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Chapter

Impact of Active Layer
Morphology, Density of States,
Charge Carrier Concentration, and
Local Charge Density Fluctuations
on Bimolecular Recombination of
Bulk Heterojunction Solar Cells:
A Theoretical Perspective
Daniel Christiansen and Shafigh Mehraeen

Abstract

We study the merits of a reaction-diffusion model to unravel the effects of
active layer morphology and donor-acceptor interfacial roughness, density of states,
charge carrier concentration, and local charge density fluctuations on the bimolec-
ular recombination kinetics in bulk heterojunction organic semiconductors. We
consider the cases of a single and composite electronic density of states (DoS) that
consists of a superposition of a Gaussian and an exponential DoS. Using kinetic
Monte Carlo (KMC) simulations, we apply the reaction-diffusion model in order to
investigate the factors impacting bimolecular recombination (BMR) kinetics and
rates at short and long time scales. We find that morphology, donor-acceptor
interfacial roughness, and charge carrier concentration only affect BMR time,
whereas DoS characteristics as well as local charge density fluctuations can
significantly impact BMR kinetics and rates.

Keywords: organic photovoltaics, bimolecular recombination, Langevin dynamics,
bulk heterojunction, reaction-diffusion, kinetic Monte Carlo

1. Introduction

Early organic photovoltaic (OPV) devices based on bilayer architectures suf-
fered from limited interfacial area between the donor (D) and acceptor (A) com-
ponents, which resulted in low charge separation efficiency. To overcome this issue,
the bulk heterojunction (BHJ) architecture was introduced in the mid-1990s and
consists of a D/A blend. Compared to the bilayer architecture, the blend structure
provides a much larger D/A interfacial area that is distributed throughout the active
layer, facilitating exciton dissociation and thereby charge separation. Recent data
[1–5] using high-resolution temporal techniques underlie that exciton in
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high-performance devices can readily dissociate within less than 100 fs. In such
cases, exciton formation, diffusion, and dissociation are efficient. However, it is the
competition between charge migration toward the electrodes and bimolecular
charge recombination [6], which appears to play the leading role in decreasing the
performance of OPV devices. Thus, a detailed understanding of the loss mechanism
emerging from BMR is critical.

While the dominant loss mechanism is still a matter of debate [7], there is
increasing evidence [1, 8, 9] that in BHJ-based solar cells, non-geminate
(bimolecular) recombination represents the primary factor limiting device
performance [10–13]. However, establishing the most relevant physical model of
BMR remains a challenge. Previously, a number of experimental data show that,
depending on the mobility of charge carriers [14], recombination evolves from
trap-assisted first-order (monomolecular) dynamics under short-circuit current
conditions to second-order (bimolecular) Langevin dynamics under open-circuit
voltage conditions [1, 15–19]. Though, many recent studies [20–29] indicate that
BMR in organic solar cells significantly deviates from a traditional Langevin
description.

In the case of polymer-fullerene-based devices, the charge decay dynamics at
open-circuit voltage exhibit approximately a third-order dependence on charge
density [24, 25]. Thus, in order to be consistent with experimental data, the
proportionality constant of the Langevin model must depend on charge density.
This third-order dependence of the BMR rate on charge density has been suggested
to arise as a result of either a carrier lifetime dependence on charge density [30],
recombination via an exponential tail of states [31, 32], or carrier trapping in an
inhomogeneous distribution of localized states [20, 21, 26]. Also, it was suggested
that although traps can sometimes enhance the dissociation of geminate pairs into
free carriers [33], they also act as recombination centers leading to a Shockley-
Read-Hall (SRH) recombination dynamics [34–38].

While experimental efforts have been extensive, there are few theoretical
studies to date [26, 39–41] that have been conducted to understand the charge
carrier loss mechanisms in organic solar cells. As a result, the mechanisms underly-
ing BMR in OPV devices remain poorly understood. Thus, it is desirable to develop
a thorough understanding of the BMR loss mechanisms that currently limit the
enhancement of the efficiency of organic solar cells.

The purpose of the present work is to investigate how the kinetics of non-
geminate recombination is affected by (i) the detail of the morphology of the active
layer; (ii) energetic disorder and various distributions of densities of electronic
states, (iii) charge carrier density, and (iv) local charge density fluctuations. Utiliz-
ing KMC simulations, we develop a reaction-diffusion model to explain the role that
abovementioned factors play in BMR of BHJ OPV solar cells.

2. Theoretical model

To study the impact of interfacial roughness, DoS, and charge carrier density on
BMR in a BHJ device at open-circuit voltage, we develop a theoretical three-
dimensional reaction-diffusion lattice model. In this model, we only look at
electron-hole recombination after exciton dissociation.

We represent electrons and holes as particles and antiparticles that can randomly
diffuse through the space, restricted to a cubic lattice, and react (recombine) once
they collide (occupy same lattice site). In our model, we restrict holes and electrons
to move exclusively within the D/A domains of a randomly generated morphology,
which are discussed next in this section. Based on the reaction-diffusion model,
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we perform KMC simulations on a cubic lattice of 100� 100� 100 sites with lattice
spacing equivalent to 1 nm, unless otherwise mentioned. We ignore additional
charge generation or charge extraction processes at the electrodes. Since we are
mainly interested in BMR kinetics at low charge carrier concentrations, we also
neglect the effect of electrostatic interactions.

