guanine (1405)-N(7))- methyl-
transferase)) revealed identical homology for this marker.
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The location of m7G1405 methyltransferase genes across the prokaryotic genome 
is variable, as it has been found in several studies mentioned above. The rmtA gene 
in P. aeruginosa carries a mobile element Tn5041 [58, 59] identified previously in 
Enterobacteriaceae [56], while the rmtB gene identified in Serratia marcescens is located 
in the flanking of Tn3-like region responsible for multiple antimicrobial resistance 
[59, 60], and both methyltransferases and mobile elements are present in P. aeruginosa 
(Table 2). The rmtC and rmtF genes (Table 2) might have been acquired from plas-
mids as part of mobile genetic elements and finally integrated and stabilized on the 
chromosome [61]. The rmtG gene (Table 2) is likely located in the chromosome [62]. 
The m1A1408 methyltransferases are present in pan-aminoglycoside-resistant strains, 
which were identified by Wachino et al. [63] and provide resistance by these classes 
of methyltransferases to both 4,5-disubstituted 2-DOS and 4,6-disubstituted 2-DOS 
aminoglycosides as well as NpmA case. These two classes of methyltransferases are 

Figure 4. 
Structural 3D aligned with chimera 3.1 suit between RsmI proteins from P. aeruginosa (red) and E. coli (blue). 
Although the alignment displays a structural shifting, the overall topology of the active site is maintained. The 
protruding residues from each protein depict the active site, harboring SAM (fluorescent green). The structure 
of E. coli has already been solved by Zhao et al. [49], without obtaining, until now, the crystal structure of 
RsmI from P. aeruginosa.

Protein Modification Strain location Reference

ArmA 16S rRNA m7G1405 China and Korea [57, 73]

RmtA 16S rRNA m7G1405 Japan and Korea [1, 58, 74, 75]

RmtB 16S rRNA m7G1405 China and India [73, 76]

RmtC 16S rRNA m7G1405 India [61, 76]

RmtD 16S rRNA m7G1405 Brazil [77, 78, 79]

RmtF 16S rRNA m7G1405 India [61, 75]

RmtG 16S rRNA m7G1405 Brazil [62]

Table 2. 
Different 16S rRNA methyltransferases associated with aminoglycoside resistance reported for P. aeruginosa, 
with classical name, for everyone with the same nucleotide (16S rRNA m7G1405) of isolates from patients who 
belong to India, Brazil, China, and Korea.
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very important for antibiotic resistance, thanks to the similarity of these enzymes 
with those homologs found in aminoglycoside-producing actinomycetes [6]. Those 
new genes and proteins will be better studied in expression and structure, to be 
related to epidemiological data. Looking at Table 2, it seems that the expression 
of methyltransferase might be related to geographical prescription. However, this 
hypothesis does not seem well founded: microbiological, molecular, and epidemiolog-
ical understanding of RNA methyltransferases in P. aeruginosa will allow the rational 
use of aminoglycosides and maybe will be not replaced for new antibiotics.

6. Final considerations

Antibiotic resistance is a serious concern for public health and environment. To 
comprehend the molecular interaction of the methyltransferase in aminoglycoside 
resistance will be a more efficient way to rationalize its use and consumption. It 
will be better to clarify the panorama of the rational use of the aminoglycosides to 
diminish the rapid development of resistance before considering its replacement, 
since P. aeruginosa is still susceptible to them, and, moreover, currently it is known 
why other Gammaproteobacteria are resistant to them. Why are methylation and 
demethylation a feedback of the antibiotic environmental pressure in bacteria? 
Bhujbalrao and Anand [64] suggest us some insights using KsgA, exploring the 
factors which govern the resistance to antibiotics. They observed within loop1 and 
loop12 of rRNA switched chimera efficiently methylated mini-RNA substrates 
in vitro, showing that these structural elements suffice for local orientation of the 
rRNA. In addition, in vivo they notice that the head domain plays a more critical 
role in leading the enzyme to the select ribosomal region and serves as a sensor of 
the global environment.

As Kim et al. [65] discuss in letter to editor (Dr. Hur), investigating with P. 
aeruginosa and aminoglycoside resistance proposes that “less aminoglycoside 
consumption correlates with less resistance levels”; therefore, we consider that is 
a requisite for an antibiotic cycling strategy at the global level; also they discussed 
the rates of amikacin or gentamicin-resistant declining trends, according to the 
data from KONSAR Korean program in 2011 either for P. aeruginosa, K. pneumoniae, 
or Acinetobacter spp. [64]. With the knowledge about aminoglycoside resistance 
molecular mechanisms comparing to the rational prescription cited in Korea, for 
example, we hypothesize that low methylation rate in the nucleotide substrate of 
RsmH or RsmI is close to the anchor point of gentamicin in 16S RNA, indicating a 
possible association with gentamicin or aminoglycosides resistance [5].

RsmG, RsmH, and RsmI methyltransferases belong to the core genome (consti-
tutive genome), while ArmA is part of the accessory genome with identical protein 
sequences among close species in Proteobacteria. Nowadays, the enzymatic activity 
has been well described; however the antibiotic resistance remains unsolved, perhaps 
as a consequence of broad usage of aminoglycoside in hospital environment, allow-
ing the development of resistant bacteria. In the future, probably the treatment of 
P. aeruginosa will take into account the genetic trait of each isolate, strain, or species 
with the set of resistance genes, and surely methyltransferases will be included 
routinely in clinical care and high throughput or genomic medicine therapies.
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