To evaluate the kinetics of BMR at the device scale, unless otherwise mentioned,
we apply a reflective boundary condition on all sides such that charge carriers
cannot exit from the simulation box until they entirely recombine. We perform
KMC simulations on disordered morphologies. In creating bulk heterojunction OPV
using solution processing, a disordered morphology, also called random morpho-
logy, is formed. This randommorphology is comprised of two organic semiconductors,
intermixed randomly within the active (light-absorbing) layer. We computationally
generate the random morphologies utilizing the potential model [42–45] in which
random morphologies of D/A domains in space are represented by means of a
random potential ψ x; y; zð Þ. ψ is a random scalar function represented as a sum of
several propagating plane waves in random directions given by

ψ x; y; zð Þ ¼ ∑
M

i¼1
sin

2π

λ
ki1xþ ki2yþ ki3z½ � þ θi

� �

, (1)

where ki1 ¼ cos αið Þ sin φið Þ, ki2 ¼ sin αið Þ sin φið Þ, ki3 ¼ cos φið Þ, M ¼ 25, αi and
θi are uniformly distributed random numbers between 0; 2π½ �, and φi is another
uniformly distributed random number between 0; π½ �. λ in Eq. (1) is directly pro-
portional to the average size of D and A domains. ψ , whose value fluctuates between
–M andM, randomly splits the space into D domains wherever ψ ≥0 and A domains
wherever ψ <0. In this way, ψ allows the representation of a random morphology
within the simulation box.

The diffusion and recombination of charge carriers are simulated using the KMC
technique where the charge carrier transfer rate νij from any site i to one of the six
nearest neighboring sites, j, is described by the Miller-Abrahams model [46]:

νij ¼ ν0 exp �2γ rij
� �

exp �β ΔEij þ ΔEij

�

�

�

�

� �

=2
� �

, (2)

where rij
!¼ rj

! �ri
!
, rij ¼ r

!
ij

�

�

�

�

�

�, and ri
!
are the position vectors of site i, in our

simulations rij ¼ a ¼ 1 nm represents the lattice site spacing, ν0 ¼ 7 � 1012 s�1

denotes the intrinsic attempt frequency, γ ¼ 3� 107 cm�1 indicates the inverse of

localization radius, β ¼ kBTð Þ�1 is the Boltzmann constant, and ΔEij ¼ Ej � Ei is the
energy level difference between adjacent sites i and j.

We make use of the first reaction method [47, 48] in the KMC simulations. At
each step of the KMC simulations, we compute the hopping rates of all possible
hops of all charge carriers and make a hopping list. The next hop is randomly
selected from the hopping list. We find the hopping time, τk, for the kth step in the
KMC simulation from

τk ¼
�ln Xð Þ

∑N
i, j, i 6¼jνijLi

, (3)

whereN represents the total number of sites, Li is equal to unity if site i is occupied
by a charge carrier and zero otherwise, and X is a random number uniformly distrib-
uted between 0 and 1 (note that the νij values are the rates of possible hops updated at
each time step). We run each simulation until all charge carriers recombine.
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To study the effect of DoS on the kinetics of BMR, we consider the diffusion of
electrons and holes in energetically disordered systems, where we separately
describe the energetic spectrum of the system by (i) a Gaussian distribution of
states, centered at E ¼ 0, with a total DoS concentration NG and a distribution
width δG:

ρG Eð Þ ¼ NG
ffiffiffiffiffiffiffiffiffiffi

2πδ2G

q exp
�E2

2δ2G

� �

, (4)

and (ii) an exponential distribution of states:

ρE Eð Þ ¼ NE

δE
exp

E

δE

� �

, E≤0, (5)

where the DoS concentration and distribution width are given by NE and δE,
respectively. We also study the BMR kinetics in the presence of a composite DoS for
which we superpose a Gaussian and an exponential distribution. To generate an
energetic disorder in the KMC simulations, a random Gaussian or exponentially
distributed value taken from Eq. (4) or (5), respectively, is assigned to each lattice site
in the beginning of each simulation. We start each simulation with a random distri-
bution of equal numbers of electrons and holes, whose initial densities are given by
ρ0, within the A and D domains. We allow single occupancy on each lattice site only.

3. Results and discussions

It has been shown experimentally that morphology of the active layer is indeed
one of the primary factors affecting bimolecular recombination and so the device
efficiency [49–51]. To demonstrate the role of morphology in BMR kinetics, we
apply our reaction-diffusion model to four different morphologies. Random mor-
phologies are obtained using the potential model according to Eq. (1). These mor-
phologies are depicted in Figure 1A–D where hollow and red regions represent D
and A domains, respectively. Figure 1A and B represents a bilayer solar cell with
flat and rough interfaces, correspondingly. The structures in Figure 1C and D are
representative of BHJs with large and small domain sizes of D and A, generated
using Eq. (1) with λ =100 nm and 20 nm (with domains of size 50 and 10 nm),
respectively. Figure 1E illustrates an initial distribution of 600 electrons and holes
illustrated by red and blue dots, respectively, in the simulation box of
100 � 100 � 100 lattice sites representing a charge density of 6 � 1017 cm�3 in a
BHJ device. In Figure 1E the domain size of D and A is smaller than the lattice size
(1 nm); thus, for this structure, charge carriers are allowed to occupy any lattice
sites during diffusion.

Figure 1F compares the KMC simulation results (solid lines) with analytical
results (color dashed lines) for the decay of the charge density, ρ, with time, t, using
morphologies in Figure 1A–E. Details of the analytical form of charge carrier
density decay are given in Appendix B. In these simulations, we assume an
isoenergetic energy spectrum, where DoS is theoretically a delta function peaked at
E = 0, to consider solely the effect of morphology and the interfacial roughness on
BMR kinetics. According to Figure 1F, density decay is only delayed as the D/A
interfacial area increases from Figure 1A–E. The quantities of interest are the
impact of morphology and interfacial roughness on BMR exponent, α, which is
defined by
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ρ tð Þ � t�α, as t ! ∞, (6)

and charge carrier lifetime. Figure 1F suggests that any variation in D/A inter-
facial area via morphological change does not influence BMR exponent. This is
clearly seen from the charge density decay curves in Figure 1F at long time,
exhibiting Langevin dynamics (ρ � t�1) regardless of the morphology.

Details of how to obtain charge carrier lifetime from density decay are given in
Appendix B (Eq. (B7)). As shown in Figure 1F, the time it takes to reach a certain
density decreases from morphology 1A–E, suggesting that charge carrier lifetime
decreases with the D/A interfacial area from Figure 1A–E. Time shifts in the density
decay illustrated in Figure 1F indicate that each sequential increase in the D/A
interfacial area from the morphology in Figure 1A–E, which corresponds to a
decrease in D and A average domain sizes, enhances the charge carrier lifetime.

Figure 2 illustrates the effect of morphology shown in Figure 1A–E on charge
carrier lifetime, τ (see Appendix B for details). Figure 2A illustrates that morphol-
ogy only affects charge carrier lifetime at short time, whereas at long time, charge
carrier lifetime linearly increases with time, independent of the morphology. This
long-time behavior demonstrates the charge carrier diffusion-limited recombina-
tion, which does not depend on the morphology. Figure 2B demonstrates that for a
fixed charge carrier density, charge carrier lifetime always decreases with D/A
interfacial area. This decrease can be as large as two orders of magnitude between
morphologies in Figure 1A and E. Figure 2B also shows that in isoenergetic DoS,

charge carrier lifetime decreases with carrier density, proportional to ρ�1=α, inde-
pendent of the morphology.

We now look at how BMR rate is affected by morphology and D/A interfacial
area. Utilizing the analytical form (see Appendix B) which approximates KMC
simulation results for charge density decay shown in Figure 1F, we find that BMR
rate at short time is intimately correlated with the D/A domain size. As shown in

Figure 1.
Regardless of morphology, in a bilayer with (A) flat interface and (B) rough interface, a BHJ with (C) coarse
and (D) fine donor (hollow regions)-acceptor (red regions) network, and a BHJ with D/A cluster size of less
than 1 nm (E) long-time behavior of charge carriers during BMR follows Langevin dynamics (ρ � t�1), i.e.,
variation in D/A interfacial area does not change BMR exponent. Solid lines are from KMC simulations, and
color dashed lines are analytical form (F).
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Figure 3A, at short time, BMR rate is inversely proportional to the D/A interfacial
area and domain size, i.e., BMR rate is the highest for morphology in Figure 1E and
the lowest for the morphology in Figure 1A. However, at long time, BMR rate
becomes proportional to the D/A interfacial area and domain size, meaning that
BMR rate is the highest for morphology in Figure 1A and the lowest for the
morphology in Figure 1E. Results shown in Figure 3A suggest that BMR rate at long
time in Figure 1A can be two orders of magnitude larger than that in Figure 1E.
Such a difference in BMR rate will be explained in the following paragraphs.

Initially, due to very close proximity of counter charge carriers at short time
when charge carrier density is high, BMR rate is large for morphologies with small
domain size. However, at longer time, when charge carrier density decreases, mor-
phologies with small domain size restrict the motion of charge carriers (holes within
D and electrons within A domains) more than those with large domain size. This
restriction lowers BMR rate in morphologies with smaller domain size, and so
diffusion-limited recombination will be the dominant effect at low charge carrier
density.

The abovementioned BMR kinetics is only observed when we look at the effect
of BMR on BMR rate in time. However, if we express BMR rate in terms of charge
carrier density, as shown in Figure 3B, for a given carrier density, morphologies
with small domain size (large D/A interfacial area shown in Figure 1E) always
exhibit larger BMR rate than those with large domain size (small D/A interfacial

Figure 2.
Variation of charge carrier lifetime with (A) time and (B) charge carrier density for different morphologies
shown in Figure 1A–E.

Figure 3.
Variation of BMR rate with (A) time and (B) charge carrier density for different morphologies shown in
Figuere 1A–E.

6

Solar Cells



area depicted in Figure 1A). This trend in BMR rate is consistently observed
regardless of charge carrier density shown in Figure 3B.

To justify that variation in morphology and D/A interfacial area of an organic
solar cell does not affect BMR rate at long time, we look at charge density decay
using the morphologies in Figure 1A–E but now in the presence of two different
DoS, Gaussian and exponential distributions. Figure 4 compares KMC simulation
results of charge density decay due to BMR in the presence of DoS with energies of
all lattice sites taken from a Gaussian distribution with δG ¼ 3 kBT (Figure 4A) and
an exponential distribution with δE ¼ 3 kBT (Figure 4B). From KMC simulation
results in Figure 4, we observe that for a given DoS distribution and different
morphologies, charge density decay curves stay parallel at long time. Our observa-
tion suggests that morphology impacts the delay in BMR kinetics by shifting the
density decay curves in time as the D/A interfacial area increases, whereas DoS
affects the BMR rate (ρ0

�1dρ tð Þ=dt) and BMR exponent in particular.
Figure 5 compares the effect of DoS distribution at low DoS concentration on

the charge carrier density decay during BMR. Figure 5A and B illustrates charge

density decay in the presence of Gaussian DoS distribution with NG ¼ 1019 cm�3

and exponential distribution with NE ¼ 1019 cm, respectively. For these simula-

Figure 4.
Impact of DoS, with (A) Gaussian distribution using NG ¼ 1021 cm�3 and δG ¼ 3 kBT and (B) exponential
distribution using NE ¼ 1021 cm�3 and δE ¼ 3 kBT, on BMR kinetics. Different morphologies in Figure 1A–E,
corresponding to red to blue, only shift the density decay in time, whereas DoS impacts the BMR exponent and thus
rate at long time.

Figure 5.
KMC simulations of density decay due to BMR in 1% DoS (NG ¼ NE ¼ 1019 cm�3) in an otherwise
isoenergetic spectrum with a random morphology generated by potential model (λ ¼ 10 nm, see inset in panel
A) using (A) Gaussian and (B) exponential DoS. For Gaussian DoS, the results manifest a constant BMR
exponent (�1) and thus decay rate at long time regardless of distribution width. However, exponential DoS
exhibits BMR exponent (varying from�1 to�0.25) and decay rates depending on the width of the distribution.
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tions, 1% of lattice site energies are taken from Gaussian or exponential distribu-
tions with different distribution widths ranging from 1 kBT to 4 kBT. The energies
for the rest of lattice sites are set to E ¼ 0 (isoenergetic spectrum). Our KMC
simulation results of BMR illustrated in Figure 5A in the presence of Gaussian
DoS demonstrate that increasing the distribution width, from δG ¼ 1 kBT to 4 kBT,
only delays BMR, while it does not affect BMR exponent. These results suggest
that the behavior of charge carriers at long time within a Gaussian DoS follows
Langevin dynamics, ρ � t�1, as shown by long-time asymptotes in dashed lines.

In contrast to Gaussian DoS, 1% exponential DoS (low concentration) in an
otherwise isoenergetic spectrum not only delays BMR but also decreases BMR
exponent. This is clearly demonstrated in Figure 5B, where KMC simulation results

(solid lines) agree with the theoretical long-time asymptotic predictions, ρ � t� T=T0ð Þ

[52, 53], T0 ¼ δE=kB, illustrated by dashed lines for the same range of distribution

width, δE, and DoS concentration, NE ¼ 1019 cm�3. Comparing Figure 5A and B
suggests that BMR kinetics is highly influenced by exponential DoS compared to
Gaussian DoS. Specifically, 3 kBT variation in distribution width slows BMR by 10
orders of magnitude to reduce carrier density to 0.001 of initial carrier concentra-
tion if exponential DoS is present (compare abscissa in Figure 5B for δE ¼ 1 kBT and
4 kBT). This is comparable to the Gaussian DoS in which BMR is only slowed to
about two orders of magnitude by the same variation in the distribution width
(compare abscissa in Figure 5A for δG ¼ 1 kBT and 4 kBT). It is noteworthy that
results in Figure 5 are rendered when DoS concentration is low. Next, we will
consider cases where DoS concentration is high.

Looking at high DoS concentrations (100% of energies of lattice sites taken
from a DoS distribution) shown in Figure 6 reveals that Gaussian DoS

(NG ¼ 1021 cm�3) does not change BMR exponent, leading to Langevin behavior
of charge carriers at long time (ρ � t�1). However, when exponential DoS with

high concentration (NE ¼ 1021 cm�3) is employed, BMR exponent, BMR rate, and
the long-time kinetics of charge carriers during BMR are highly influenced by
the width of the distribution. Particularly, there is a significant change in the
BMR exponent and thus the rate for δE>1 kBT as shown in Figure 6B. Comparing
Figures 5 and 6 suggest that DoS concentration only delays the BMR, whereas
DoS distribution (Gaussian or exponential) affects the BMR exponent and rate at
long time.

To further study the effect of DoS concentration on the BMR kinetics, we now
look at different DoS concentrations for two cases: a Gaussian and an exponential

Figure 6.
KMC simulation results (solid lines) of density decay of charge carriers in a BHJ with a random morphology
generated by potential model (see Figure 5A inset) using (A) Gaussian and (B) exponential DoS with high
concentration (NG ¼ NE ¼ 1021 cm�3) and different distribution widths varying from 1 kBT to 4 kBT.
Dashed lines indicate asymptotes at long time.
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DoS distribution with fixed distribution width δG ¼ δE ¼ 3 kBT. Figure 7 compares
the impact of DoS concentration on BMR kinetics. For a Gaussian DoS, increasing

the DoS concentration, NG, from 0:1� 1020 to 9� 1020 cm�3 only delays BMR
(shift the density decay curve in time) without any impact on the BMR exponent
and rate as shown in Figure 7A. A similar trend is observed when an exponential
DoS is utilized as shown in Figure 7B. Note that in our KMC simulations, BMR
exponent, which is constant as shown in Figure 7A and B, at long time only
depends on the width of the DoS distribution for exponential DoS but is indepen-
dent of the width for Gaussian DoS. The BMR exponent and thus the rate can be
readily obtained from asymptotic dashed lines shown in Figure 7A and B. These
results indicate that DoS concentration only delays BMR and does not affect BMR
exponent and rate at long time.

We now turn to the effect of initial charge carrier density on the kinetics of
BMR. Figure 8 illustrates the KMC simulation results of charge density decay due
to BMR for different initial charge carrier concentrations, ranging from

ρ0 ¼ 1017 cm�3 to 27 � 1017 cm�3, from red to blue, respectively, for isoenergetic
DoS with E ¼ 0 (Figure 8A), Gaussian DoS (Figure 8B), and exponential DoS

(Figure 8C) with DoS concentration of 1021 cm�3 with 3kBT distribution width.
Results in Figure 8 reveal that charge carrier density at long-time approaches a
unique asymptote regardless of the initial charge concentration. We observe that
the only influence of initial charge carrier concentration is to delay the transition
time at which BMR exponent and rate transition from nearly zero at very
short time to the asymptotic value at long time. We find that this shift strongly
correlates with the DoS distribution, which is larger in exponential (Figure 8C)
than Gaussian (Figure 8B) DoS. Overall, the results illustrated in Figure 8 suggest
that initial charge carrier density does not affect BMR exponent and rate. It also
does not render a delay in BMR, as all charge density decay curves with different
initial charge densities merge at long time.

Thus far, we have looked at the kinetics of BMR in a BHJ device in the presence
of single DoS distribution. In reality, however, DoS distributions may better be
explained by a composite DoS, representing two distributions for band
(conducting) and band-tail (trap) states. To account for the effect of a composite
DoS, we now consider a DoS consisting of Gaussian band states and exponential
band-tail states, illustrated in Figure 9.

Figure 7.
KMC simulations of charge density decay (solid lines) due to BMR for different DoS concentrations with
(A) Gaussian DoS, NG ¼ 0:1� 1020, 1� 1020, 3� 1020, and 9� 1020 cm�3 and (B) exponential DoS,
NE ¼ 0:1� 1018, 1� 1018, 3� 1018, and 9� 1018 cm�3, in an otherwise isoenergetic spectrum. Dashed lines
illustrate long-time asymptotes to the density curves.
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KMC simulation results for BMR and charge density decay in the presence of a
composite DoS shown in Figure 9 are presented in Figure 10. Figure 10A illustrates
the density decay (solid lines) during BMR using Gaussian band states with DoS

concentration of NG ¼ 0:99� 1021 cm�3, for different distribution width of δG ¼ 1,
2, 3, and 4 kBT, corresponding to red to blue, respectively, and exponential

band-tail states with DoS concentration of NE ¼ 0:01� 1021 cm�3 and distribution
width of δE ¼ 3kBT. Results in Figure 10 demonstrate that as the Gaussian distri-
bution of band states broadens, BMR kinetics is delayed, exhibiting the dominance
of Langevin dynamics (ρ � t�1) at intermediate time with BMR exponent of 1.
However, the long-time BMR exponent is always governed by the width of band-tail
state distribution (ρ � t�033), which is 0.33, depicted by dashed line in Figure 10A.

The dependence of long-time BMR density decay on the band-tail state distribu-
tion width can be further justified by Figure 10B, depicting the impact of

Figure 8.
KMC simulation results of charge carrier density decay (solid lines) during BMR for different initial charge
carrier densities ranging from ρ0 ¼ 1017 to 27� 1017 cm�3 with (A) isoenergetic DoS, (B) a Gaussian DoS
with concentration NG ¼ 1021 cm�3, and (C) an exponential DoS with concentration NE ¼ 1021 cm�3 and
fixed 3kBT distribution width. Dashed lines are the long-time asymptotes. These results indicate that initial
charge carrier concentration neither changes BMR exponent or rate nor delays BMR.
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exponential band-tail state distribution width on the BMR density decay. The width
of distribution ranges from δE ¼ 1 to 4 kBT, and its DoS concentration is the same as
that utilized in Figure 10A. Results in Figure 10B suggest that BMR decay rate is
directly correlated with the width of band-tail state distribution. As the band-tail
state distribution broadens (the band-tail state distribution width increases), BMR
exponent and rate decrease. In this case, the charge density decay approaches that

of analytical form for exponential DoS shown by dashed lines (ρ � t� T0=Tð Þ,
T0 ¼ δE=kB). Elevating the DoS concentration of band-tail state distribution
(increasing DoS concentration of exponential distribution in the composite DoS

shown in Figure 9), from NE ¼ 0:05� 1019 to 4� 1019 cm�3, with the total DoS

concentration being constant, NG þNE ¼ 1021 cm�3, only delays the BMR (shifts
charge density decay in time) without changing long-time BMR rate as shown in
Figure 10C.

Overall, Figure 10 indicates that (i) Gaussian band states only widen the inter-
mediate time window at which charge carrier behavior can be described by
Langevin dynamics (ρ � t�1), (ii) long-time behavior of charge carriers is governed
by the distribution of band-tail states, and (iii) the ratio of band to band-tail state
DoS concentrations only induces a time delay to the instant at which initial BMR
regime with small BMR rate transitions to the long-time BMR regime with large
BMR rate. Charge carriers’ behavior during this transition state is governed by band
state DoS distribution.

Thus far, our theoretical treatment provides a detailed prediction of the physical
behavior underlying BMR in bilayer and BHJ solar cells. Specifically, our theoretical
model predicts the effect of morphology, DOS, trap (i.e., band-tail states) concen-
tration on the BMR, and its rate in such devices. We now demonstrate that our
theoretical model reproduces experimental data [25] taken from 170 nm thick 1:1
blend film of P3HT and PCBM at various light-pulse intensities at open-circuit
voltage. Using the potential model in Eq. (1) with λ ¼ 50 nm, we generate random
morphologies reminiscent of BHJs, as shown in the inset of Figure 11. To simulate
various light-pulse intensities as shown in Figure 11, from top to bottom
corresponding to 60, 24, 6, and 3.6 μ J cm�2, respectively, we perform simulations
with various initial charge densities. We utilize our theoretical model with initial

charge densities of n ¼ 6:3� 1017, 4� 1017, 1:3� 1017, and 0:58� 1017 cm�3,
respectively. To match the experimental data, we apply the model to an energeti-
cally disordered D/A network with Gaussian δG ¼ 2kBTð Þ and exponential
δE ¼ 2:2kBTð Þ DOS for band and band-tail states, respectively. We set the density of

Figure 9.
Energetic disorder described by superimposing two distributions, a Gaussian DoS (black), ρG Eð Þ, centered at
E ¼ 0, and an exponential DoS (blue), ρE Eð Þ, positioned below E ¼ 0.
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“conducting” (band) and “trapping” (band-tail) states,NG andNE to 0:97 � 1021 cm�3

and 2:6� 1019 cm�3, respectively.
Figure 11 demonstrates that simulation results (solid lines) for decay of charge

density, ρ, at open-circuit voltage are in reasonably good agreement with experi-
mental data [25] (black dots) taken at various light-pulse intensities. The question
that arises is whether the superposition of two DOS distributions for band and
band-tail states is necessary to reproduce experimental data shown in Figure 11. We
attempted to fit experimental data using only exponential distribution for band-tail

states with parameters ν0 ¼ 5:9� 1011 s–1, NE ¼ 2:3� 1019 cm�3, and δE ¼ 2:2kBT.
Our simulation results (not shown) suggest that using only exponentially

Figure 10.
KMC simulation results of density decay due to BMR for a composite DoS shown in Figure 9, with (A)
different δG varying from 1 kBT to 4kBT, δE ¼ 3kBT, NG ¼ 0:99� 1021 cm�3, NE ¼ 0:01� 1021 cm�3; (B)
different δE varying from 1 kBT to 4kBT, δG ¼ 2kBT, with the same DoS concentration described in
Figure 10A; and (C) band-tail state DoS concentration varying from NE ¼ 0:05� 1019 to 4� 1019 cm�3,
subject to NG þNE ¼ 1021 cm�3, δG ¼ 2kBT, and δE ¼ 3kBT.

12

Solar Cells



distributed band-tail states requires initial charge concentration n ¼ 1018, 6� 1017,

1:4� 1017, and 0:65� 1017 cm�3, from high to low light intensities, respectively,
which seems to be systematically higher than those with two DOS distributions. For
instance, given the simulation results, we suspect that charge concentration at the

highest light-pulse intensity, 1018 cm�3, is beyond the physical values; thus, making
it difficult to justify that only exponential distribution for band-tail states without
the need for band states is enough.

Altogether, our results, illustrating the impact of DoS on BMR exponent and
rate, demonstrate that for narrow exponential distribution of DoS (δE ≤ kBT),
charges move diffusively; therefore, recombination exhibits a Langevin-type
dynamics. As distribution becomes broader, electrons and holes transition
from a diffusive to sub-diffusive motion, leading to a sub-diffusion-limited
reaction process.

Sub-diffusive motion of polarons comes from anomalous diffusion in disordered
media. This is due to long waiting times occurring during diffusion through traps.
There are physical mechanisms of sub-diffusion including random walks in
dynamically disordered medium. Essentially, sub-diffusive motions and thus sub-
diffusive limited reactions (electron-hole collision) arise when the waiting time
between hops follows a power-law distribution with finite variance at long time
[54–57]. This is true provided that reactants are distributed homogenously
throughout the medium. Given this condition, utilizing thermally activated or
Miller-Abrahams hopping mechanisms, one will find (see Appendix A) that
reacting random walkers, such as electrons and holes, in quench disordered expo-
nentially distributed DoS sampled from a power-law hopping time distribution,
exhibit a sub-diffusive motion. Consequently, if electrons and holes move sub-
diffusively in a medium and are allowed to recombine, they manifest a
sub-diffusive limited reaction. This is reminiscent to what is observed in transient
absorption spectroscopy and transient photovoltage experimental data [25] taken
from P3HT/PCBM BHJ device.

Another mechanism by which sub-diffusive limited reactions can occur is where
reactants are inhomogenously dispersed; thus there will be local relative density
fluctuations (density difference) in the medium. The role of local relative density
fluctuations on the charge density decay can be better understood by invoking of
binary reactions with two species. In Langevin dynamics, the relative density is zero
due to the uniform density assumption. However, because of initial fluctuations in
the relative density of the reactants, experimental observations [58–61], theoretical

Figure 11.
Comparison of charge density decay with time from experimental data (black dots) at open-circuit voltage and
various light-pulse intensities and from simulation results (solid lines) at various initial charge densities
utilizing Gaussian band states and exponential band-tail states.
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predictions, numerical simulations [62–68] of reaction-diffusion of two species
with periodic boundary conditions in one and two dimensions [63, 69], and
reflective boundary conditions in three dimensions [65] demonstrate deviation
from Langevin dynamics. These relative density fluctuations lead to the density
decay of species with a power law given by Ref. [69]

ρ � t�
df
2dw , (7)

where df is the fractal dimension of the medium and dw is the fractal dimension
of the random walk. Here, it is assumed that charges diffuse in the medium similar
to a random walk.

Similar to binary reactions, in random distribution of electrons and holes in
BHJs, the uniform charge density assumption may not be valid, especially in a D/A
network, where initial charge separation is indicative of non-zero local relative
density fluctuations. To find the extent of influence of relative density fluctuations
in BHJs on BMR, we perform KMC simulations. We employ our theoretical model
in a cubic cell of size 200� 200� 200 with morphology given in Figure 1D. Our
simulation results (solid lines) shown in Figure 12 indicate deviation from Langevin

dynamics at charge concentration greater than 4� 1018 cm�3. Transition to
Langevin-type behavior occurs at about 10�6 s at which point the density starts to
decay as t�1. Such deviation is not observed for lower initial charge densities. We
also find that our observation is consistent with previous calculations for binary
reactions [64].

4. Conclusions

Developing a reaction-diffusion model, we have studied the effect of morphol-
ogy, DoS, charge carrier density, and local charge density fluctuations on BMR
kinetics in OPV cells at short and long time scales. We have looked at single as well
as composite DoS that consists of a superposition of Gaussian and exponential
distributions. In all of our KMC simulations, we always find two regimes during
BMR: a slow charge density decay (small BMR rate) followed by a fast electron-hole

Figure 12.
KMC simulation results (solid lines) illustrating the effect of local relative density fluctuation on the
dynamics of bimolecular recombination applied to BHJ morphology shown in Figure 1D. At high density
(≥ 4� 1018 cm�3), deviation from Langevin dynamics is apparent with charge density decay �t�3/4. Effect of
local relative density fluctuations is not present in low initial densities ( < 4� 1018 cm�3).
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annihilation (large BMR rate). Our KMC simulation results obtained from bilayer as
well as BHJs with random morphology indicate that D/A interfacial roughness and
morphology in organic solar cells only affect the total BMR time and do not influ-
ence BMR exponent and rate at short or long time scales. Our simulation results also
illustrate that charge carrier concentrations in BHJ devices neither change BMR rate
nor time. It only shifts the time at which transition from slow to fast BMR occurs.

Furthermore, we find that the effect of morphology, interfacial roughness, and
charge carrier density is in contrast to the effect of DoS, whose characteristics can
completely modify BMR kinetics and rate. We find that kinetics of charge carriers
due to BMR in a Gaussian DoS can be explained by Langevin dynamics, demon-
strating a density decay inversely proportional to time. However, dynamics of
charge carriers in the presence of exponential DoS deviates from Langevin dynam-
ics, illustrating a slower dynamics for distribution width higher than the thermal
energy. Particularly, our KMC simulations show that the BMR rate at long time is
controlled by the width of DoS distribution and that the DoS concentration changes
BMR time without changing the BMR rates at short or long time. Extending our
findings from single to composite DoS indicates that the BMR rate is controlled by
the characteristics of trap state distribution and that the ratio of band to tail state
concentration dictates the BMR time, specifically the transition time from slow to
fast BMR regime.

We also demonstrate that decrease in recombination rate can be due to local
fluctuation in the electron and hole density difference and sub-diffusive motion of
polarons. Sub-diffusivity arises from a power-law distribution of jump time.
Utilizing Miller-Abrahams charge transfer relation, we find that such power-law
distribution is present in the hopping mechanism provided by our theoretical
model. The power-law distribution necessitates an exponentially distributed
dynamically disordered system, to which Miller-Abrahams or thermally activated
hopping is applied. We also find that existence of a quenched material is not
necessary for a sub-diffusive motion of charges. Altogether, we find a very rich
predicted behavior on which bimolecular loss mechanisms can depend.

Future work will address the effect of positional disorder and its coupling effect
with energetic disorder on charge transfer rate and transport properties of OPV
cells using hopping mechanisms and lattice model.
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Appendix A. Bimolecular recombination kinetics at long-time limit

The long-time behavior of charge carriers in bulk heterojunction OPVs is
approximated by the behavior of reacting continuous time random walk (CTRW)
in Euclidean medium, representing a sequence of jump-trap-release events. For
reacting CTRW, ρ tð Þ � R tð Þ, where ρ tð Þ and R tð Þ are the carrier density and survival
probability at time t, respectively. It turns out that for a reacting CTRW,
R tð Þ � 1=S tð Þ for three dimensions [70], where S tð Þ is the number of distinct sites
visited by a CTRW. S tð Þ can be visualized as the volume that a carrier sweeps during
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diffusion. One may also note that in regular lattices, S tð Þ � r
!2 tð Þ

D E

[67], where

r
!2 tð Þ

D E

is the mean square displacement (MSD) of CTRW at time t. From the

above argument, one concludes that

ρ tð Þ � 1

r
!2 tð Þ

D E : (A1)

Without loss of generality, in the one-dimensional analogue of CTRW model,
we describe the transport in terms of succession of jumps of length x, which is
drawn from a probability distribution function (PDF), λ xð Þ, followed by a
trapping event at the same position x for time interval t drawn from the PDF, w xð Þ.
In this model, the probability that a carrier is found at position x in space at time
t is given by propagator W x; tð Þ, whose Fourier-Laplace transform obeys the
relation [54]

W k; uð Þ ¼ 1�w uð Þ
u

W0 kð Þ
1�w uð Þλ kð Þ , (A2)

where k and u represent Fourier and Laplace variables, respectively, W0 kð Þ
indicates the Fourier transform of the initial conditionW0 xð Þ, and w uð Þ and λ kð Þ are
the Laplace and Fourier transform of w tð Þ and λ xð Þ, respectively.

In our KMC simulations, jump length is equal to the lattice spacing; thus for
small k values.

λ xð Þ ¼ δ x� að Þ and λ kð Þ ¼ exp �ikað Þ ¼ 1� a2k2 þO k4
� �

, (A3)

where δ xð Þ is the delta function. Note that in our reaction-diffusion model,
waiting time PDF is governed by the DoS distribution. Here, we consider Gaussian,
uniform, and exponential DoS as follows.

Gaussian DoS. Using Eq. (4), a thermally activated process [53] with hopping
frequency from a site with energy E to any other site is expressed by

ν ¼ ν0 exp
E

kBT

� �

, E≤0, (A4)

where ν0 is the intrinsic attempt frequency. Since the jump time, τ, is inversely
proportional to the hopping frequency; thus,

τ ¼ 1

ν0
exp � E

kBT

� �

(A5)

The randomness in jump time comes from the randomness in energies sampled
from DoS distribution. Thus, finding E from Eq. (A5) and its derivative with respect
to τ, one arrives at the PDF of the jump time

w τð Þdτ ¼ �ρG Eð ÞdE (A6)

with a finite mean jump time τ equal to
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τ ¼
ð

∞

0

τw τð Þdτ ¼
ð

0

�∞

ρG Eð ÞτdE

¼ 1
ffiffiffiffiffi

2π
p

δGν0

ð

0

�∞

exp
�E2

2δ2G
� E

kBT

� �

dE

¼ 1
ffiffiffiffiffi

2π
p

δGν0
exp

2δ2G
kBTð Þ2

" #

ð

0

�∞

exp � E
ffiffiffi

2
p

δG
þ

ffiffiffi

2
p

δG

kBT

� �2
" #

dE

¼ 1

2ν0
1þ erf

ffiffiffi

2
p

δG

kBT

� �
 �

:

(A7)

where w tð Þ ¼ γ exp �γ2 log ν0τð Þ½ �2=2
n o

=
ffiffiffiffiffi

2π
p

τ
� �

and γ ¼ kBT=δG. For any DoS

with finite mean jump time, using Taylor series for small u, one can write

w uð Þ ¼ 1� uτ þ O τ2
� �

(A8)

With initial condition W0 xð Þ ¼ δ xð Þ, Eqs. (A2), (A3), (A7), and (A8) imply

W k; uð Þ ¼ 1

uþDk2
(A9)

where D ¼ a2=τ is the diffusion constant. Taking the inverse Fourier-Laplace
transform from Eq. (A9), we arrive at the diffusion equation

∂W x; tð Þ
∂t

¼ D
∂
2W x; tð Þ
∂x2

(A10)

with initial condition W x;0ð Þ ¼ W0 xð Þ. Solution to Eq. (A10) is the well-known
Gaussian propagator

W x; tð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p exp � x2

4Dt

� �

(A11)

Note that the long-time form of the propagator was considered through the
assumption of k being very small. Recall that for a Gaussian propagator, MSD is
given by

r
!2 tð Þ

D E

� t: (A12)

Using Eqs. (A1) and (A12), one finds that for a Gaussian DoS in a thermally
activated process, charge carrier density decays as

ρ tð Þ � t�1, (A13)

which is indicative of Langevin dynamics. This relation holds true for any DoS
distribution, whose jump time distribution has a finite mean value.

Uniform DoS. Plugging the uniform distribution
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ρU Eð Þ ¼ NU

δU
, � EU ≤E≤0, (A14)

into Eq. (A7) renders

τ ¼ 1

EUν0

ð

0

�EU

exp � E

kBT

� �

dE ¼ kBT

EUν0
exp

NU

kBT

� �

� 1


 �

, (A15)

where w tð Þ ¼ kBT EUtð Þ�1. Note that τ is a finite value. Thus, following the same
procedure performed for Gaussian DoS, we conclude that ρ tð Þ � t�1.

Exponential DoS. For an exponential DoS given in Eq. (5), one can rewrite
Eq. (A7)

τ ¼ αν0

ð

∞

ν�1
0

ν0τð Þ�α dτ (A16)

to yield w tð Þ ¼ αν0 ν0tð Þ� αþ1ð Þ, where α ¼ kBT=δE and 0 < α < 1. Note that τ
diverges which is indicative of a dispersive process. The Laplace transform of w tð Þ
for small u is [71]

w uð Þ≈ 1� u

ν0

� �α

þ O uð Þ: (A17)

Substitution of Eqs. (A3) and (A17) into Eq. (A2) leads to the propagator

W k; uð Þ ¼ 1

u 1þDαu�αk2
� � (A18)

where Dα ¼ a2=να0. From Eq. (A18), MSD is found by inverse Laplace transform

of x2 uð Þ
� 


¼ limk!0 �d2W k; uð Þ=dk2
� �

, which leads to

x2 tð Þ
� 


¼ 2Dα

Γ αþ 1ð Þ t
α, (A19)

where the condition of u being small has been applied. Eq. (A19) can be gener-

alized to three dimensions, illustrating that r
!2 tð Þ

D E

� tα. Using this relation and

Eq. (A1), we conclude that ρ tð Þ � t�α.

Appendix B. Charge carrier lifetime in bimolecular recombination

Assuming the general form for non-Langevin dynamics in BMR, we express the
time variation of charge carrier density by

dρ tð Þ
dt

¼ �β tð Þρ tð Þ2 (B1)
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where ρ tð Þ is the charge carrier density and β tð Þ is the time-dependent
rate coefficient [72]. Considering boundary condition ρ ¼ ρ0 at t ¼ 0, one
finds that

ρ tð Þ
ρ0

¼ 1þ ρ0

ð

t

0

β tð Þdt

2

4

3

5

�1

: (B2)

The choice of β tð Þ is semiempirical. Note that the charge density decay follows a
power law at long time (ρ tð Þ � t�α), so it has been suggested [72] that
β tð Þ ¼ β0 t

α�1,0< α < 1, where β0 is some constant. For this particular choice of β tð Þ,
solving BMR Eq. (B1) leads to

ρ tð Þ
ρ0

¼ 1þ t

τ0

� �α
 ��1

, (B3)

where τ0 ¼ α= ρ0β0ð Þ½ �1=α is called the effective bimolecular lifetime [72].
Although charge carrier lifetime can be seen as the mean survival time, which is

directly related to the survival probability S tð Þ [73, 74] via τ ¼
Ð

∞

0

S tð Þdt, calculating

carrier lifetime using the concept of survival probability seems to be impractical as
the abovementioned integral is diverging due to long-lived charge carriers trapped
in the band-tail states. However, neglecting those long-lived carriers, we can intui-
tively find carrier lifetime using [75]

τ ¼ ρ tð Þ
� dρ tð Þ

dt

, (B4)

for which substituting Eq. (B3) into Eq. (B4) leads to τ ¼ ρ0β0ð Þ�1 1þ t=τ0ð Þα½ � t1�α.
However, in this equation, as t tends to zero, dρ=dt diverges; thus, carrier lifetime
diminishes, meaning that charge carriers annihilate immediately after charge sepa-
ration. Such a fast recombination mechanism can also be seen for the other choice of
time-dependent rate coefficient, β tð Þ, mentioned before.

To resolve this instantaneous recombination at short time, we modify the above

time-dependent rate coefficient to β tð Þ ¼ β0 1þ t=ηð Þα�1 where η ¼ α= ρ0β0ð Þ is a
time scaling constant. Experimental data [72] shows that η is on the order of μs at
room temperature for MDMO-PPV and PCBM blend. For this choice of β tð Þ, from
Eq. B1, one finds

ρ tð Þ
ρ0

¼ 1þ t

η

� ��α

, (B5)

for which BMR rate can be defined as

1

ρ0

dρ tð Þ
dt

¼ � α

η
1þ t

η

� ��α�1

¼ � α

η

ρ

ρ0

� �1þ1
α

: (B6)

Using Eqs. (B5) and (B6), one can express carrier lifetime in Eq. (B4) in terms of
the carrier density
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τ ¼ η

α
1þ t

η

� �

¼ η

α

ρ tð Þ
ρ0

� ��1
α

, (B7)

which can very well be approximated by τ ≈  t=α at long time. In contrast to the
density decay in Eq. (B3), Eq. (B5) leads to a finite value for dρ=dt in Eq. (B6) as t
tends to zero, giving rise to a non-zero initial carrier lifetime τ ¼ η=α. Eq. (B7) also
demonstrates that carrier lifetime decreases with carrier density (see Figure 2)
which suggests that ultimately, long-lived carriers in the deep band-tail states dom-
inate the carrier lifetime.

Figure B1 illustrates the results taken from analytical form in Eq. (B6), indicat-

ing the impact of BMR exponent on BMR rate for a fixed η ¼ 10�6 s�1. Figure B1A
indicates that there is a transition at t ¼ η where BMR rate transitions from a
constant to a rate decreasing with time. Furthermore, the effect of BMR exponent
on the BMR rate is reversed at this point, suggesting that BMR rate increases with
BMR exponent at short time but decreases at long time. Figure B1B demonstrates
that at a given charge carrier density, as BMR exponent decreases (e.g., band-tail
state distribution becomes deeper), BMR rate also decreases.
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Figure B1.
Impact of BMR exponent, α, on BMR rate with (A) time and (B) charge carrier density utilizing Eq. (B6). In
panel A, vertical dotted line corresponds to t ¼ η ¼ 10�6 s�1 using which these results were obtained.
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